' Aalto University

Lagutin, Dmitrij; Kortesniemi, Yki; Siris, Vasilios A.; Fotiu, Nikos; Polyzos, George C.; Wu, Lei
Leveraging Interledger Technologies in loT Security Risk Management

Published in:
Security Risk Management for the Internet of Things: Technologies and Techniques for 0T Security, Privacy
and Data Protection

DOI:
10.1561/9781680836837.ch14

Published: 01/01/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC

Please cite the original version:

Lagutin, D., Kortesniemi, Y., Siris, V. A., Fotiu, N., Polyzos, G. C., & Wu, L. (2020). Leveraging Interledger
Technologies in loT Security Risk Management. In J. Soldatos (Ed.), Security Risk Management for the Internet
of Things: Technologies and Techniques for 10T Security, Privacy and Data Protection (pp. 228-246). NOW
Publishers. https://doi.org/10.1561/9781680836837.ch14

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1561/9781680836837.ch14
https://doi.org/10.1561/9781680836837.ch14

Chapter 14

Leveraging Interledger Technologies
in loT Security Risk Management

By Dmitrij Lagutin, Yki Kortesniemi, Vasilios A. Siris,
Nikos Fotiou, George C. Polyzos and Lei Wu

Copyright © 2020 Dmitrij Lagutin ez al.
DOI: 10.1561/9781680836837.ch14

The work will be available online open access and governed by the Creative Commons “Attribution-Non
Commercial” License (CC BY-NC), according to https://creativecommons.org/licenses/by-nc/4.0/

Published in Security Risk Management for the Internet of Things: Technologies and Techniques for IoT Security, Privacy
and Data Protection by John Soldatos (ed.). 2020. ISBN 978-1-68083-682-0. E-ISBN 978-1-68083-683-7.

Suggested citation: Dmitrij Lagutin ez a/. 2020. “Leveraging Interledger Technologies in IoT Security Risk
Management” in Security Risk Management for the Internet of Things: Technologies and Techniques for loT
Security, Privacy and Data Protection. Edited by John Soldatos. pp. 229-246. Now Publishers. DOI:
10.1561/9781680836837.ch14.

now

the essence of knowledge


http://dx.doi.org/10.1561/9781680836838.ch14
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1561/9781680836837.ch14
http://dx.doi.org/10.1561/9781680836837.ch14

There are security vulnerabilities in all technological systems but particularly in
many Internet of Things (IoT) solutions. Responsible disclosure has been the estab-
lished approach for the security community to deal with the discovered vulnerabil-
ities, but this approach does not fare well in the modern fast-paced world and, in
particular, in the low-cost, often highly constrained, long-expected usable lifetime,
yet highly volatile IoT space. This chapter proposes a Distributed Ledger Technol-
ogy (DLT) and interledger-based Automated Responsible Disclosure (ARD) solution
that provides stronger incentives to the involved parties to address the vulnerabili-
ties in a timely manner, better accountability of all parties, and, as a result, better
security for the public at large.

14.1 Introduction

Responsible disclosure is a model to disclose security vulnerabilities in a way that
allows the vendor some time to create a fix before the vulnerability is publicly
revealed. Responsible disclosure is best known and associated with software prod-
ucts and bugs in software, but it applies to both software and hardware, and more
generally any products with security features. Most security experts use this model
to report vulnerabilities [1].

229



230 Leveraging Interledger Technologies

This model is of particular interest in the context of the Internet of Things
(IoT) for several reasons. First, there have been many significant security vulner-
abilities in IoT devices. Not only are many IoT devices relatively unsophisticated
and often very limited in capabilities, but they are also often more exposed yet less
frequently or even completely unmonitored during their operation for extended
periods of time. Furthermore, because of the relatively low price and margin of IoT
devices, and often fast progress in the domain, many manufactures are disinterested
in addressing vulnerabilities publicised in their products. Many of the products have
only short market lifetimes and all compete for very fast time to market, leading
to an abundance of security issues in products. Finally, because of all these prob-
lems, IoT devices have been exploited and have caused recently highly publicized
security problems with significant impact [2, 3], and these problems are unlikely
to significantly diminish in the near future.

The idea behind the responsible disclosure is sound, but unfortunately it often
does not work that well in practice. In many situations, there are no clear and
enforced time limits after which the vulnerability will be disclosed, and the vendors
behind vulnerable products often request extensions to the disclosure if they are not
able to provide fixes in time. Also, there have been several cases where the security
experts have been pressured, threatened, or even sued by vendors to not release
the vulnerability within a reasonable time frame [4, 5]. As a recent example from
August 2019, a security researcher found a vulnerability in Valve’s Steam gaming
client, but as the vendor was not interested in fixing the issue, the researcher then
wanted to publish the findings, and the vendor promptly banned the researcher
from the HackerOne' bug bounty platform [6]. Furthermore, due to the lack of
transparency to the details of the vulnerability, the vendor may release a fix that
does not properly address the vulnerability merely to appear as security conscious.
And finally, it is impossible for the customers and the public in general to know
how many vulnerabilities in each vendor’s products have been identified and how
many of them remain unfixed.

Even if most vendors put emphasis on security in their advertising, in reality
vendors often do not have clear incentives to create secure products or fix their
vulnerabilities quickly, which is apparent from a simple cost-benefit analysis:

1. Vendors are typically companies that aim to maximize their profits, which
can be expressed as: revenue-expenses.

2. Itis not possible for a vendor to generate significant extra revenue by improv-
ing the security of its products, since proving or measuring security of the
product is practically impossible (it cannot be practically proved that a prod-
uct is secure, only that it is insecure).

1. heps://www.hackerone.com/


https://www.hackerone.com/

Introduction 231

3. Similarly, insecure products will not make the vendor lose a significant
amount of revenue, since the current Responsible Disclosure scheme does not
reveal the number of vulnerabilities to the general public and allows the ven-
dor ample time to fix its products. Since most of vulnerabilities are released
to the general public only after a long period of time, most of customers do
not suffer too much or too often from using insecure products, and therefore,
they do not have a clear incentive to switch to another vendor.

4. Creating more secure products is expensive (it requires more development
time, more experienced developers, better processes, more time for testing,
etc.); the vendor will often rather minimise the costs by making less secure
products.

Per 2 and 3 above, vendor revenue will not be adversely affected by insecure
products, yet per 4, creating less secure products reduces expenses. Therefore, per
1, providing less secure products tends to maximise the vendor’s profits.

Now, if the vulnerabilities would be disclosed in more strict and transparent
manner, the situation would change. Vendors behind insecure products would lose
reputation and would have a harder time selling products. Customers could, for
instance, demand agreements from vendors with bad security history that in the
case a serious vulnerability is found in the product, the vendor would pay compen-
sation to the customer, etc. As a result, vendors would have strong incentives to
improve the security of their products, and overall, there would be financial incen-
tives to provide more secure products and fix vulnerabilities quickly, which in turn
would lead to more secure products in the market.

Transparency of vulnerabilities is also important because even if the vulnerability
has been found and responsibly disclosed by a one expert, it does not mean that
no one else in the world knows about it. In fact, it is very likely that the same vul-
nerability has already been found by other actors, such as criminal organisations,
which do not have any incentives to disclose it to the vendor and commonly trade
vulnerabilities on black markets [7]. From the customers” point of view, it is cate-
gorically better to know that a vulnerability exists (even if the whole world knows
about it), compared to the situation where the vulnerability exists but the customers
do not know about it. At least in the former case the customers can take actions to
mitigate the risk (stop using the vulnerable product temporarily, install additional
safeguards, etc.), while in the latter case the customers cannot predict or mitigate
attacks in any way since they are not aware of the possibility of the attack. Therefore,
a long time between the vulnerability discovery and the related public disclosure
increases the possibility of security breaches and decreases the overall security.

To succeed, any practical implementation of Responsible Disclosure also has
to be able to deal with the scale of vulnerabilities, so because of the huge num-
ber of IoT devices with diverse capabilities and operations, a fully—or almost



232 Leveraging Interledger Technologies

fully—automated set of procedures for recording vulnerabilities and their corre-
sponding patches in a transparent and non-repudiated way is necessary to ensure
the security and ultimately the success of IoT deployments.

Distributed Ledger Technologies (DLTs) and interledger mechanisms can be
leveraged to immutably record when a vulnerability is disclosed to authorities
and/or vendor, and after a certain time period (which should be the same regard-
less of the vendor in question) the vulnerability is then automatically revealed to
the public (regardless of wherever it has been fixed or not), or at least the meta-
data would be revealed (that vendor X did not fix the vulnerability within a certain
timeframe). On a technical level, this would be implemented by putting the vul-
nerability disclosure, V; to a private ledger for security authorities and vendor or
vendors, and recording the hash of the vulnerability along with the vendor, prod-
uct, and time information on a public ledger. As a result, the vendors would have
stronger incentives to improve the security of their products.

This chapter is organised as follows: Section 14.2 provides background on
DLTs, smart contracts and chaincode, the corresponding functionality in per-
missioned blockchains, interledger technologies, and Decentralized Identifiers
(DIDs). Section 14.3 then briefly presents the history of and the state of the
art in vulnerability disclosure approaches. Section 14.4 gives an overview of the
proposed Automated Responsible Disclosure (ARD) approach of IoT risk man-
agement through interledger-enabled disclosure with accountability. Section 14.5
provides an evaluation of the design, and Section 14.6 presents the conclusions
and proposed future work in order to establish, promote, and practically evaluate
the approach in the real world.

14.2 Background

The Automated Responsible Disclosure (ARD) solution proposed in this chapter
builds on four key technologies: distributed ledger technologies, smart contracts
and chaincode, interledger functionality, and Decentralised Identifiers.

14.2.1 Distributed Ledger Technologies (DLTs)

Distributed Ledger Technologies (DLTs), such as blockchains, offer decentralised
solutions for collaboration, interoperability, and trust. One of the main features of
DLTs is the immutability of data: ledgers are append-only databases where existing
data cannot be modified and only new data can be added. Another major feature of
DLTs is a distributed consensus mechanism [8], which controls what and how data
are added to the ledger. Finally, DLTs also rep/icate data to participating nodes thus
improving availability. Because of these three properties, DLTs avoid single points



Background 233

of failure and offer resilience against many attacks. It is relatively easy to determine
if any of the participating nodes in the DLT are misbehaving and even in an extreme
case, where an attacker manages to control the majority of the DLT’s resources, the
attacker still cannot modify the existing data, only control the addition of new data.

DLTs can be implemented with different levels of openness. They can be fully
open (permissionless), which means that anyone can join the DLT and propose
transactions; most well-known DLTs such as Bitcoin and Ethereum are based on
this principle. However, DLTs can also be permissioned, which makes them either
semi-open, in which case read access is open to everyone but write access is restricted,
or closed, in which case both read and write access are restricted.

The main practical innovation of DLTs is the enablement of distributed trust.
While there have been multiple proposals for distributed databases in the past,
they have mostly concentrated on the distributed implementation, while the trust
model has remained firmly centralised. In contrast, DLTs allow various entities that
may not fully trust each other, such as individuals, organisations, and companies, to
collaborate in a safe and transparent manner, with only a low risk of being cheated
by others.

14.2.2 Smart Contracts and Chaincode

Smart contracts [9] are another important feature provided by several DLTs: they are
distributed applications that are executed on the ledger. Whenever an entity inter-
acts with a smart contract, these operations are executed by all (full) nodes in the
DLT network in a deterministic and reliable way; one of these nodes is then selected
to store the contract’s execution outcome (if any) in the ledger. Smart contracts can
verify DLT identities and digital signatures, perform general purpose computations,
and invoke other smart contracts. The code of the smart contract is immutable and
cannot be modified even by its owner. Moreover, since all transactions sent to a
contract are recorded in the DLT, it is possible to obtain all historical values of
the contract. Smart contracts typically refer to code running on the Ethereum (in
which case they are Turing-complete), but similar functionality is available in other
DLTs. In particular, in the permissioned Hyperledger Fabric, similar functionality
is called chaincode, and simpler, more constrained scripts can also be run on Bit-
coin. Smart contracts or similar functionality is critical for automating processes
and will be exploited in the techniques described later.

14.2.3 Interledger Functionality

There exists a large number of DLTs each offering different trade-offs in terms
of latency, throughput, consensus algorithm, functionality, etc., thus rendering
them suitable for different types of applications. For example, a DLT can focus on



234 Leveraging Interledger Technologies

cryptocurrency payments, recording of IoT events, or access authorisation. In com-
plex systems, it is therefore often not feasible of efficient to use only a single DLT for
everything; hence, the interledger approach that allows different DLTs to exchange
data with each other is required in many situations. Using multiple ledgers is also
beneficial for privacy reasons: participants within a DLT need to be able to access
all data stored in that DLT to independently verify its integrity, which encourages
the participants to use private ledgers and store only a subset of the data to the
main ledger used for collaboration with others. A concrete example of the use of
interledger is the following: data are stored in a closed ledger and simultaneously
related information (e.g., a hash of the original data) is stored to a semi-open or
open ledger. At a later time, the original data are revealed and the hash in the (more)
open ledger guarantees that the original data have not been modified.

Multiple ledgers are also necessary for crypto-agility, as cryptographic algorithms
used by DLTs (such as SHA-256) will not stay safe forever; thus, it is necessary
to have a mechanism to transfer data from one ledger to another. Siris ez a/. [10]
present a review of interledger approaches, which differ in their support for trans-
ferring and/or trading value between ledgers, whether they support the transfer of
information in addition to payments across ledgers, the balance between decen-
tralized trust and cost (which can include both transaction cost and delay), the
level of privacy, and their overall scalability and functionality that can facilitate the
innovation of the DLT ecosystem. Finally, interledger functionality may also utilize
hash-locks, which are cryptographic locks that can be unlocked by revealing a secret
whose hash matches with the value configured in the hash-lock. By using the same
secret value on two or more ledgers, it is possible to achieve cross-ledger atomic
operations, where the first transaction reveals the secret, which in turn is used to
unlock the transaction on the other ledger(s). If the secret is never revealed, none
of the transactions will succeed.

Interledger mechanisms, which in the above example involve the hash of data
stored in a private ledger, allow securely linking information and/or transactions
stored on multiple ledgers. Such mechanisms can be used to create a dependence
relation that allows the execution of smart contracts functions on one ledger only
if some data has been recorded or transactions have been performed on another
ledger. As discussed in Section 14.4 that describes the ARD approach, the above
feature ensures that the time dependency and order of events on the public and
private ledgers are automatically and transparently enforced.

14.2.4 Decentralized Identifiers (DIDs)

Currently, an identity technology receiving much attention is the Decentral-
ized Identifiers (DIDs). A key aspect of DIDs is that they are designed not to



Previous Work 235

be dependent on a central issuing party (Identity Provider or IdP) that creates
and controls the identity. Instead, DIDs are managed by the identity owner
(or a guardian on the owner’s behalf), an approach known as self-sovereign
identity [11].

There are several different DID technologies in development [12], some of the
most prominent being Sovrin, uPort, and Veres One. These technologies started
with similar but individual goals in mind, but lately many of them have adopted
the approach and format of the W3C DID specification [13] thus rendering them
more and more interoperable. The specification defines a DID as a random string,
often derived from the public key used with the identity. If a new DID is allocated
for every party one operates/communicates with, correlating one’s activities with
different parties would be significantly harder to achieve. This property can be fur-
ther enhanced by replacing existing DIDs with new ones at suitable intervals, even
after just a single use.

Yet, DIDs alone do not suffice, as some means of distributing the related public
keys, any later changes to the keys, or other identity-related information is required.
To this end, many of the DID solutions rely on a DLT for public DIDs (used by
parties that want to be known publicly), whereas for private DIDs (e.g., used by
individuals or their personal IoT devices) an application specific channel is used to
distribute the information. Some DID technologies, e.g., Sovrin and Veres One, are
launching their own permissioned DLTs, while others rely on existing blockchains
(e.g., uPort is built on top of Ethereum). All three example technologies originally
intended to use DLTs/blockchains for distributing information about private DIDs,
but the emergence of the General Data Protection Regulation (GDPR) [14] in the
EU and other similar changes have made storing personally identifiable information
on a non-mutable platform such as a DLT/blockchain problematic. For this reason,
Sovrin and Veres One have already excluded individuals DIDs from the ledger,
and similar treatment may face the DIDs of IoT devices if they reveal personal
information about their owner.

In ARD, DIDs are used to protect the privacy of security experts discovering the
vulnerabilities to prevent any undue pressure to suppress the findings.

14.3 Previous Work

Disclosure of vulnerabilities has long been an important challenge in software
industry, because security vulnerabilities are among the major reasons for security
breaches [15], and vulnerabilities have been extensively exploited in many success-
ful attacks [16]. Since IoT devices interact with the real world, there are poten-
tially high risks with severe impacts (in particular with actuation directly leading



236 Leveraging Interledger Technologies

to safety concerns). At the same time, the growing number of IoT devices intro-
duced in recent years and the new types of data coming with them have increased
the security risks both for the industry [17] and the in consumer IoT domain [18].
As an example, a case study on baby monitors [19] details how many baby mon-
itors ship with static credentials and other vulnerabilities allowing access to the
confidential information provided by the devices. Together, the above-mentioned
risks in software systems and the flaws in the IoT systems can be highly danger-
ous and cause significant economic losses [20], which draws considerable discus-
sion on how such risks can be controlled and how related vulnerabilities should be
disclosed [21].

Over time, many different approaches have been proposed for the mechanisms
of vulnerabilities disclosure. Traditionally, the so-called full vendor disclosure has
been used; there the vendor has full control over how and when a vulnerability
is disclosed, which leaves many vulnerabilities totally unfixed or fixed only after a
long delay [22, 23]. In order to solve the problem of full vendor disclosure with
public at risk, the immediate public disclosure has been proposed, which introduces
a direct and strong incentive for the related vendor to fix the released issue as fast
as possible [24]. Even though early disclosure of the vulnerabilities can drive faster
fixing and uptake of mitigating measures by related parties to reduce the risk, the
attackers can also exploit the released vulnerability to attack already before a patch
is delivered by the vendor [25]. To address the conflicts between vendor and users,
a hybrid disclosure approach, responsible disclosure, was introduced: the vendor is
allowed some time to develop a patch before the vulnerability is disclosed by the
finder [26]. This way, the vendor is given the opportunity to fix the vulnerabil-
ity in time without the dangers of immediate exposure, but the public can still
learn about the existence of the vulnerability in case the vendor fails to deliver
a patch.

To coordinate the process between vendors, finders, and users, often a Com-
puter Emergency Response Team/Coordination Center (CERT/CC) is used as
a trusted third party. The economics of the vulnerability disclosure process
has been studied [27] to shed light on the interaction between participat-
ing parties. There was a trend of using market strength to achieve the opti-
mization of social benefit in the vulnerability disclosure process [28], though
many [29, 30] criticize that the market solution performs no better than existing
solutions.

Different vulnerability disclosure approaches have been compared and evaluated
in their efficiency [31], and with the corresponding cost, benefits and risks provided
in [32]. The work in [33] offers another angle for the life cycles of software vul-
nerabilities, which is based on analysis in seven dimensions for more than forty
thousand vulnerabilities reported in the past few decades.



Automated Responsible Disclosure (ARD) 237

14.4 Automated Responsible Disclosure (ARD)

The parties to responsible disclosure, and the proposed Automated Responsible Dis-
closure (ARD) mechanism, can be divided into the following categories, as shown
in Figure 14.1.:

® Vendors provide software and hardware-based (IoT) solutions to customers.

® (Consortia of) Authorities are in charge of managing security vulnerabilities;
there may be multiple such authorities in a single country or region.

o Security Experts discover new vulnerabilities.

® General public, press, etc. who may be customers of the Vendors, or otherwise
interested in the security of available services.

To improve responsible disclosure, the ARD solution has been designed with the
following goals and assumptions:

1. The Security Experts cannot be intimidated to prevent the disclosure of vul-
nerabilities.

2. The Authorities can validate the reported vulnerabilities to prevent false
reports.

1. Full vulnerability .-~
notification -~
.

Private ledger

vulnerability Interledger

3. Vulnerability
confirmation

4b. Full disclosure
of vulnerability

4a. Patch
information

1. Meta-data
of vulnerability

4a. Patch

3 General
Lt L)
g Public

Public ledger

Figure 14.1. Entities of the interledger-enabled ARD solution.



238 Leveraging Interledger Technologies

3. The Vendor is clearly notified about each vulnerability and has to agree to
fix it within the grace period; otherwise, the vulnerability is immediately dis-
closed.

4. Releasing a fix results in automatic disclosure of the vulnerability.

5. If a fix has not been released before the grace period has expired, the vulner-
ability is automatically disclosed.

6. Authorities are trusted to try to operate correctly, e.g., to prevent uninten-
tional leaks of vulnerability information, correctly screen reported vulnera-
bilities, etc., but disclosure cannot be prevented by the Authority.

The solution is designed to utilize two distributed ledgers, a private one main-
tained by the Authority and used for storing the details of the vulnerability during
the disclosure process, and a public one for first disclosing the existence of a vulner-
ability and later the details of the vulnerability. A key element is then the interledger
functionality, which facilitates the automatic disclosure of the information from the
private ledger to the public one once the conditions for disclosure have been met.
In the basic case, the interledger functionality is run by the Authority or some other
trusted party, but for additional security and resilience, the interledger functionality
can be implemented in a distributed manner over a consortium of parties.

Technically, the public and private ledgers can utilize any suitable ledger tech-
nology (permissioned for the latter, and permissionless or permissioned for the for-
mer). The public ledger is readable by all, while some of the write operations are
restricted. Anyone has a permission to store metadata of the vulnerability informa-
tion (including its hash), which can be achieved, e.g., by a smart contract owned
by the Authority. Additionally, write operations related to confirmation of vulnera-
bility, notification of patching the vulnerability, and full disclosure of vulnerability
information are limited to the Authority, Vendors, interledger, and the Security
Expert who reported the vulnerability.

The private ledger can be implemented, for example, using Hyperledger Fab-
ric, a permissioned DLTs, and a separate chaincode (which corresponds to a smart
contract in Fabric) per Vendor. In Fabric, the vulnerability information is stored as
a private data collection and the chaincode controls the access to the vulnerability
using a hash-lock (see Siris ez a/. [10]). The hash-locK’s secret is generated by the
Security Expert and also known by both the Authority and Vendor and is revealed
as necessary to the interledger, after which the interledger functionality can retrieve
the vulnerability information from the private ledger and write it to the public
ledger. The same secret is then used to lock the functionality Vendor is using for
notifying of fixing the vulnerability, so Vendor’s notification would reveal the secret,
which would then allow the interledger functionality to retrieve and publish the full
vulnerability information.



Automated Responsible Disclosure (ARD)

No further action

3. b No acknowledgement
from Vendor

2.b Invalid

Vulnerability
discovered by Expert

1. Vulnerability reported to authorities,
hash, secret, and meta-data
stored in public ledger

Vulnerability verified
by Authority

2.a Valid: vulnerability details
stored in private ledger,
confirmation stored in public ledger

Vulnerabil

ity verified

by Vendor

3.a Acknowledgement
from Vendor stored in public ledger

Public aw

are of the

vulnerability

4.b Disclosure after

4.a Disclosure
after Vendor’s
patch

a grace period

Vulnerability

fully disclosed

Figure 14.2. State diagram of the ADR mechanism.

239

If there is a bounty mechanism for discovering vulnerabilities, the Security

Experts can be identified using ephemeral decentralized identifiers (DIDs) or simi-

lar anonymous identifiers thus allowing them to claim the bounty while preventing

the vendor from intimidating the Experts. The other parties in the solution can uti-

lize longer term public identifiers including public DIDs.

ARD functions as follows, as described in Figure 14.2.:

1. The Security Expert, who has discovered a vulnerability V, generates the asso-

ciated secret s and reports the vulnerability (together with the secret s) with a

sufficient detail to the Authority, and optionally to the Vendor. The Security

Expert also calculates the hash over the vulnerability information and stores
this hash, H(V), along with hash over the secret, H(s), and other relevant
metadata (Vendor’s name, product name, affected version, etc.) to the public

ledger, using a previously published mechanism, e.g., a smart contract.

2. The Authority, once they have ascertained the report is not bogus, stores the

details of the vulnerability in the private ledger. The interledger functionality



240 Leveraging Interledger Technologies

then commits a transaction to public ledger stating that the Authority con-
firms that the previously reported vulnerability (with hash H(V)) is valid.
If the report is a duplicate of a previous report, this is noted in the confirma-
tion and the disclosure will follow the timeline of the original report.

3. The Vendor is notified of the new vulnerability. They now have a fixed time
period (e.g., two weeks) to fetch the details of the vulnerability from the
private ledger and either:

a. confirm and agree to fix the vulnerability by storing their agreement to
the public ledger, in which case they are accorded the grace period of, e.g.,
six months,” or

b. deny/ignore the vulnerability and do nothing, in which case the Authority
will reveal the secret 57 to the public ledger and the interledger function-
ality will automatically disclose the vulnerability from the private ledger.

4. 1If the vendor has agreed to fix the vulnerability, and then

a. releases a fix and stores a corresponding notice on the public ledger to
indicate the vulnerability is now fixed, after which the interledger func-
tionality will publish the full vulnerability information, which in turn
will mark the vulnerability resolved. If the vendor wants its customers to
have some extra time to update their systems, it can first indicate the fix
is upcoming, and then after some time period marks the vulnerability as
fixed. If, however the grace period runs out with no fix,

b. the interledger functionality automatically discloses the vulnerability as
above.

5. After the vulnerability has been disclosed, the security expert can claim the
vulnerability report for credit and any bounty offered.

In Steps 1 and 2, the vulnerability report has to identify the Vendor (e.g., with
their DID) and the product (e.g., with a vendor-specific identifier provided by the
vendor). The same vendor and product ids are then included in the notice on the
public ledger, which allows general public to know the number of known but not
yet fixed vulnerabilities per vendor and per product.

In Step 3, if the vendor acknowledges the vulnerability, the vendor signs a proof
of delivery (with their private key, tied to the public DID) containing the times-
tamp, the hash of vulnerability disclosure H(V), and the relevant metadata (affected
product name and version, etc.). This acknowledgement is stored in the publicly
accessible ledger.

2. The Vendor can also mark the vulnerability as a duplicate of the previously reported one, in which case it
will be disclosed simultaneously with the original vulnerability, as mentioned above.

3. If the Authority does not reveal the secret s in a timely manner, the Security Expert can also do the same.



Analysis 241

Therefore, in the solution the vulnerability is always automatically disclosed by
the interledger functionality in one of the three possible moments depending on
the actions of the vendor:

¢ Immediately (if the vendor does not acknowledge it)
e After a fix has been released
e After the grace period if no fix has been released

The periods for acknowledging the vulnerability, after a fix has been released, and
the grace period can be customized by the authority based on country, necessary
security level, etc. For instance, for critical products, the period can be shorter.

Similarly, the bounty system can be customized: it can, e.g., contain a fixed com-
pensation by the authority and an additional compensation by the vendor or by
third parties for select products.

14.5 Analysis

The solution meets the five requirements listed in the beginning of Section 14.3:

1. The security experts cannot be intimidated to prevent disclosure.

All vulnerabilities are reported under ephemeral anonymous identifiers thus
maintaining the anonymity of the security expert throughout the process and
preventing any intimidation.

2. The authorities can validate the reported vulnerabilities to prevent false reports.
The authority vets all vulnerabilities before they are accepted to a suitable
level to weed out bogus reports.

3. The vendor is clearly notified about each vulnerability and has to agree to fix it
to gain the grace period; otherwise, the vulnerability is immediately released.
The existence of a new vulnerability related to a product of the Vendor is
clearly published on the public ledger to provide the vendor sufficient time
to agree to or deny the vulnerability. If the Vendor does not agree to fix the
vulnerability, the Authority publishes the secret s on the public ledger after
which the vulnerability is automatically disclosed.

4. Releasing a fix results in an automatic disclosure of the vulnerability.
Publishing the fix on the public ledger triggers the automatic disclosure after
a short wait period.

5. If a fix has not been released before the grace period has expired, the vulnerabiliry
is automatically disclosed.

The Authority (or the Security Expert) will reveal the secret s after the grace
period has run out, after which the interledger functionality will automati-
cally disclose the vulnerability.



242 Leveraging Interledger Technologies

To further evaluate the solution, the potential dishonesty of each party has to be
considered.

If the Security Expert reports a non-valid vulnerability. There is the potential risk
that the system is flooded with irrelevant information, e.g., to make the product
appear to contain more vulnerabilities than it actually has. To prevent that, the
Authority vets all reports, which can help prevent the obvious bogus reports, but
non-trivial fakes may pass depending on the level of scrutiny. However, in this
respect, the solution is not worse than existing solutions.

Duplicate reports of the same vulnerability. Valid but duplicate reports (either
intentional or unintentional) of the same vulnerability can make the product appear
of lower quality due to the increased number of reported vulnerabilities. To avoid
this, duplicate reports can be marked by either the Authority or Vendor as duplicates
of a previous report. Thus, they will not affect the number of individual vulnerabil-
ities discovered, but each report will be eventually disclosed using the same timeline
as the original report.

The Authority does not accept valid reports. This is always a potential issue as one
can either have a mechanism to vet the reports to prevent spamming or have guar-
anteed acceptance of reports with a related spam issue. To reduce the risk of valid
reports not being accepted, in addition to reporting the vulnerability to the Author-
ity and optionally to the Vendor, the Security Expert stores the hash of vulnerability
with associated metadata in the public ledger. If the Authority has not accepted a
valid report, the Security Expert can then publicly reveal the vulnerability,” which
together with the previously stored hash will make it obvious that the Authority
did not handle the reported vulnerability properly.

The Authority does not disclose the vulnerability after the grace period has expired.
In this case, both the Security Expert and general public will know that the vul-
nerability information has not been disclosed properly by the Authority, and the
disclosure process can also be triggered by the Security Expert, who also possesses
the secret needed.

The Vendor denies the existence of a valid vulnerability. In that case, the vulnera-
bility is automatically disclosed thus providing a clear incentive to remain truthful
or risk lose customers’ trust.

The Vendor claims the fix is effective when its not. Releasing a fix triggers a disclo-
sure, which would reveal the fix is not effective thus providing a clear incentive to
remain truthful.

4. This can be performed either using the same smart contract used for reporting vulnerability metadata, or
any other channel.



Conclusions and Future Work 243

The Vendor tries to extend the grace period. All time periods are automatically
enforced preventing any extensions.

Furthermore, it is important to note that the actions performed by all par-
ties, including the actions of the entity providing the interledger functionality,
are transparently and immutably recorded on the public ledger. Hence, the trans-
parency is increased and any attempts for misbehavior can be identified in a
non-repudiable manner. The general public will also know the number of found,
confirmed, but unpatched vulnerabilities per Vendor and product. This provides
incentives for Vendors to patch vulnerabilities quickly and create more secure
products.

14.6 Conclusions and Future Work

This chapter has introduced the Automated Responsible Disclosure (ARD)
approach to automate the process of vulnerability disclosure for products and sys-
tems, designed a mechanism to implement it, and presented an initial analysis con-
firming the achievement of the design. This approach is motivated by, and addresses
in particular, IoT systems risk management.

The solution is an interledger-enabled automated responsible disclosure provid-
ing accountability and appropriate incentives to the involved parties. The solution
relies on DLTs, smart contracts and chaincode, interledger technologies, and decen-
tralized identifiers, and extends the state of the art in responsible disclosure. The
analysis of the design shows that the goals set are achieved automatically, even with
external forces trying to disrupt the normal operations. Immutable recordings of
actions of the involved parties on a public blockchain provide additional assurances
(and incentives for the involved parties) in the case the design assumptions do not
hold (or in case of various failures).

The designed mechanism does not include any mechanisms to automatically
compensate the expert(s) who found and reported the vulnerability. However, DLTs
and interledger mechanisms are very appropriate for providing this functionality as
well. It was omitted from this discussion in order to simplify the design and avoid
obscuring the key functionality and properties of the solution. This would be an
expected extension after the approach has been accepted in the community, but it
could also be an added feature and advantage for the approach to become accepted.

Further work is required in order to establish, promote, and practically evaluate
the approach in the real world. Relevant authorities, responsible for public security
and safety should probably push for the establishment of such a solution and the
ecosystem around it.



244 Leveraging Interledger Technologies

Acknowledgments

The research reported here has been undertaken in the context of SOFIE (Secure
Open Federation for Internet Everywhere) project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under
grant agreement No. 779984.

References

(1] J. Trull. Responsible Disclosure: Cyber Security Ethics. CSO Online,
2015. Available at: https://www.csoonline.com/article/2889357/responsible-
disclosure-cyber-security-ethics.html (Accessed 5.2.2020).

[2] L. O’Donnell. 2 Million IoT Devices Vulnerable to Complete Takeover.
Threatpost, 2019. Available at: https://threatpost.com/iot-devices-vulnerable-
takeover/144167/ (Accessed 17.2.2020).

[3] D. Voolf, S. Boddy, and R. Cohen. Gafgyt Targeting Huawei and Asus Routers
and Killing Off Rival IoT Botnets. F5 Labs, 2019. Available at: https://www.
£5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-rou
ters-and-killing-off-rival-iot-botnets (Accessed 17.2.2020).

(4] T. Spring. The Vulnerability Disclosure Process: Still Broken. Threatpost,
2018. Available at: https://threatpost.com/the-vulnerability-disclosure-proc
ess-still-broken/137180/ (Accessed 5.2.2020).

[5] K. Zetter. A Bizarre Twist in the Debate Over Vulnerability Disclosures.
Wired, 2015. https://www.wired.com/2015/09/fireeye-enrw-injunction-biz
arre-twist-in-the-debate-over-vulnerability-disclosures/ (Accessed 5.2.2020).

[6] C. Cimpanu. Researcher publishes second Steam zero day after getting banned
on Valve’s bug bounty program. ZDNet, 2019. https://www.zdnet.com/artic
le/researcher-publishes-second-steam-zero-day-after-getting-banned-on-valve
s-bug-bounty-program/ (Accessed 5.2.2020).

[7] A. M. Algarni and Y. K. Malaiya. Software Vulnerability Markets: Discoverers
and Buyers. Journal of Computer, Information Science and Engineering 8,
no. 3 (2014), 71-81.

[8] N. Stifter, A. Judmayer, P. Schindler, A. Zamyatin, and E. Weippl. Agreement
with Satoshi — On the Formalization of Nakamoto Consensus. Cryptology
ePrint Archive, Report 2018/400, 2018.

[9] N. Fotiou and G. C. Polyzos. Smart Contracts for the Internet of Things:
Opportunities and Challenges. European Conference on Networks and Com-
munications (EuCNC), Ljubljana, Slovenia, June 2018.


https://www.csoonline.com/article/2889357/responsible-disclosure-cyber-security-ethics.html
https://www.csoonline.com/article/2889357/responsible-disclosure-cyber-security-ethics.html
https://threatpost.com/iot-devices-vulnerable-takeover/144167/
https://threatpost.com/iot-devices-vulnerable-takeover/144167/
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://threatpost.com/the-vulnerability-disclosure-process-still-broken/137180/
https://threatpost.com/the-vulnerability-disclosure-process-still-broken/137180/
https://www.wired.com/2015/09/fireeye-enrw-injunction-bizarre-twist-in-the-debate-over-vulnerability-disclosures/
https://www.wired.com/2015/09/fireeye-enrw-injunction-bizarre-twist-in-the-debate-over-vulnerability-disclosures/
https://www.zdnet.com/article/researcher-publishes-second-steam-zero-day-after-getting-banned-on-valves-bug-bounty-program/
https://www.zdnet.com/article/researcher-publishes-second-steam-zero-day-after-getting-banned-on-valves-bug-bounty-program/
https://www.zdnet.com/article/researcher-publishes-second-steam-zero-day-after-getting-banned-on-valves-bug-bounty-program/

References 245

[10] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C. Polyzos.
Interledger Approaches. IEEE Access 7 (2019), 89948-89966.

[11] C. Allen. The Path to Self-Sovereign Identity. April 2016. Available at: http://
www.lifewithalacrity.com/2016/04/the- path-to-self-soverereignidentity. html
(Accessed 18.12.2018).

[12] Blockchain and Identity: Projects/companies working on blockchain and
identity. Available at: https://github.com/peacekeeper/blockchainidentity
(Accessed 7.11.2018).

[13] D. Reed et al. Decentralized Identifiers (DIDs) v1.00 — Core Data Model
and Syntaxes. W3C Working Draft 09 December 2019. Available at: https:
/www.w3.org/ TR/did-core/ (Accessed 12.2.2020).

[14] Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation).

[15] H. Cavusoglu, H. Cavusoglu, and S. Raghunathan. Emerging Issues in
Responsible Vulnerability Disclosure. WEIS. 2005.

[16] A. Arora, R. Telang, and H. Xu. Optimal policy for software vulnerability
disclosure. Management Science 54, no. 4, (2008), 642—-656.

[17] L. J. Trautman and P. C. Ormerod. Industrial cyber vulnerabilities: Lessons
from Stuxnet and the Internet of Things. U. Miami L. Rev. 72 (2017), 761.

[18] A. Nakajima, ez al. A Pilot Study on Consumer IoT Device Vulnerability Dis-
closure and Patch Release in Japan and the United States. Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security.
2019.

[19] M. Stanislav and T. Beardsley. Hacking iot: A case study on baby monitor
exposures and vulnerabilities. Rapid7 Report (2015).

[20] A. Arora and R. Telang. Economics of software vulnerability disclosure. IEEE
Security & Privacy 3, no. 1, (2005), 20-25.

[21] H. Cavusoglu and S. Raghunathan. Efficiency of Vulnerability Disclosure
Mechanisms to Disseminate Vulnerability Knowledge. IEEE Transactions on
Software Engineering 33, no. 3, (2017), 171-185.

[22] J. Schiller. Responsible vulnerability disclosure: a hard problem. Secure Busi-
ness Quarterly 2, no. 1-5 (2002).

[23] M. McQueen, ]J. L. Wright, and L. Wellman. Are Vulnerability Disclosure
Deadlines Justified? Third International Workshop on Security Measurements
and Metrics, Banff, AB, (2011) 96-101.

[24] W. Pond. Do security holes demand full disclosure?. eWeek (2000).


http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereignidentity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereignidentity.html
https://github.com/peacekeeper/blockchainidentity
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/

246 Leveraging Interledger Technologies

[25] S. Ransbotham and S. Mitra. The impact of immediate disclosure on attack
diffusion and volume. Economics of Information Security and Privacy III,
Springer (2013), 1-12.

[26] A. Stone. Software flaws, to tell or not to tell?. IEEE Software 20, no. 1,
(2003), 70-73.

[27] . Bollinger. “Economies of disclosure.” ACM SIGCAS Computers and Soci-
ety 34, no. 3, (2004): 1-1.

[28] A. Ozment. Bug auctions: Vulnerability markets reconsidered. Third Work-
shop on the Economics of Information Security (2004).

[29] K. Kannan and Rahul Telang. Market for software vulnerabilities? Think
again. Management Science 51, no. 5, (2005), 726-740.

[30] S. Ransbotham, Sam, S. Mitra, and ]J. Ramsey. Are markets for vulnerabilities
effective? Mis Quarterly (2012), 43-64.

[31] H. Cavusoglu, H. Cavusoglu and S. Raghunathan. Efficiency of Vulnerabil-
ity Disclosure Mechanisms to Disseminate Vulnerability Knowledge. IEEE
Transactions on Software Engineering, 33, no. 3, (2007), 171-185.

[32] A. Cencini, K. Yu, and T. Chan. Software vulnerabilities: full-, responsible-,
and non-disclosure. (2005). Available from: https://courses.cs.washington.
edu/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_
cencini_yu_chan.pdf (Accessed 17.2.2020).

[33] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory analy-
sis of software vulnerability life cycles. Proceedings of the 34th International
Conference on Software Engineering (ICSE), Zurich, (2012), 771-781.


https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_cencini_yu_chan.pdf
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_cencini_yu_chan.pdf
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/software_vulnerabilities_by_cencini_yu_chan.pdf

