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An Extended Framework of Privacy-Preserving
Computation with Flexible Access Control

Wenxiu Ding, Member, IEEE, Rui Hu, Zheng Yan, Senior Member, IEEE, Xinren Qian, Robert H.
Deng, Fellow, IEEE, Laurence T. Yang, Senior Member, IEEE, and Mianxiong Dong, Member, IEEE

Abstract—Cloud computing offers various services based on
outsourced data by utilizing its huge volume of resources and
great computation capability. However, it also makes users lose
full control over their data. To avoid the leakage of user
data privacy, encrypted data are preferred to be uploaded
and stored in the cloud, which unfortunately complicates data
analysis and access control. In particular, few existing works
consider the fine-grained access control over the computational
results from ciphertexts. Though our previous work proposed
a framework to support several basic computations (such as
addition, multiplication and comparison [1]) with flexible access
control, privacy-preserving division calculations over encrypted
data, as a crucial operation in many statistical processes and
machine learning algorithms, is neglected. In this paper, we
propose four privacy-preserving division computation schemes
with flexible access control to fill this gap, which can adapt to
various application scenarios. Furthermore, we extend a division
scheme over encrypted integers to support privacy-preserving
division over multiple data types including fixed-point numbers
and fractional numbers. Finally, we give their security proof
and show their efficiency and superiority through comprehensive
simulations and comparisons with existing work.

Index Terms—Cloud Computing, Secure Division Computa-
tion, Privacy Preservation, Access Control, Data Security.

I. INTRODUCTION

CLOUD computing can efficiently store and process data
in the Internet by taking advantage of its huge volume of

resources and great computation. The arrival of cyberization
era has led to the demand of massive data generation, analysis
and processing, which causes high computation overhead that
cannot be handled by local devices [2], [3], [4]. Outsourc-
ing computing to the cloud can greatly benefit resource-
constrained users [5]. However, the dynamic, random and open
nature of cloud computing makes it hard to be fully trusted.
It may disclose user private data, which seriously impacts
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user privacy and threatens data security. Therefore, cloud users
prefer to first encrypt their sensitive data and then outsource
ciphertext to the cloud. However, encryption introduces new
challenges for data analysis and sharing as described below.

First, encryption complicates data processing and analysis,
especially for division. Though partial/fully homomorphic
encryption (PHE/FHE) can be applied to perform operations
over encrypted data, PHE algorithms can only support mul-
tiplication and addition over encrypted data [6], [7]. FHE
algorithms can realize division computation over encrypted
data but introduce high computational and communication
overhead [8], [9], thus they are not applicable and efficient
in practice.

Second, flexible access control over outsourced data compu-
tation results is still an open issue. Most existing homomorphic
encryption systems only support single-user access to the
results [10]. The past literatures mainly focus on the access
control over the outsourced data, but ignore the security
requirement of access control over the processing results [11],
which is however especially significant and essential to support
various intelligent applications, such as smart grid, smart
transportation, health-care services, and so on.

In our previous work, a framework [1] with two non-
colluding servers was proposed to achieve encrypted data
computation with flexible access control over the computation
results in a privacy-preserving manner. However, division
computation is missed therein owing to its complexity. In
order to enhance the applicability, flexibility and scalability
of our framework, we extend and complement it by providing
privacy-preserving division computation on the basis of our
previous system model.

In this paper, we propose several novel schemes to realize
privacy-preserving division over ciphertext with fine-grained
access control over division results. Specifically, this work has
the following contributions:
• We first extend our previous framework to support di-

vision computation over encrypted integers without any
transformations or decompositions. Our scheme can pro-
vide the ciphertext of quotient and remainder values from
outsourced encrypted data to specified data requester or
user group, which preserve the confidentiality of both
original data and final computation result.

• We realize flexible access control over the division results
in a privacy-preserving manner. Our scheme can adapt to
different application scenarios with sound scalability.

• We further extend our scheme in terms of integers to sup-
port privacy-preserving division computation over other
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types of data including fractional numbers and fixed-point
numbers, which obviously improves the precision and
practicability of division computation over ciphertext.

• We prove the correctness and security of our proposed
schemes, and further demonstrate its efficiency and scal-
ability through extensive simulations and comparisons
with existing works.

The rest of this paper is organized as follows. In Section II,
we briefly overview the existing work on secure division
computation and analyze their pros and cons, followed by
the system model, attack model and design goals of our
schemes in Section III. Section IV presents our proposed four
division schemes over integers as well as their extension for
supporting fixed point numbers and fractional numbers. Then
we give correctness proof, security analysis and performance
evaluation in Section V. Finally, we conclude the whole paper
in the last section.

II. RELATED WORK

Secure division computation plays a crucial role in secure
statistical analysis [12], [13], secure clustering in machine
learning [14] and secure recommender systems [15]. Few
researchers implement secure division over encrypted data
based on FHE due to its high complexity. And most of related
works apply PHE, which mainly falls into two categories.
One is based on arithmetic transformations to convert the
secure division computation into addition and multiplication
over encrypted data, and the other achieves secure division
based on a secure bit decomposition protocol. However, both
methods suffer from either high communication overhead
or high computational complexity. In addition, they cannot
provide flexible access control over division result to support
multiple result requestors.

A. Secure Division Based on Arithmetic Transformations

Katzenbeisser et al. [16] chose a tuple (ρx, σx, τx) to
represent a value χ which belongs to a certain interval [−l; +l]
with l > 0, where ρx is a nonzero flag, σx encodes the sign
of the value x and τx indicates the absolute of the value.
Then the division result can be computed by basic operations
on corresponding element through function LDIV ([x], [y]).
Though the representation of numbers can support secure
computations on non-integers, its final computational division
result is an approximation with bounded relative error and
encoding increases the overhead of data preprocessing.

To overcome this issue and get an accurate result, Dahl
et al. [17] performed a Taylor expansion on the reciprocal
of a denominator to transform the division computation over
encrypted data into multiplication and addition over encrypted
data. Though the proposed protocol can guarantee the privacy
of division, the implementation of several sub-protocols bring
high computational overhead. In addition, the frequent interac-
tions between two servers bring high communication overhead.

Veugen [18] presented three protocols for dividing en-
crypted data based on a client-server model in which the
ciphertext [x] and its corresponding decryption key K are held
by the client and the server, respectively. But the divisor is

known to the server in these three protocols, which unfortu-
nately cannot ideally support privacy preservation.

In order to improve the precision of division results, Catrina
and Saxena [19] tried to approximately get a division result
over two floating point numbers by applying the Goldschmidt’s
method [20]. But this scheme cannot support division compu-
tation over encrypted input data. To overcome this weakness,
Ugwuoke et al. [21] designed a division protocol to support
encrypted floating point numbers based on homomorphic
encryption. However, both of the above two division schemes
use fixed rounds of iterative computations to guarantee fixed
precise of results, which results in high computational over-
head.

B. Secure Division Based on Bit Decomposition Protocol

The modulo value operation limits the length of the data in
division computation. To guarantee the confidentiality of both
the divisor and the dividend, one way is to add some random
numbers into these values. But this makes it difficult to gain an
accurate quotient from the masked data. Hence, some studies
use the secure bit-decomposition (SBD) protocol [22] to
realize secure division [23], [24]. After data providers upload
their encrypted data, the cloud first decomposes encrypted data
as binary string and then executes division to get a quotient
and a remainder by operating secure bit shift. But the bit
decomposition protocol is generally very complicated, thus
hard to be deployed.

Notably, all aforementioned works ignore the access control
over the division results from ciphertext. In our previous work
[1], flexible access control over seven basic operations (such
as addition, subtraction, etc.) from ciphertext were achieved
based on key-policy attributed-based encryption (KP-ABE)
[25], [26], [27], [28]. However, division computation over
ciphertext is still not supported and needs further investigation.

III. PROBLEM STATEMENTS

A. System Model

The division function is a novel addition and complement
to our previous work, which makes our previous framework of
privacy-preserving computations more generic and applicable.
In this paper, we follow the same models as in [1] for
the purpose of extending its functionality to further support
division computation. Concretely, the system is composed of
five kinds of entities in Fig. 1.
1) Data Service Provider (DSP) provided by a cloud server

takes the responsibility of data storage and computation
service.

2) Computation Party (CP) can be a private cloud service
provider or a department in charge, which mainly offers
the service of data computation and access control.

3) Data Providers (DPs) are cloud service consumers that
collect or generate data and upload them to DSP for
efficient storage and computation.

4) Data Requesters (DRs) as data consumers request for the
processing results. A DR can be a DP.

5) Authority is fully trusted and in charge of key management.
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Fig. 1: System Model

B. Attack Model

In the system model above, we assume all entities except the
authority are semi-trusted. The authority acts honestly and has
no collusion with any other entities, while other entities strictly
follow the design of system protocols but are still curious about
others’ data. In addition, we assume that the DSP and the CP
would not collude with each other because their collusion will
decrease their reputations and impact their individual interests.
Herein, an adversary A∗ is introduced to the attack model. Its
goal is to gain the raw data by challenging data users (either
a DR or a DP) with some special capabilities as follows:

1) A∗ can eavesdrop all communication channels except the
ones between Authority and users to get those transmitted
messages;

2) A∗ may compromise one server (either DSP or CP) to
guess the raw data through the ciphertexts transmitted
between themselves and other users;

3) A∗ may compromise one server (either DSP or CP) and
some DPs to guess the final processing results;

4) A∗ may also compromise one server (either DSP or CP)
and the DR to guess the original data provided by DPs.

The adversary A∗ may compromise all entities, but it cannot
compromise the DSP and the CP simultaneously and cannot
compromise the challenged DR or DP.

C. Design Goals

a) Confidentiality: Our schemes should guarantee that
only the authorized entities can access the final computation
results and that no entity can access the raw data provided by
the data providers.

b) Correctness: The proposed schemes can offer DRs
accurate division results.

IV. PRIVACY-PRESERVING DIVISION SCHEMES WITH
FLEXIBLE ACCESS CONTROL

A. Notations and Preliminaries

1) Notations: In order to get a better understanding of
scheme details, Table I lists some key notations used through-
out this paper.

TABLE I: Notation Description

Symbols Description
g0 The system generator in ABE
g The system generator in HRES
n The system parameter
(ski, pki) The public/private key pair of entity i
PK = pkskCPDSP

= pkskDSPCP

The public key generated through the
keys of DSP and CP

mi The original data provided by DP i
[m] The ciphertext of data m under PK
[m]pki The ciphertext of m under pki
b·c The quotient of division operation
Q The quotient of division operation
R The remainder of division operation
L(·) The length of a piece of data

2) Ciphertext-Policy Attribute-Based Encryption (CP-
ABE): Herein, we introduce CP-ABE for applying it to
support fine-grained access control, which guarantees the
security of raw data through access policy. Generally, we
mainly use the following four algorithms of CP-ABE in [29]:
SetupABE → (PK ′,MSK ′). This algorithm first selects

a bilinear group G0 of prime order p with generator g0 as
well as two random exponents α, β ∈ Zp. Then, it outputs the
public key PK ′ and a master secret key MSK ′.

PK ′ =
(
G0, g0, h = g0

β , f = g0
1/β , e(g0, g0)

α
)

(1)

MSK ′ = (β, g0
α) (2)

EncABE (M, T , PK ′)→ CK ′. The algorithm inputs mes-
sage M , access policy T and PK ′. It chooses a polynomial
qx for each node and sets qx(0) according to Eq.(3) except
for the root node x. Then it outputs CK ′ as shown in Eq.(4),
where s is a randomly chosen number and Y is the set of leaf
nodes in T .

qx(0) = qparent(x)(index(x)) (3)

CK ′ = (T , C̃ =Me(g0, g0)
αs, C = hs,

∀y ∈ Y : Cy = g0
qy(0), C ′y = H(att(y))qy(0))

(4)

KeyGenABE (MSK ′,S) → SK ′. The key generation
algorithm takes in MSK ′ and a set of attributes S , and
generates a secret key SK ′.

SK ′ = (D = g0
(α+r)/β ,

∀jεS : Dj = g0
r ·H(j)rj , D′j = g0

rj )
(5)

DecABE (PK ′, SK ′, CK ′) → M . If the set of attributes
embedded in the private key SK ′ satisfy the access policy, the
decryption algorithm can successfully decrypt the ciphertext
CK ′ to get the message M .

Notably, KP-ABE [25] can also be used in our scheme. If
two pieces of data are encrypted with the same access policy,
the CP-ABE is multiplicative homomorphic. That is, given CP-
ABE ciphertext of M1 and M2 encrypted with the same access
structure, the ciphertext of M1 ∗M2 can be obtained through
the multiplication of these two pieces of ciphertext with Eq.(6),
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Fig. 2: The procedure of division computation for a targeted data requester

denoted as HEABE . We prove the homomorphism of CP-
ABE later.

EncABE (M1 ∗M2, T , PK ′)
= EncABE (M1, T , PK ′) ∗ EncABE (M2, T , PK ′)

(6)

In this paper, we introduce the CP-ABE in [29] for access
control, which only considers the static scenarios. Hence,
our scheme cannot support dynamic environment and fails to
support user revocation. In order to solve this issue, we can
apply a revocable ABE [30] and integrate into our scheme or
use a blacklist to block revoked users. User revocation is not
the focus of this paper and can play as a part of our future
work.

3) Homomorphic Re-Encryption System (HRES): We pro-
posed homomorphic re-encryption system (HRES) in [31] ,
which lays the foundation of all seven data operations in
our previous work [1]. Herein, we also apply HRES for data
outsourcing in this paper. A brief introduction to HRES is
presented as below:

Key Generation(KeyGen): During system setup, it gener-
ates the public parameters: a big integer n, a system generator
g. In addition, each entity i (including DSP and CP) gener-
ates one key pair (ski, pki). Further DSP and CP negotiate
their Diffie-Hellman key PK. which should be issued to
its customers. Hence, the public system parameters include
{g, n, PK}.

Encryption: Enc (m, pki)→ [m]pki , as shown in Eq. (7).

[m]pki = {(1 +m ∗ n)pkri , gr} mod n2 (7)

Decryption: Dec ([m]pki , ski)→ m.
Encryption with PK: EncTK(m,PK) → [m]PK . The

ciphertext under PK, will be denoted as [m] in the following
sections.

Partial Decryption with skDSP : PDec1 ([m], skDSP )→
[m]pkCP .

Partial Decryption with skCP :
PDec2 ([m]pkCP , skCP )→ m.

Besides the additive homomorphism shown in Eq. (8), Eqs.
(9), (10) and (11) illustrate several features of HRES, where r
in Eq. (9) denotes a random number and ([m]pki)

1,t in Eq. (11)
represents that an exponential operation that only performs on
the first part of the ciphertext.

[m1]pki ∗ [m2]pki = [m1 +m2]pki (8)

[r ∗m]pki = ([m]pki)
r (9)

([m]pki)
n−1

= [−m]pki (10)

([m]pki)
1,t

=
{
{(1 +m ∗ n)pkri }

t
, gr
}
mod n2 (11)

B. Privacy-Preserving Division over Integers with Flexible
Access Control

In this section, we design four different division schemes to
support division computation over encrypted integers, which
are suitable for different scenarios. First of all, we outline four
schemes.

The first scheme aims to obtain the quotient value from
two encrypted data that can be accessed by a specified
data requester DR. Given two piece of encrypted data [m1]
and [m2], it can provide the ciphertext of division result
[bm1/m2c] pkDR, which guarantees that only the targeted data
requester can access the quotient.
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The second scheme is designed to enable flexible access
control over computational result. Given ciphertext [m1] and
[m2], the second scheme can provide the division result
[bm1/m2c]pkck , while the corresponding secret key is en-
crypted via ABE. Hence, the data requesters who satisfy the
access policies can obtain the secret key and get the final
quotient.

The third scheme further calculates division remainder
compared to the first scheme to provide an accurate division
computational result.

Similarly, the fourth scheme is proposed to further provide
the remainder of division based on the second scheme.

In what follows, we introduce the details of four schemes.
1) Privacy-Preserving Division Computations for a Tar-

geted Data Requester (Scheme 1): In Scheme 1, DSP and CP
process data collected from DP by following the procedure as
shown in Fig. 2.

Step 1 (System Setup @ All Entities): The authority
invokes KeyGen to complete the setup of HRES.

Step 2 (Data Upload @ DPs): DPs call EncTK (mi, PK)
to encrypt their data mi as [mi] and then upload them to
DSP. To avoid the overflow of middle results, it should ensure
L (m1) < 3L(n)/4 and L (m2) < L(n)/2.

Step 3 (Data Preparation @ DSP): DSP first ran-
domly selects two numbers r1, r2 and conceals the
raw data to get [m1r1], [m2r1] and [m2r1r2] through
Eq. (8), where L (ri) < L(n)/4. Then it acquires
[m1r1 +m2r1r2] by using Eq. (12). Next, DSP per-
forms partial decrytion on [m2r1] and [m1r1 +m2r1r2]
to get [m2r1]pkCP and [m1r1 +m2r1r2]pkCP by calling
PDec1 (∗, skDSP ). Afterwards, DSP sends the data packet(
[m2r1]pkCP , [m1r1 +m2r1r2]pkCP

)
to CP.

[m1r1 +m2r1r2] = [m1r1] ∗ [m2r1r2] (12)

Step 4 (Data Process @ CP): CP calls PDec2 (∗, skCP )
to decrypt the data received from DSP and get the masked
data m2r1 and (m1r1 +m2r1r2). Then CP performs division
on plaintext according to Eq. (13), where

⌊
m1

m2

⌋
represents

the quotient and ignores the remainder. CP further calls
Enc (∗, pkDR) to encrypt the computational result and sends
the ciphertext

[⌊
m1

m2

⌋
+ r2

]
pkDR

to DSP.

(m1r1 +m2r1r2) /m2r1 =

⌊
m1

m2

⌋
+ r2 (13)

Step 5 (Additional process @ DSP): DSP encrypts the

random number r2 as [r2]pkDR and computes
(
[r2]pkDR

)n−1
.

Then DSP removes the mask from received ciphertext with
Eq. (14).[⌊

m1

m2

⌋
+ r2

]
pkDR

∗
(
[r2]pkDR

)n−1
=

[⌊
m1

m2

⌋]
pkDR

(14)

Note: Herein, we use
⌊
m1

m2

⌋
to represent the quotient re-

gardless of remainder.
Step 6 (Data Access @ DR): Upon receiving fi-

nal ciphertext from DSP, the targeted DR can call

Dec

([⌊
m1

m2

⌋]
pkDR

, skDR

)
to get the final quotient of di-

vision.
2) Privacy-Preserving Division Computations with Flexible

Access Control (Scheme 2): In Scheme 2, DSP and CP process
encrypted data from DP as shown in Fig. 3.

Step 1 (System Setup @ All Entities): The authority
first invokes KeyGen and SetupABE to set up the system
and generate the key parameters PK ′ and MSK ′ of ABE
algorithm. Then, the authority publishes public parameters to
its service consumers.

Step 2 (Data Upload @ DPs): Similar to Step 2 of Scheme
1, DPs upload encrypted data [mi] to DSP.

Step 3 (Data Preparation@ DSP): DSP selects two ran-
dom numbers r1, r2 ∈ [1, n/4], and preprocesses data to mask
raw data, which is same as Scheme 1. Similarly, DSP sends
the data packet

(
[m2r1]pkCP , [m1r1 +m2r1r2]pkCP

)
to CP.

Step 4 (Data Process @ CP): CP calls PDec2 (∗, skCP ) to
decrypt the received data from DSP and performs division on
masked plaintext with Eq. (13). Then it encrypts the compu-
tational result by calling Enc (∗, pkCP ) and sends encrypted
data

[⌊
m1

m2

⌋
+ r2

]
pkCP

to DSP.

Step 5 (Data reprocess@ DSP): DSP chooses a partial
key ck1 and sets a random number c1 as (ck1)

−1
mod n.

Furthermore, it removes the mask from received ciphertext
through Eq. (15) and then uses Eq. (16) to perform exponential
compuation. Finally DSP sends

[
c1

⌊
m1

m2

⌋]
pkCP

to CP.[⌊
m1

m2

⌋
+ r2

]
pkCP

∗
(
[r2]pkCP

)n−1
=

[⌊
m1

m2

⌋]
pkCP

(15)

[
c1

⌊
m1

m2

⌋]
pkCP

=

([⌊
m1

m2

⌋]
pkCP

)c1
(16)

Step 6 (Data reprocess@ CP): CP first calls
PDec2 (∗, skCP ) to decrypt received ciphertext as c1

⌊
m1

m2

⌋
.

Then it chooses a partial key ck2 to generate a key pair
(ck2, pkck2) and calls Enc (∗, pkck2) to encrypt the data.
In addition, CP calls EncABE (ck2, T , PK ′) to obtain the
ABE ciphertext CK2, which is sent to DSP along with the
ciphertext

[
c1

⌊
m1

m2

⌋]
pkck2

.

Step 7 (Additional process@ DSP): DSP operates
partial modular computation on received ciphertext with
its partial key ck1 according to Eq. (11) and gets
the ciphertext

[⌊
m1

m2

⌋]
pkck

with Eq. (17). Then it calls

EncABE (ck1, T , PK ′) to get CK1 and obtains an encrypted
access key CK through Eq. (18) by calling HEABE algo-
rithm. [⌊

m1

m2

⌋]
pkck

=

([
c1

⌊
m1

m2

⌋]
pkck2

)1,ck1

(17)

CK = CK1 ∗ CK2 (18)

Finally, DSP keeps
[⌊

m1

m2

⌋]
pkck

and CK for user access.

Step 8 (Data Access @ DRs): Upon receiving the com-
putational result and CK from DSP, the DRs who satisfy the
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Fig. 3: The procedure of division computation with flexible access control

access policy can obtain the secret key SK ′ from Authority.
Thus, the authorized DRs can obtain ck by calling DecABE()
to decrypt CK, and further get the final quotient by calling

Dec

([⌊
m1

m2

⌋]
pkck

, ck

)
.

3) Privacy-Preserving Remainder Computation for a Tar-
geted Data Requester (Scheme 3): Herein, we omit the same
first three steps as in Scheme 1 and only introduce the
additional part as below.

Step 4 (Data Process @ CP): Once getting the data
forwarded by DSP, CP first calls PDec2 (∗, skCP ) to obtain
concealed plaintext and seperately employs Eqs. (13) and (19)
to get masked quotient and remainder through computation on
plaintext.

Rr1 = (m1r1 +m2r1r2)−m2r1 ∗
(⌊

m1

m2

⌋
+ r2

)
(19)

Then CP calls Enc (∗, pkDR) to encrypt the above compu-
tational result as

[⌊
m1

m2

⌋
+ r2

]
pkDR

and [Rr1]pkDR , and sends

the ciphertext to DSP.
Step 5 (Data Additional Process @ DSP): DSP removes

the mask from received ciphertext to get encrypted quotient
and remainder by applying Eqs. (14) and (20) respectively.

[R]pkDR =
(
[Rr1]pkDR

)r−1
1

(20)

Step 6 (Data Access @ DR): Upon receiving the com-
putational results from DSP, the targeted DR can decrypt the
ciphertext

[⌊
m1

m2

⌋]
pkDR

and [R]pkDR to get the final quotient

and remainder of the division by calling Dec (∗, skDR).
4) Privacy-preserving Remainder Computation with Flexi-

ble Access Control (Scheme 4): We introduce its details below
by omitting the same first three steps as in Scheme 2.

Step 4 (Data Process @ CP): CP decrypts the data packet
from DSP by invoking PDec2 (∗, skCP ) and obtains two
messages m2r1 and (m1r1 +m2r1r2). Then it performs basic
operations to get

⌊
m1

m2

⌋
+ r2 and Rr1. Furthermore, CP calls

Enc (∗, pkCP ) to encrypt the computational results and sends

the encrypted data packet
{[⌊

m1

m2

⌋
+ r2

]
pkCP

, [Rr1]pkCP

}
to

DSP.
Step 5 (Data Reprocess @ DSP): DSP first selects a partial

secret key ck1 and sets a random number c1 as (ck1)
−1

mod
n. Then it removes the mask from received ciphertext to get
encrypted quotient with Eq. (15) and encrypted remainder with
Eq. (21). Moreover, DSP uses Eqs. (16) and (22) to conceal
the quotient and remainder from CP respectively.

[R]pkCP =
(
[Rr1]pkCP

)r1−1

(21)

[c1R]pkCP = ([R]pkCP )
c1 (22)

Next, the data packet
{[
c1

⌊
m1

m2

⌋]
pkCP

, [c1R]pkCP

}
is sent

to CP.
Step 6 (Data Reprocess @ CP): With received data packet,

CP first performs PDec2 (∗, skCP ) on encrypted data. Then,
it chooses a partial key ck2 to generate a key pair (ck2, pkck2)
and calls Enc (∗, pkck2) to encrypt the masked data. Detailed
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processes are described as below.

1)
[
c1

⌊
m1

m2

⌋]
pkCP

PDec2(∗,skCP )
−→ c1

⌊
m1

m2

⌋
Enc(∗,pkck2)

−→

[
c1bm1

m2
c
]
pkck2

;

2) [c1R]pkCP
PDec2(∗,skCP )

−→ c1R
Enc(∗,pkck2)

−→ [c1R]pkck2
;

In addition, CP calls EncABE (ck2, T , PK ′) to encrypt ck2
as CK2.

The data packet
{[
c1

⌊
m1

m2

⌋]
pkck2

, [c1R]pkck2
, CK2

}
is

sent to DSP.
Step 7 (Additional Process @ DSP): Upon receiving

data packet from CP, DSP performs exponential operations
according to Eq. (11), and applys Eqs. (17) and (23) to obtain
final encrypted quioent and remainder respectively. In addition,
it calls EncABE (ck1, T , PK ′) to get CK1 and obtains the
access key CK through Eq. (18).

[R]pkck =
(
[c1R]pkck2

)1,ck1
(23)

Finally, DSP keeps the encrypted data packet{[⌊
m1

m2

⌋]
pkck

, [R]pkck

}
and the key CK for user access.

Step 8 (Data Access @ DR): The DRs whose at-
tributes meet the access policy can get a secret key SK ′

from Authority, which can be used to get ck by calling
DecABE (PK ′, SK ′, CK). Then DRs decrypt the received
ciphertext

[⌊
m1

m2

⌋]
pkck

and [R]pkck obtained from DSP to get

the final quotient and remainder of the division computation.

C. Scheme Extension

In this section, we extend the above schemes to support
various types of numbers including fixed-point numbers and
fractional numbers.

1) Division over Fixed Point Numbers: We extend the
above division scheme to obtain a floating result with a fixed
number of digits after the decimal point. Assuming that the
length of the fractional field is k , DP should first scale the
numerator m1 to m′1 through Eq. (24). DSP receives the en-
crypted data {[m′1] , [m2]} and processes the data cooperating
with CP. The DR requests the final result and decrypts it as⌊
m′1
m2

⌋
, then the result with fixed number of digits can be

computed by Eq. (25).

m′1 = m1 ∗ 2k (24)

Q =

⌊
m′1
m2

⌋
∗ 2−k (25)

Herein, we can evaluate deviation of the computation result
from the actual division result with Eq. (26).

δ = m1 −Q ∗m2 (26)

2) Secure Computations on Fractional Numbers: Given
two fractional numbers m1,1/m1,2 and m2,1/m2,2, we can
perform following computations based on the above proposed
division schemes, multiplication and addition proposed in our
previous work [1].

a) Addition over fractional numbers: The addition of two
fractional numbers can be represented as Eq. (27).

m1,1

m1,2
+
m2,1

m2,2
=
m1,1 ∗m2,2 +m2,1 ∗m1,2

m1,2 ∗m2,2
(27)

When DSP receives the encrypted data packet
{[m1,1] , [m1,2] , [m2,1] , [m2,2]}, it first interacts with
CP to perform privacy-preserving multiplication to gain
ciphertexts [m1,1 ∗m2,2], [m2,1 ∗m1,2] and [m1,2 ∗m2,2],
then computes [m1,1 ∗m2,2 +m2,1 ∗ m1,2] through additive
homomorphism. Finally, DSP and CP cooperate to perform
corresponding division computation on the two ciphertexts
[m1,1 ∗m2,2 +m2,1 ∗m1,2] and [m1,2 ∗m2,2] by applying
Scheme 1-4 according to concrete scenarios.

b) Multiplication over fractional numbers: The product
of two encrypted factional numbers can be computed as[
m1,1∗m2,1

m1,2∗m2,2

]
. Thus, DSP and CP first perform secure mul-

tiplication to get [m1,1 ∗m2,1] and [m1,2 ∗m2,2]. Then, an
encrypted division result can be acquired with the cooperation
of DSP and CP through division computation.

c) Division over two fractional numbers: The division
calculation over the two fractional numbers is equivalent to
m1,1 ∗m2,2/m1,2 ∗m2,1. After obtaining ciphertext products
[m1,1 ∗m2,2] and [m1,2 ∗m2,1] by conducting multiplication
over encrypted data, DSP executes the division computation
over the two encrypted data by cooperating with CP.

V. SECURITY ANALYSIS AND PERFORMANCE EVALUATION

A. Correctness Proof of Multiplicative homomorphism of CP-
ABE

Herein, we prove the multiplicative homomorphism of CP-
ABE. The ciphertext of two messages M1 and M2 under the
same ABE access policy T can be obtained with Eq. (28):

Enc (Mi) = {Mie(g, g)
αsi , Ci = hsi , ∀yi ∈ Y :

Cyi = gqyi (0), C ′yi = H (att (yi))
qyi (0)}, (i = 1, 2)

(28)

Then we can get the product of two ciphertexts through Eq.
(29).

Enc (M1) ∗ Enc (M2) =

{M1 ∗M2e(g, g)
α(s1+s2), C = hs1+s2 , ∀y ∈ Y :

Cy = gqy1 (0)+qy2 (0), C ′y = H( att(y))qy1 (0)+qy2 (0)}
(29)

1) For the leaf node y from the access tree T , if the attribute
i ∈ S , the recursive decryption algorithm can be defined as
follows.

DecryptNode (Enc (M1) ∗ Enc (M2) , SK
′, y)

=
e (Di, Cy)

e
(
D′i, C

′
y

) =
e
(
gr ·H(i)ri , hqy1 (0)+qy2 (0)

)
e
(
gri , H(i)qy1 (0)+qy2 (0)

)
= e(g, g)r(qy1 (0)+qy2 (0))

(30)

2) For the non-leaf node x from the access tree T ,
DecryptNode (Enc (M1) ∗ Enc (M2) , SK

′, x) calls
DecryptNode (Enc (M1) ∗ Enc (M2) , SK

′, y) for all
nodes y that are children of x to perform decryption. Then,
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we can get Eq. (31) according to the linearity of the access
structure.

DecryptNode (Enc (M1) ∗ Enc (M2) , SK
′, x)

= e(g, g)r(qx1 (0)+qx2 (0))
(31)

Thus, for the root node of the access tree T , we can get
Eq. (32) as follows.

DecryptNode (Enc (M1) ∗ Enc (M2) , SK
′, r)

= e(g, g)rqR(0) = e(g, g)r(s1+s2).
(32)

Finally, the ciphertext can be decrypted as Eq. (33).

M1 ∗M2e(g, g)
α(s1+s2)

e(hs1+s2 ,g(α+r)/β)
e(g,g)r(s1+s2)

=
M1 ∗M2e(g, g)

α(s1+s2) · e(g, g)r(s1+s2)

e(g, g)(α+r)(s1+s2)

=M1 ∗M2

(33)

In summary, we can get the conclusion shown in Eq. (34).

Dec (Enc (M1) ∗ Enc (M2)) =M1 ∗M2 (34)

B. Correctness Proof of Division Schemes

Here, we take Scheme 1 as an example to prove its correct-
ness. As its encryption and decryption restricts the length of
data, we should guarantee that Scheme 1 can get the correct
quotient from ciphertext.

Upon data received from DSP, CP can decrypt them to get
m2r1 mod n and m1r1 + m2r1r2 mod n where m2r1 < n
and m1r1+m2r1r2 < n owing the limitation to the length of
data selected. Hence, we can get Eqs. (36) and (37) based on
the assumption as Eq. (35).

m1 = A ∗m2 +R,whereR < m2 (35)

(m1r1 +m2r1r2) = Am2r1 +Rr1 +m2r1r2 (36)

(m1r1 +m2r1r2) / (m2r1) = A+R/m2 + r2 (37)

As R < m2, then R/m2 is smaller than 1. Therefore, we
can get Eq. (38), which is the quotient.⌊

m1

m2

⌋
= A (38)

C. Security Analysis

Similar to our previous work [1], the security of all schemes
in this paper inherits from the semantic security of HRES
in [31] and ABE. To prove their security, we follow the
security model and attack model with the existence of four
semi-honest adversaries. Except the Authority, all other en-
tities may be compromised. Hence, we construct four sim-
ulators (SimDP , SimDSP , SimCP , SimDR) to fight against
their corresponding adversaries (ADP ,ADSP ,ACP ,ADR)
that compromise DP , DSP , CP and DR, respectively.

Scheme 1 can securely obtain the quotient from en-
crypted data through the cooperation between two servers
of DSP and CP in the existence of semi-honest adversaries
(ADP ,ADSP ,ACP ,ADR).

Here we construct four simulators including SimDP ,
SimDSP , SimCP and SimDR.

SimDP simulates ADP : SimDP only needs to outsource
its data by calling EncTK (mi, PK), hence its security
can directly inherit from the original HRES. Though DP
may colludes with one server (for example, DSP), ADSP
can only get the partial decryption result [mi]pkCP through
PDec1 ([mi] , skDSP ) in Step 3. Finally, ADP can get the
ciphertext [mi]pkCP and [mi]. Owing to the security of HRES,
ADP cannot get anything from the data outsourced from other
users.
SimDSP simulates ADSP as follows: first SimDSP

calls EncTK(∗, PK) to encrypt random messages m̃1

and m̃2; then it chooses some random numbers to ob-
tain [m̃2r1], [m̃1r1 + m̃2r1r2] and then further decrypts
them into [m̃2r1]pkCP , [m̃1r1 + m̃2r1r2]pkCP by calling

PDec1 (∗, skDSP ). In Step 5, it receives
[⌊

m̃1

m̃2

⌋
+ r2

]
pkDR

by accessing SimCP , which is encrypted with the public
key of the targeted DR. Then it use the additive homomor-
phism to remove the mask and obtain

[⌊
m̃1

m̃2

]]
pkDR

. Finally,

SimDSP outputs {[m̃2r1] , [m̃1r1 + m̃2r1r2] , [m̃2r1]pkCP ,

[m̃1r1 + m̃2r1r2]pkCP ,
[⌊

m̃1

m̃2

⌋
+ r2

]
pkDR

,
[⌊

m̃1

m̃2

]]
pkDR

} to

SimDSP . If SimDSP replies with ⊥, SimDSP returns ⊥.
The views of SimDSP are merely the ciphertexts under

the public keys of DR and CP. Though the SimDSP may
collude with the DR, it can only get the raw data from the
compromised DR rather than the challenged users. Hence,
SimDSP cannot get any information about the division and
original data owing to intrinsic security of HRES and the
honesty of challenged cloud users. As DSP chooses random
numbers in operations, SimDSP still cannot obtain any other
information by analyzing the results obtained from several
challenges.
SimCP simulates ACP as follows: SimCP

accesses SimDSP to get the ciphertexts [m̃2r1]pkCP ,
[m̃1r1 + m̃2r1r2]pkCP . Then it decrypts them to get the

masked raw data
⌊
m̃1

m̃2

⌋
+ r2 and

[⌊
m̃1

m̃2

⌋
+ r2

]
pkDR

. Finally,

it sends them to ACP . If ACP replies with ⊥, SimCP returns
⊥. Owing to the security of HRES and the random numbers,
the security can be guaranteed that ACP can get nothing.
SimDR simulates ADR as follows: Besides the challenged

data, any random ciphertexts are chosen and decrypted to gain
the original data. And SimDR sends them to ADR. But owing
to the semantic security of HRES and the random numbers
selected for each encryption, it guarantees the indistinguisha-
bility of the ciphertext of challenged data and the random
message.

Similar security proof to Scheme 1 can be performed for
Scheme 2-4. The proofs of Scheme 2 and Scheme 4 are a
bit different from Scheme 1, but their security can be directly
guaranteed by HRES and CP-ABE.

D. Performance Evaluation

To show the performance of our schemes, we first give
the analysis of computational complexity of CP-ABE and
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HRES algorithms, followed by the computational complexity
of our proposed division schemes. Furthermore, we tested their
efficiency and scalability by extensive simulations.

1) Computational Complexity: We assume that there are
|S| attributes embedded in access tree T and that access
policy needs at most ϑ attributes to be satisfied for successful
decryption. Due to paper length limitation, we omit analysis
details. The computational complexity is shown in Table II.

2) Experimental Results: We further simulated the pro-
posed four division schemes and tested their performance to
verify aforementioned theoretical analysis. The simulations
were performed in a desktop computer with Intel Core i3-3240
CPU 3.4 GHz and 4GB RAM with jPBC library. To ensure
higher accuracy, we performed each test at least 200 times
and recorded the average values of consumed time. Unless
specifically stated, we set the length of ck1 and ck2 as 255
bits, the length of m1 as 255 bits, the length of m2 as 250 bits
and the length of random number L (ri) as 255 bits. In our
test machine, one bilinear pairing costs about 7 milliseconds.

By changing the length of n, we first analyzed the efficiency
of data processing in each step of four division schemes.
Then we verified the scalability of our proposed scheme
with different length of input data L(m1) and L(m2), where
we keep difference between L(m1) and L(m2) as 5 bits
(L(m1) > L(m2)). Finally, we compared with existing works
to show advantages of our schemes.

a) Efficiency of Data Processing:
Test 1: Efficiency of CP-ABE for access control First

of all, we tested the efficiency of CP-ABE with different
numbers of attributes involved in policy, which vary from 2
to 10 as shown in Fig. 4. SetupABE does not vary with the
number of involved attributes, while the computation cost of
EncABE() and keyGenABE() grow with increased number
of attributes. One attribute should be satified in the policy tree,
which indicates the operation time of DecABE() is constant.
In addition, HEABE() only takes less than 1 ms, which is not
showed in Fig. 4.
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Fig. 4: Cost of CP-ABE with
different number of attributes
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Fig. 5: Operation time of DPs
with different length of n

Test 2: Influence of the length of n on performance Fig. 5
presents the execution time of DP when the length of n is set
to different values, which is similar in all division schemes.
It is observed that the data processing on DP is efficient and
applicable in devices with limited resources.

Scheme 1 and Scheme 3 performs four steps except for
the first two steps of system setup and data uploading. Their

operation time are shown in Fig. 6 and Fig. 8 respectively,
which indicate the increasing computation time of DSP in
Step 3 (DSP3), CP in Step 4 (CP4), DSP in Step 5 (DSP5)
and DR in Step 6 (DR6) with the growth of the length of
n. We can observe that data processing and computation of
DSP in both schemes are similar in Step 3. However, the data
processing in other steps of Scheme 3 that contain the calcu-
lations for getting the remainder is more time-consuming than
that in Scheme 1, which conforms with our aforementioned
complexity analysis in Section V-D1. The data processing of
DSP in Step 5 is the most time-consuming, which costs about
190 milliseconds (ms) in Scheme 1 and 350ms in Scheme 3
when the length of n is 2048 bits. While operating other steps
takes about 100ms.
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Fig. 6: Execution time of
Scheme 1 with different n
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Fig. 7: Execution time of
Scheme 2 with different n

Scheme 2 and Scheme 4 introduce CP-ABE to support
flexible access control and add a round of interaction between
DSP and CP, their operation time of each step is shown in
Fig. 7 and Fig. 9 respectively. In this test, we set the number
of attributes as 4. We can observe that data processing time of
DSP in Step 3 is also similar to Scheme 1 and Scheme 3. In
addition, the computational cost of added two steps are about
200ms in both Scheme 2 and Scheme 4. the computation time
of DSP in Step 5 is still the most time-consuming, which costs
about 300ms in Scheme 2 and 600ms in the Scheme 4 when
when the length of n is 2048 bits.

In all four schemes, the computational cost of DR is
less than 50ms, which is well accepted by cloud users with
constrained resources.

In summary, most computational costs are undertaken by
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Fig. 8: Execution time of
Scheme 3 with different n
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TABLE II: Computational Complexity Analysis

Entity Scheme Computations Complexity
DP All Schemes 2∗ModExp O(1)
DSP Scheme 1 5 ∗ModExp+ 1 ∗ModMul O(1)

Scheme 2 7 ∗ModExp+ 1 ∗ModMul +(2|S|+ 1)Exp+ |S|Hash+ |S|Mul O(|S|)
Scheme 3 6 ∗ModExp+ 1 ∗ModMul O(1)
Scheme 4 10 ∗ModExp+ 1 ∗ModMul + (2|S|+ 1)Exp+ |S|Hash+ |S|Mul O(|S|)

CP Scheme 1 4 ∗ModExp O(1)
Scheme 2 7 ∗ModExp+ 1 ∗ModMul + (2|S|+ 1)Exp+ |S|Hash O(|S|)
Scheme 3 6 ∗ModExp O(1)
Scheme 4 10 ∗ModExp+ 1 ∗ModMul + (2|S|+ 1)Exp+ |S|Hash O(|S|)

DR Scheme 1 1 ∗ModExp O(1)
Scheme 2 1 ∗ModExp+ ϑ ∗BiPair O(ϑ)
Scheme 3 2 ∗ModExp O(1)
Scheme 4 2 ∗ModExp+ ϑ ∗BiPair O(ϑ)

Authority Scheme 2 and
Scheme 4

(2|S|+ 4)Exp+ |S|Hash O(|S|)

Notes:ModExp: modular exponentiation; ModMul: modular multiplication; Exp: exponentiation in ABE; Mul: multiplication in ABE; |S|: the
numbers of attributes in access policy T ; ϑ: the number of attributes needed to satisfy T .

two servers while the computational overheads of cloud users
are acceptable, which implies the efficiency and practicality
of our proposed schemes.

b) Scalability of Proposed Schemes:
Test 3: Influence of length of provided data on data

processing In this experiment, we tested the whole execution
time from data uploading to data access of each scheme with
different lengths of provided raw data, which varies from 16
to 512 bits. From Fig. 10, we can observe that the operation
time do not vary with the changing bit length of data, which
indicates that our proposed division schemes are applicable
for both normal value data and big value data.

Based on the experimental result shown in Fig. 10 and the
analysis in Table II, we can find that Scheme 1 and Scheme 3
are more efficient than other two schemes and that Scheme
1 is a little more efficient than Scheme 3. But Scheme 1
only provides the quotient. Compared with Scheme 1 and
Scheme 3, Scheme 2 and Scheme 4 incur higher computational
costs, but they enable flexible access control by adopting ABE.
Similarly, Scheme 4 incurs a little higher computational cost
than Scheme 2, but it provides the remainder of the division.
A brief comparison of the four schemes is given in Table III.

c) Comparison with Existing Work:
Test 4: Performance comparison with an existing secure

division protocol in [24] Before comparing with existing work
in [24], we tested the execution time of SBD protocol in [22]
with different lengths of original provided data, which varies
from 8 to 256 bits as shown in Fig. 11. We can observe that
the computation cost of SBD grows fast with the increasing
bit length of data and that it needs up to 25s to decompose
256-bit data. Thus, our scheme is superior to the division
protocol based on SBD [22] in terms of processing large
integers. Herein, we set the length of input data l as 10 bits and
compared the cost of DSP and CP in Scheme 4 with the cost of

TABLE III: The Comparison of Our Proposed Schemes

Scheme Computational
Results

Computation
Cost (ms)

Flexible
Access Control

Scheme 1 Quotient 88 N
Scheme 2 Quotient 505 Y
Scheme 3 Quotient and

Remainder
114 N

Scheme 4 Quotient and
Remainder

577 Y

Notes: Y: Supported; N: Unsupported.

CSP and CP to compute encrypted quotient and remainder in
existing work [24], which vary with the bit length of n. From
Fig.12, we can find that Scheme 4 as the most time-consuming
scheme in the four proposed schemes is much more efficient
than the existing division scheme over encrypted integer.

Based on aforementioned discussion and evaluation, we
summarize the comparison results of our work with existing
work in Table IV to demonstrate its superiority.

VI. CONCLUSIONS

In this paper, we proposed four privacy-preserving division
schemes over integers with flexible access control and ex-
tended them to support computations over encrypted fractional
numbers and fixed-point numbers. We seriously analyzed the
correctness and security of our schemes. Through experimental
simulations and comparison with existing work, we further
showed the efficiency and scalability of our schemes. Thus, we
greatly extended the framework of privacy-preserving compu-
tation with flexible access control [1] by offering one missed
important computation – division and additionally supporting
computations over encrypted fractional numbers and fixed-
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TABLE IV: The Comparison of Our Work with Existing Works

Ref
Applied Technologies

or Methods Computational Results Data Type
Over
head PP FAC

[16]
Arithmetic

transformations Quotient Non-integers high Y N

[17] Taylor series Quotient Integers high Y N

[18]
Arithmetic

transformations Quotient Integers low N N

[23], [24] Bit decomposition Quotient and Remainder Integers high Y N

[19]
Goldschmidt’s

method Quotient Float point numbers high N N

[21] Iteration Quotient Float point numbers high Y N
Our

Work
CP-ABE and

HRES Quotient and Remainder
Integers, fractional numbers

and fixed-point numbers low Y Y

Notes: PP: Privacy Preservation; FAC: Flexible Access Control; Y: Supported; N: Unsupported.
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Fig. 10: Execution time of
four schemes with different
length of provided data
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Fig. 12: Operation time of our Scheme 4 compared with
existing work

point numbers. In the future, we will apply our schemes into
real application scenarios to demonstrate their practicality.
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H. Schröder, “Secure computations on non-integer values,” in 2010 IEEE
International Workshop on Information Forensics and Security, WIFS
2010, Seattle, WA, USA, December 12-15, 2010, 2010, pp. 1–6.

[17] M. Dahl, C. Ning, and T. Toft, “On secure two-party integer division,”
in Financial Cryptography and Data Security - 16th International
Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012,
Revised Selected Papers, 2012, pp. 164–178.

[18] T. Veugen, “Encrypted integer division and secure comparison,” IJACT,
vol. 3, no. 2, pp. 166–180, 2014.

[19] O. Catrina and A. Saxena, “Secure computation with fixed-point num-
bers,” in Financial Cryptography and Data Security, 14th International
Conference, FC 2010, Tenerife, Canary Islands, Spain, January 25-28,
2010, Revised Selected Papers, 2010, pp. 35–50.

[20] R. Bhoyar, P. Palsodkar, and S. Kakde, “Design and implementation of
goldschmidts algorithm for floating point division and square root,” in
2015 International Conference on Communications and Signal Process-
ing (ICCSP), April 2015, pp. 1588–1592.

[21] C. Ugwuoke, Z. Erkin, and R. L. Lagendijk, “Secure fixed-point division
for homomorphically encrypted operands,” in Proceedings of the 13th
International Conference on Availability, Reliability and Security, ARES
2018, Hamburg, Germany, August 27-30, 2018, 2018, pp. 33:1–33:10.

[22] B. K. Samanthula, C. Hu, and W. Jiang, “An efficient and probabilistic
secure bit-decomposition,” in 8th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’13, Hangzhou,
China - May 08 - 10, 2013, 2013, pp. 541–546.

[23] J. Feng, L. T. Yang, Q. Zhu, and K. R. Choo, “Privacy-preserving tensor
decomposition over encrypted data in a federated cloud environment,”
IEEE Transactions on Dependable and Secure Computing, pp. 1–1,
2018.

[24] X. Liu, K. R. Choo, R. H. Deng, R. Lu, and J. Weng, “Efficient and
privacy-preserving outsourced calculation of rational numbers,” IEEE
Trans. Dependable Sec. Comput., vol. 15, no. 1, pp. 27–39, 2018.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, 2006,
pp. 89–98.

[26] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1,
pp. 131–143, 2013.

[27] Z. Wan, J. Liu, and R. H. Deng, “HASBE: A hierarchical attribute-based
solution for flexible and scalable access control in cloud computing,”
IEEE Trans. Information Forensics and Security, vol. 7, no. 2, pp. 743–
754, 2012.

[28] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in INFOCOM
2010. 29th IEEE International Conference on Computer Communica-
tions, Joint Conference of the IEEE Computer and Communications
Societies, 15-19 March 2010, San Diego, CA, USA, 2010, pp. 534–542.

[29] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE Symposium on Security and Privacy
(S&P 2007), 20-23 May 2007, Oakland, California, USA, 2007, pp.
321–334.

[30] H. Cui, R. H. Deng, Y. Li, and B. Qin, “Server-aided revocable attribute-
based encryption,” in European Symposium on Research in Computer
Security. Springer, 2016, pp. 570–587.

[31] W. Ding, Z. Yan, and R. H. Deng, “Encrypted data processing with
homomorphic re-encryption,” Inf. Sci., vol. 409, pp. 35–55, 2017.

Wenxiu Ding received her B.Eng. degree and PhD
degree in information security from Xidian Uni-
versity, Xi’an, China in 2012 and 2017. She was
the research assistant at the School of Information
Systems, Singapore Management University from
2015 to 2016. Now, she is a lecturer at the School
of Cyber Engineering at Xidian University. Her re-
search interests include RFID authentication, privacy
preservation, data mining and trust management.

Rui Hu received her B.Eng. degree in information
security from Xidian University, Xi’an, China in
2017. She is currently pursuing the master’s degree
with the State Key Laboratory on Integrated Services
Networks, Xidian University. Her research interests
are in data provenance, big data security and privacy
preservation.

Zheng Yan received the BEng degree in electri-
cal engineering and the MEng degree in computer
science and engineering from the Xi’an Jiaotong
University, Xi’an, China in 1994 and 1997, re-
spectively, the second MEng degree in information
security from the National University of Singapore,
Singapore in 2000, and the licentiate of science and
the doctor of science in technology in electrical
engineering from Helsinki University of Technology,
Helsinki, Finland. She is currently a professor at
the Xidian University, Xi’an, China and a visiting

professor at the Aalto University, Espoo, Finland. Her research interests are in
trust, security, privacy, and security-related data analytics. Prof. Yan serves as
a general or program chair for 30+ international conferences and workshops.
She is a steering committee co-chair of IEEE Blockchain international
conference. She is also an associate editor of many reputable journals, e.g.,
IEEE Internet of Things Journal, Information Sciences, Information Fusion,
JNCA, IEEE Access, SCN, etc.

Xinren Qian received the B.Eng. degree in informa-
tion security from Xidian University, Xi’an, China,
in 2018. He is currently a master student in the State
Key Laboratory on Integrated Servicces Networks,
Xidian University. His research interests are in cloud
storage and computing, and privacy preservation.



JOURNAL OF LATEX CLASS FILES 13

Robert H. Deng has been a professor at the
School of Information Systems, Singapore Manage-
ment University since 2004. His research interests
include data security and privacy, multimedia se-
curity, network and system security. He was the
associate editor of the IEEE Transactions on Infor-
mation Forensics and Security from 2009 to 2012.
He is currently an associate editor of the IEEE
Transactions on Dependable and Secure Computing,
an associate editor of Security and Communication
Networks (John Wiley). He is the cochair of the

Steering Committee of the ACM Symposium on Information, Computer and
Communications Security. He is a fellow of the IEEE.

Laurence T. Yang received the B.E. degree in
computer science and technology from Tsinghua
University, China, and the Ph.D. degree in computer
science from the University of Victoria, Canada. He
is currently a Professor with the School of Computer
Science and Technology, Huazhong University of
Science and Technology, China, and also with the
Department of Computer Science, St. Francis Xavier
University, Canada. His research has been supported
by the National Sciences and Engineering Research
Council and the Canada Foundation for Innovation.

His research interests include parallel and distributed computing and embed-
ded and ubiquitous pervasive computing.

Mianxiong Dong received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
the University of Aizu, Aizuwakamatsu, Japan. He
is currently an Associate Professor with the De-
partment of Information and Electronic Engineering,
Muroran Institute of Technology, Muroran, Japan.
He was a JSPS Research Fellow with the School
of Computer Science and Engineering, The Uni-
versity of Aizu, and was a Visiting Scholar with
the BBCR group, University of Waterloo, Waterloo,
ON, Canada supported by JSPS Excellent Young

Researcher Overseas Visit Program, from April 2010 to August 2011. His
research interests include wireless networks, cloud computing, and cyber-
physical systems.

He was selected as a Foreigner Research Fellow (a total of three recipients
all over Japan) by NEC C&C Foundation in 2011. He was a recipient of the
best paper awards from IEEE HPCC 2008, IEEE ICESS 2008, ICA3PP 2014,
GPC 2015, IEEE DASC 2015, IEEE VTC 2016-Fall, FCST 2017, and 2017
IET Communications Premium Award. He is an Editor for IEEE TRANS-
ACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS, IEEE NETWORK,
IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE CLOUD COM-
PUTING, IEEE ACCESS, as well as a Leading Guest Editor for ACM
Transactions on Multimedia Computing, Communications and Applications,
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, IEEE
TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS. He has
been serving as the Vice Chair of the IEEE Communications Society
Asia/Pacific Region Meetings and Conference Committee, Leading Sym-
posium Chair of IEEE ICC 2019, Student Travel Grants Chair of IEEE
GLOBECOM 2019, and the Symposium Chair of IEEE GLOBECOM 2016,
2017. He is the recipient of the IEEE TCSC Early Career Award 2016, IEEE
SCSTC Outstanding Young Researcher Award 2017, the 12th IEEE ComSoc
Asia-Pacific Young Researcher Award 2017, and Funai Research Award 2018.


