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Abstract. This work reviews recent molecular statistics (MS) numerical exper-
iments of cracked samples, and discusses the crack-tip region stress field of ide-
al brittle materials. Continuum-based linear elastic fracture mechanics, indeed, 
breaks down at extremely small scale, where the discrete nature of atoms is 
considered. Surprisingly, recent results have shown that the concept of stress in-
tensity factor (SIF) is still valid. In this work, by means of MS simulations on 
single-edge cracked samples of ideal brittle silicon, it is shown that the stress 
intensity factor derived from the virial stress may be useful to describe the frac-
ture at extremely small dimensions and to quantify the breakdown of continu-
um-based linear elastic fracture mechanics. However, it is still debated whether 
a continuum-based concept such as the “stress” should be applied to a system 
made of atoms. 
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1 Introduction 

With recent developments in miniaturization of electronics devices such as nano and 
micro-electromechanical systems (NEMS/MEMS), issues usually addressed at the 
macroscale, i.e. fatigue and fracture, have been brought into a completely new “scale” 
[1, 2]. At the same time, developments in nanotechnology give nowadays a complete-
ly new way at which the fatigue and fracture can be studied with a remarkable poten-
tial impact in several fields of engineering [3–10]. At such small scales, where dis-
crete nature of atoms can’t be ignored, the continuum concepts largely used at the 
macroscale become questionable [11–13]. 

While methods based on energy have shown good potential to be extended from 
continuum to discrete system [12, 14–18], it is still debated whether the concept of 
“stress” should be applied to a system made of atoms [19, 20]. Stress is, indeed, a 
continuum concept, originated from the study of strength and failure of solid, and 
commonly defined as the quantity that represents the internal forces on a defined 
plane of a continuous material. Thus, questions arise on the definition of “atomic 
stress”. When investigating fracture at the atomic scale, the virial stress tensor is 
commonly employed to derive mechanical stresses acting on atoms [20–22]. Setting 
aside the debate on the validity of the virial stress as a representation of mechanical 
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stress at atomic scale, in the present work the focus is on the applicability of classic 
continuum concepts in the presence of defects, such as the stress intensity factor 
(SIF). By reviewing recent molecular statistics (MS) analyses on single-edged 
cracked samples loaded under mode I [23], and representative of ideal brittle fracture, 
it is demonstrated that the virial stress shows the trend of inverse square root singular-
ity and that computation of the SIF according to Irwin’s concept is possible. Further-
more, the breakdown of continuum linear elastic fracture mechanics, recently defined 
by means of energy concepts [11–13], is here quantified by using merely the stress 
fields.  

It is concluded that the SIF from atomic stress may be useful in characterizing frac-
ture at atomic scale, provided that the virial stress is accepted as representative of 
atomic mechanical stress. On the other hand, energy concepts should be anyway pre-
ferred for future developments, since they can provide a direct equivalence between 
continuum, discrete systems and among different scales. 

2 Review of Recent Molecular Statistics Simulations on 
Cracked Samples 

Recently, fracture tests by means of MS simulations were conducted by using open-
source code LAMMPS [24]. While details can be found in [23], important aspects are 
presented hereafter. The modified Stillinger-Weber (SW) interatomic potential [25] 
was employed. The SW potential is representative of ideal brittle fracture, and often 
used when studying single crystal silicon. The focus was on single-edge cracked sam-
ple, loaded under mode I. Figure 1 depicts an example of the samples and orientation.  

 
Fig. 1. Cracked samples employed in the molecular statistics analyses and orientation [23]. The 
thickness of the simulation cell is indicated as t.  

Several specimens where considered, scaling their size until few nanometers: the 
width of the sample W varied from 198 nm to 9.8 nm, while the crack length a was 
kept equal to W/3.  The mechanical properties were given by the following material 
constants: C11=201 GPa, C12=51.4 GPa and C44=90.5 GPa. Along the direction [111], 
an ideal material strength sIS of 35 GPa at critical strain eC=0.3 was obtained. A step-
wise increment of strain e is applied at the upper and lower layers of atoms according 
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to Fig. 1, and the strain is increased until final fracture. At fracture, the critical dis-
placement dC (maximum displacement before failure) is obtained. The mechanical 
stress is obtained dividing the virial stress (stress ´ volume quantity) by the per-atom 
volume at eC=0.3, i.e. 24.44 Å3. This value is, indeed, a more reliable estimation of 
the atomic volume in regions that are highly deformed, such as close to the crack tip 
at failure conditions. Analyses were conducted at 0 K and fully included the lattice 
trapping. 

3 Results and Discussion 

The crack tip stress fields of some selected considered geometries are presented in 
Fig. 2a for the sake of clarity. The values of the atoms at the crack tip are plotted at 
r=0.1 Å for convenience, since as well known the log-log scale does not allow the 
value of 0. The depicted stress is the mechanical atomic stress, i.e. virial stress divid-
ed by the per-atom volume as explained in the previous section. 

 

 
Fig. 2. (a) Near crack-tip atomic stress distribution for selected geometries; atomistic stress is 
derived from virial stress/per-atom volume. The stress values of the atoms at the crack tip are 
plotted for r=0.1 Å rather than 0 Å in order to summarize in a single log-log scale graph both 
stress distribution and crack-tip values. (b) Critical stress intensity factors versus the variation 
of the specimen width W. 

The figure shows two very important results:  

• The MS analyses do not predict the infinite stress at the crack-tip but rather a finite 
value, i.e. the ideal material strength s IS, regardless of the specimen size. This in-
dicates that the fracture, in the case of ideal brittle materials, is ultimately governed 
by atoms at crack tip.  

• Even if the stress singularity is missing, near the crack tip region the stress still 
varies with 1/r0.5 as expected from continuum LEFM. Fig. 2a depicts only selected 
geometries for the sake of clarity, but same results are obtained for all the consid-
ered samples.  

(b) (a) 
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The results allow the quantification of the SIF at failure KIf (i.e. at critical displace-
ment dC), according to the classic Irwin’s definition [26, 27]: 

 KIf = sV  ,         (1) 

where sV is the atomistic mechanical stress, perpendicular to the crack plane; r is the 
distance from the crack-tip along the crack plane. The results are presented in Fig. 2b 
and compared with other experimental and numerical works by other authors [16, 17, 
28]. KIf »0.97 MPa×m0.5 is constant for all the geometries, and it agrees well with the 
fracture toughness of single crystal silicon, including bulk samples [29].  

 

 
Fig. 3. Normalized SIF at failure versus the ratio of singular stress field length LK and fracture 
process zone length RFPZ. Numerical values are reported in [23]. 

Finally, the comparison with continuum-based linear elastic solutions conducted in 
[23] is summarized in Fig. 3. The stress intensity factors at failure are normalized vs 
the KIf of the largest sample W=198.41 nm, and plotted versus the length of the singu-
lar stress field LK normalized by the fracture process zone RFPZ. LK is the distance 
from the crack-tip at which the stress deviates more than 5% from the expected 1/r0.5, 
while the RFPZ is a constant value taken from the literature [12, 13]. When continuum 
and atomistic simulations are overlapped, the continuum-based formulation breaks 
down when the ratio between LK and RFPZ is approximately 4-5, in agreement with 
[12, 13]. The atomistic simulations, instead, show a clearly scale-independence, con-
firming that ideal brittle fracture is ultimately governed by atomic bond breaking [7, 
17].  

Concluding, the concept of SIF is still surprisingly valid if the atoms are modeled, 
and static crack and ideal brittle material containing no other defects are considered. 
This result also agrees well with conclusions made by other authors [30]. Provided 
that the virial stress is affectively accepted as representative of atomic stress, crack tip 
region stress field of molecular system may be described by continuum-based SIF 
concept. 

2πr
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