
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Laine, Markku; Nakajima, Ai; Dayama, Niraj; Oulasvirta, Antti
Layout as a Service (LaaS): A Service Platform for Self-Optimizing Web Layouts

Published in:
Web Engineering - 20th International Conference, ICWE 2020, Proceedings

DOI:
10.1007/978-3-030-50578-3_2

Published: 01/01/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Laine, M., Nakajima, A., Dayama, N., & Oulasvirta, A. (2020). Layout as a Service (LaaS): A Service Platform for
Self-Optimizing Web Layouts. In M. Bielikova, T. Mikkonen, & C. Pautasso (Eds.), Web Engineering - 20th
International Conference, ICWE 2020, Proceedings (pp. 19-26). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12128 LNCS).
Springer. https://doi.org/10.1007/978-3-030-50578-3_2

https://doi.org/10.1007/978-3-030-50578-3_2
https://doi.org/10.1007/978-3-030-50578-3_2


Layout as a Service (LaaS): A Service Platform
for Self-Optimizing Web Layouts

Markku Laine(�), Ai Nakajima, Niraj Dayama, and Antti Oulasvirta

Aalto University, Helsinki, Finland
{markku.laine,ai.nakajima,niraj.dayama,antti.oulasvirta}@aalto.fi

Abstract. To personalize a web page, case-specific rules or templates
must be specified that define the visuospatial layout of elements as well
as device-specific adaptation rules for an individual. This approach scales
poorly. We present LaaS , a service platform for self-optimizing web lay-
outs to improve their usability at individual, group, and population lev-
els. No hand-coded rules or templates are needed, as LaaS uses combina-
torial optimization to generate web layouts for stated design objectives.
This allows personalization to be controlled via intuitive objectives that
affect the full web layout. We present an extensible architecture and
solutions for (1) layout generation using integer programming, (2) data
abstractions to mediate between browsers and layout generators, and (3)
page restructuring. Moreover, we show how LaaS can be easily deployed
as part of existing web pages. Results demonstrate that our approach
can produce usable personalized web layouts in diverse scenarios.

Keywords: Self-adaptive web interfaces · Web-based interaction · Web
personalization · Web layouts · Web service architectures

1 Introduction

Designing a web layout is laborious and challenging: Given elements can be laid
out in many different ways, yet content and functionality need to appear interest-
ing and presented in an appealing and accessible way. However, the ”one design
fits all” approach is inherently suboptimal from the usability point-of-view. For
any individual user, a page designed for a larger population will always compro-
mise the particular interests, expectations, and capabilities. Previous work sug-
gests that layout personalization could bring significant per-user improvements
in usability and experience and could relieve designers and developers from man-
ual work. However, while there are computational methods and architectures for
web personalization, no viable solution has been proposed how to adapt full web
layouts to individuals without manually precoded rules or templates.

This paper contributes a novel service architecture design and computations
for objective-level web layout personalization. That is, layouts are adapted by
reference to desired effects on end-users: ”I want this page to be improved for
[design objective]”. In objective-level control, the full layout of a page, including
elements and their positions and sizes will be generated given the user’s data. No



2 M. Laine et al.

rules or templates are needed. This extends web personalization from content-
level personalization to consider full layouts. In this paper, we explore selection
time and visual saliency as two common objectives in layout optimization [5].

In the rest of this paper, we present LaaS , an architecture and computations
for self-optimization of web layouts. Our cloud-based service architecture allows
offloading computation effort to the cloud. The computational tasks of selecting
and layouting elements on a page are NP-hard problems and not solvable in
a browser for realistic problem instances. We make two further technical con-
tributions. First, we extend combinatorial optimization based approaches [5] to
permit adapting layouts to a wide variety of users, pages, and devices with no
predefined rules or templates. Changes to existing codebase are minimal (1 line
per page). This is practically out of reach of rule-based approaches, which scale
up poorly. Second, we present a data abstraction for the visuospatial design of
the page, which allows the optimizer to be agnostic of the underlying web tech-
nologies (here: HTML, CSS, and DOM). The architecture is easy to deploy and
fully controllable by the service owners, who may want different outcomes on
different pages and must trust that the outcomes produced are of high quality.
The process is practically invisible to end-users. Moreover, thanks to the separa-
tion of a design task from the generator, proprietary machine learning methods
can be incorporated to LaaS . We demonstrate the system with a clickstream-
based generation of personalized web news portals, a realistic and challenging
case with needs for variability in web layouts.

2 Related Work

LaaS focuses on the grid layout, a common design principle for organizing graph-
ical UIs, available in many design tools, UI toolkits, and layout managers. Visual
flow and motor selection are two important goals in their design [6, 9]. After de-
termining the visuospatial organization of a web layout, it must be implemented,
typically using standard web technologies. Adaptation rules, such as for Respon-
sive Web Design, must be added, which is often done by hand. Designers spend
considerable time with repetitive tasks related to UI layouts. So far, no archi-
tecture has been proposed for web layout adaptation that is able to adapt the
full layout for an individual without predefined rules or templates.

Web personalization has been a topic of interested since the 1990s. A
number of machine learning and data mining methods have been proposed for
modeling page contents and web usage patterns in order to drive the recommen-
dation and selection of contents. Research on techniques for presenting content
has focused on the ordering, emphasis, and scaling of contents [2], as well on
message framing and use of colors. However, no method has been proposed that
could handle any and all of these on the web.

Service architectures for adaptive web layouts have been either rule-based
or template-based. For example, AERO is a template-based framework for web
layout synthesis [10]. The approach is based on a suite of templates specified
in HTML and CSS, of which one is selected in accordance with a customizable



LaaS: A Service Platform for Self-Optimizing Web Layouts 3

scoring function. An issue with both rule and template-based approaches is that
they rely on decisions at design-time. In general, existing approaches are not
well-suited for handling continuous and unanticipated changes.

Combinatorial optimization has been studied as a method for the GUI
design [5]. Early research mostly used rules and design heuristics to generate
layouts that adhere to known design guidelines and more recently data-driven
approaches. Model-based approaches, on the other hand, use white-box (first prin-
ciples) models that provide a theory-driven and transparent approach to layout
generation. In the generative process, layout quality is measured against some
model or design heuristic. When heuristics are used as objective functions, how-
ever, optimization systems scale up poorly due to the large number of rules.
Predictive models of user performance and experience have been proposed to
address this issue [5]. We found only one application of prediction-based meth-
ods for web layouts. In Familiariser [9], a visual search model was fit to a user’s
site visitation history and used in a browser-side optimizer to re-layout a page to
make elements quicker to find. In ability-based optimization, UI designs are gen-
erated by taking into account motor or cognitive impairments of an individual,
which are represented as parameters in predictive models [8]. For an overview of
design objectives that can be modeled using predictive models, see [5].

The layout problem is recognized in operations research as an NP-hard
problem, and our design problem is an instance of it. In combinatorial geome-
try, grid layout has been studied in the context of 2D bin packing, rectangular
packing, and the guillotine cuts problem [5]. Generation of multiple, varied, near-
optimal solutions has been discussed. An elementary version of the grid design
problem has been previously proposed [4]. However, they merely attempted to
find the most densely packed solution by squeezing elements closely together.

3 LaaS: Architecture and Computations

This section presents Layout as a Service (LaaS), a service platform architecture
and computations that enable objective-level web layout personalization. The
distributed system architecture consists of a set of loosely-coupled client-side and
server-side components that communicate with each other over HTTPS using a
REST API, as depicted in Fig. 1. The client-side components are dynamically
loaded to the end-user’s browser during the initial phase of a page load; Layout
Parser and Layout Adapter are executed before the web page is displayed to the
user, whereas Event Logger collects user behavior data while the user interacts
with it. The server-side components are run on demand (e.g., daily, weekly) in the
cloud; Design Task Generator generates a design task specification for the latest
version of each layout, whereas Layout Generator optimizes them accordingly.

In the architecture, expensive computations, especially layout generation,
are executed on the server side. The adaptation of layout elements, on the other
hand, takes place in the browser to permit adaptation of both server-side and
client-side rendered pages. The architecture is also designed in a modular way



4 M. Laine et al.

Fig. 1. LaaS architecture, including core components and interactions between them.

such that it is possible to plug in machine learning components that help in user
modeling and/or design task generation.

The following subsections describe the above-mentioned LaaS core compo-
nents and their function in greater detail.

3.1 Layout Parser

In order to reproduce a web layout, Layout Parser automatically (1) assigns a
unique identifier for each element, (2) parses the web page structure and styles,
(3) detects and labels key elements, (4) precomputes permissible shapes for key
elements, and finally (5) creates a user interface technology independent repre-
sentation (JSON) of the original layout. This parsing process needs to be done
only once per selected layout optimization level (individual, group, population).

3.2 Event Logger

Event Logger is responsible of capturing user interactions on a web page and
sending the data to API Server. The collected data includes, among others:
event type, layout identifier, client identifier, page URL, and other event-specific
data (e.g., clicked element identifier, link target, and timestamp). Our current
implementation records clicks and visits on web pages. Support for new event
types and metrics (e.g., document scroll and time spent on the page) can be
easily added by extending LaaS event logging capabilities.

3.3 Design Task Generator

To support adaptation on demand for any given target, as well as to support
controllability, LaaS separates the design task from the generator. Design Task



LaaS: A Service Platform for Self-Optimizing Web Layouts 5

Generator (DTG) creates a specification of design task, which serves as a com-
munication vehicle between the designer (here: DTG) and Layout Generator. It
allows the designer to specify (1) various design objectives and constraints on
a web layout to be generated and (2) compute per-element importance values
based on collected user behavior data. We currently use click frequencies to ob-
tain element importance values. However, the architecture is flexible enough to
support other, more advanced computational methods, such as machine learning.

3.4 Layout Generator

We formulate a mixed integer linear programming model (MIP) in order to re-
organize web pages as grid layouts. We chose MIP to achieve a balance between
computational performance and solution quality. Our MIP formulation (1) en-
sures well-formed layouts that are rectangular and well-aligned and (2) optimizes
them for stated design objectives, in our case selection time and visual saliency.
Linearity of our model ensures better performance and enables use of suitable
MIP callbacks [3]. Further, our MIP model has size depending solely on the
number of elements involved, i.e., the size of our MIP model is independent of
the canvas size. The MIP model works in three phases:

Phase 1: Layout Sanctity. We ensure a non-overlapping, non-overflowing
grid where elements are placed within permissible size limits and in permissible
locations. We use continuous decision variables to represent the location of all
four edges of every individual element. Continuous decision variables avoid pixel-
level discretization, which is important for the performance of the solver. To
prevent overlapping elements, we use an approach introduced by Hart and Yi-
Hsin [4]. Hence, the core MIP formulation developed in this phase provides
non-overflowing, non-overlapping solutions with element sizes within limits.

Phase 2: Alignment. This phase computes and restricts the number of
independent grid lines required to represent the selected candidate solution. It
ensures that the resulting layouts are well-aligned and aesthetically acceptable.
To represent overall alignment objectively, we define notional Cartesian grid
lines on all pixels of the canvas. If any two (or more) elements have any of
their edges aligned with each other, those elements share the single grid line for
those edges. So, the total number of grid lines actually utilised in any feasible
solution is a direct indicator of the overall alignment within that solution. The
objective of minimizing the total number of grid lines achieves the design intent
of well-aligned solutions.

Phase 3: Functional Layout. The functional placement formulation de-
termines the placement and sizing of relevant elements to ensure that the layout
has high usability. We have picked and implemented the following two design
objectives, but any other objectives that can be efficiently represented in the
MIP could be included (for previous work, see [5]).

– Selection Time. We use Fitts’ law to compute the time required to reach
a specific element on the screen. Fitts’ law is widely used in model-based
optimization as an objective function [1]. Selection time (ST) is a function



6 M. Laine et al.

of target distance (D) and size (W): ST = a + b log2(D/W + 1). In our
case, we assume that the user starts scanning the screen from the top-left
corner. So, we use a linear function of the distance from the screen corner as
a substitute approximation. If the design task instance prioritizes selection
time, the optimizer attempts to minimize the predicted time required for
important elements. The most obvious effect is that very important elements
may become larger and placed closer to the top-left corner of the web page.

– Visual Saliency. Saliency refers to how attention-grabbing an element is
given the rest of the page [7]. In our case, we compute saliency as the relative
size of the element. While area would be a proxy for the saliency, this is
further complicated by the requirement that the permissible areas of the
element must be picked from within a fixed number of permissible shapes
only. So, we pick the most salient size from the permissible shape set, if
provided, and use that size for laying out elements. Similarly, color and
other qualities could be implemented.

3.5 Layout Adapter

Restructuring hierarchical web pages is particularly challenging because even
the smallest change to the DOM structure can break the web page’s visual
appearance, functionality, or both. Thus, Layout Adapter is designed so that it
can reposition and resize web layout elements without changing the original tree
structure. Once an optimized layout for the web page becomes available in the
cloud, it can be fetched and applied before the web page is shown to the user.

3.6 Deployment

Enabling LaaS on a website can be done in just two steps. First, the service
owner registers a website to obtain an embeddable <script> tag with a track-
ing identifier. Second, the obtained script is added on those web pages of the
website, whose usability needs to be improved. Injecting the <script> tag into
the web pages can be done either manually with minimal source code changes
or automatically via our proxy server installation.

We also offer LaaS Control Panel for service owners to manage various LaaS
related settings on their website, such as service status, design objectives, target
elements, and data collection events.

4 Results

Fig. 2 shows example outputs for WebNews, a custom news aggregator website
hosted on our server. The original design shown in Fig. 2(a) has one template-
based multi-column grid layout, to which in the initial design news articles from
six different categories are allocated. Normally, adapting the full layout of a page
like this would require predefined templates or a (very) large number of rules.



LaaS: A Service Platform for Self-Optimizing Web Layouts 7

Fig. 2. Results for a web news page: (a) Original web layout with multiple content
cards; (b) Optimized to improve selection time of a single card (Costco); (c) Optimized
for visual saliency of the same card; (d) Optimized for both selection time and saliency
of the same card; (e) Optimized for both and with more complex interest distribution
(all sports and business cards); (f) Optimized for mobile device screen width.

We divide the example results into two classes: demonstrator results done
with simpler scenarios and two more realistic cases. Fig. 2(b-d) shows adap-
tation results for different combinations of the two design objectives, using a
single card as the illustrative example. The produced layouts are well-formed
and the element-of-interest (Costco) behaves as desired: it is moved to a closer
position for selection in (b), more visually salient in (c), and both combined in
(d). Fig. 2(e) shows a more complex example, where a bimodal interest distribu-
tion (sports and business categories) is accounted for. Fig. 2(f) shows the page
adapted for a mobile screen. All layouts are properly formed: there are no holes
and no overlapping elements. The layouts adhere to proper, well-aligned grids.
This would be very laborious to achieve with a rule or template-based approach.

4.1 Discussion

There are two predominant methods for rendering layouts on the web: server-
side rendering and client-side rendering. While client-side rendering has gained
popularity over the past few years, a myriad of web applications (incl. WebNews),
frameworks (e.g., WordPress), and libraries use or support server-side rendering,
including React and Vue.js. The LaaS architecture is designed to work with both
server-side and client-side rendered layouts; however, our research efforts have
almost exclusively focused on the former up until this point.

Quality of Experience (QoE) [11] describes, from a holistic perspective, how
well a service such as a website satisfies its users’ expectations. While LaaS
can produce usable personalized web layouts, we acknowledge that its use may
unfavorably impact other QoE factors, such as page load times and aesthetics.
However, according to our informal testing these effects are small and can be
mitigated with the use of known techniques, such as caching and image re-
cropping.



8 M. Laine et al.

5 Conclusion

We presented first steps toward objective-level control of personalization, includ-
ing an architecture and involved computations. We believe that at least within
the scope of grid-based web layouts, this goal is within reach. The examples
we showed would be very laborious to achieve with a rule-based approach. This
result warrants more research on this approach. LaaS provides an extensible
architecture concept for future work to build on. It supports, by design, easy
deployment on many present-day pages and integration with widely used ma-
chine learning methods for user modeling and recommendations. The core MIP
solutions, on the other hand, can be extended with other design objectives.

References

1. Bailly, G., Oulasvirta, A., Kötzing, T., Hoppe, S.: MenuOptimizer: Interactive op-
timization of menu systems. In: Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology. p. 331–342. UIST ’13, ACM (2013).
https://doi.org/10.1145/2501988.2502024

2. Bunt, A., Carenini, G., Conati, C.: Adaptive Content Presentation for the Web,
pp. 409–432. Springer (2007). https://doi.org/10.1007/978-3-540-72079-9 13

3. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block lay-
out design problems with unequal areas: A comparison of MILP and MINLP
optimization methods. Computers & Chemical Engineering 30(1), 54–69 (2005).
https://doi.org/10.1016/j.compchemeng.2005.07.012

4. Hart, S.M., Yi-Hsin, L.: The application of integer linear programming to the
implementation of a graphical user interface: a new rectangular packing problem.
Applied Mathematical Modelling 19(4), 244–254 (1995)

5. Oulasvirta, A., Dayama, N.R., Shiripour, M., John, M., Karrenbauer, A.: Combi-
natorial optimization of graphical user interface designs. Proceedings of the IEEE
108(3), 434–464 (2020). https://doi.org/10.1109/JPROC.2020.2969687

6. Pang, X., Cao, Y., Lau, R.W.H., Chan, A.B.: Directing user atten-
tion via visual flow on web designs. ACM Trans. Graph. 35(6) (2016).
https://doi.org/10.1145/2980179.2982422

7. Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: A mea-
sure of display clutter. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. p. 761–770. CHI ’05, ACM (2005).
https://doi.org/10.1145/1054972.1055078

8. Sarcar, S., Jokinen, J.P.P., Oulasvirta, A., Wang, Z., Silpasuwanchai, C., Ren, X.:
Ability-based optimization of touchscreen interactions. IEEE Pervasive Computing
17(1), 15–26 (2018). https://doi.org/10.1109/MPRV.2018.011591058

9. Todi, K., Jokinen, J., Luyten, K., Oulasvirta, A.: Individualising graphical layouts
with predictive visual search models. ACM Trans. Interact. Intell. Syst. 10(1)
(2019). https://doi.org/10.1145/3241381

10. Vernica, R., Venkata, N.D.: AERO: An extensible framework for adap-
tive web layout synthesis. In: Proceedings of the 2015 ACM Sympo-
sium on Document Engineering. p. 187–190. DocEng ’15, ACM (2015).
https://doi.org/10.1145/2682571.2797084

11. Wechsung, I., De Moor, K.: Quality of Experience Versus User Experience, pp.
35–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02681-7 3


