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Abstract—The expected high bandwidth of 5G and the en-
visioned massive number of connected devices will open the
door to increased and sophisticated attacks, such as application-
layer DDoS attacks. Application-layer DDoS attacks are complex
to detect and mitigate due to their stealthy nature and their
ability to mimic genuine behavior. In this work, we propose
a robust application-layer DDoS self-protection framework that
empowers a fully autonomous detection and mitigation of the
application-layer DDoS attacks leveraging on Deep Learning
(DL) and SDN enablers. The DL models have been proven
vulnerable to adversarial attacks, which aim to fool the DL
model into taking wrong decisions. To overcome this issue,
we build a DL-based application-layer DDoS detection model
that is robust to adversarial examples. The performance results
show the effectiveness of the proposed framework in protecting
against application-layer DDoS attacks even in the presence of
adversarial attacks.

I. INTRODUCTION

The disruptive capabilities of 5G and beyond networks are
envisioned to enable an extensive range of new applications
and services, such as tactile Internet, virtual/augmented reality,
autonomous driving and industrial automation. Meanwhile,
they are expected to open the door to increased and so-
phisticated cybersecurity threats. One major security concern
that may hamper the potential of the anticipated applica-
tions/services is the compromise of their availability. Accord-
ing to Gartner [1], Distributed Denial of Service (DDoS)
attacks continue to escalate in frequency, volume and com-
plexity, leading to availability breach. In fact, Kaspersky’s
DDoS Q2 2019 report states that the number of attacks in
Q2 has risen by 18% compared with the same period of 2018.
Considering the massive number of connected devices and the
high bandwidth that will feature 5G and beyond networks,
their number will even continue to soar.

DDoS attacks can be broadly classified into two types,
namely [2]: (i) network-layer DDoS attacks, which aim at sat-
urating the network bandwidth by generating volumetric traffic
or high-rated packets , and (ii) application-layer DDoS attacks,
which focus on exhausting the server’s computational and
memory resources. Application-layer DDoS attacks are usually
stealthy in nature trying to mimic genuine behavior with
low-bandwidth usage, making their detection and mitigation
harder. The complexity of handling application-layer attacks
is a key driver of the significant growth in their number these
last years. Indeed, Kaspersky’s DDoS Q2 2019 report reveals
that their amount has increased by 32% compared with Q2

2018 and their share in Q2 2019 escalated by 46%. Although
extensive work has been engaged and several solutions have
been proposed (e.g. [2]–[4]), addressing the application-layer
DDoS issue is far from being completely resolved.

The recent years have seen a trend toward the development
of Machine Learning (ML) driven Software-Defined Secu-
rity solutions [5]–[7] that are able to empower key security
functions (e.g., prediction, detection, mitigation, etc.). Indeed,
ML fosters security self-managing functionalities, resulting in
improved robustness and lower operational costs [8]. While
the recent contributions (e.g., [2], [9]–[11]) have focused on
the opportunities of ML techniques to empower intelligent
detection of DDoS attacks, they have overlooked their security
concerns. In fact, the use of ML techniques is a source for
new attack vectors. It has been proven that ML techniques are
vulnerable to several attacks [12] targeting both training phase
(i.e., poisoning attacks) and test phase (i.e., evasion attacks).
The attacks against ML techniques aim to fool the ML model
into taking wrong decisions (e.g., misclassifying a malicious
traffic as a legitimate traffic) by introducing carefully crafted
perturbations to training and/or test samples. Such perturba-
tions are called adversarial examples. Thus, the adoption of
ML techniques for security management operations in next-
generation networks could be waned if their security issues
are not addressed [13].

To fill the aforementioned gap, this work proposes a robust
application-layer DDoS self-protection framework. The frame-
work empowers a fully autonomous detection and mitigation
of the application-layer DDoS attacks, leveraging Deep Learn-
ing (DL) and Software Defined Networking (SDN) enablers.
A key contribution of this work is to build a DL-based
application-layer DDoS detection model that is robust to
adversarial examples.

The rest of this paper is organized as follows. Section II
summarizes related work in the literature. In Section III,
the proposed application-layer DDoS defense framework is
described. Section IV presents the performance evaluation
results. Finally, Section V concludes the paper.

II. RELATED WORK

Many research efforts have been devoted to tackle DDoS
attacks leveraging ML and/or SDN [2]–[4], [14]. In what
follows, we will review the main defense mechanisms pro-
posed in the literature to handle DDoS attacks exploiting the



intelligence of ML techniques and/or the flexibility provided
by network programmability (i.e., SDN).

Braga et al. [15] proposed an intelligent method for detect-
ing network-layer DDoS attacks in an SDN environment. The
proposed method uses a Self Organizing Maps (SOM) [16]
model, an unsupervised artificial neural network, trained on
traffic flow features. The contribution in [9] rely on Deep
Neural Network (DNN) models to detect intrusion in an
SDN network. The authors in [10] devised a ML-based
collaborative DDoS mitigation strategy in a multi-SDN con-
troller environment. The detection is performed using Naive
Bayes classifier based on flow features extracted by the SDN
controller. Upon detection of malicious behavior, the SDN
controller in the attacker’s network is automatically notified
to create a deny IP based flow. Similar to [15], the work
in [9], [10] consider only network-layer attacks. Moreover,
the proposed models are trained on NSL-KDD, a relatively
old dataset that cannot reflect the current trend in network
attacks.

Hong et al. [17] devised a SDN-assisted defense method
to detect and mitigate slow HTTP DDoS attacks. The defense
solution is deployed as a SDN application and triggered by
the web server when the number of open connections that
sent incomplete HTTP requests exceeds a given threshold. The
major weakness of threshold-based schemes is their lack of
accuracy. In fact, threshold-based schemes are unsuitable for
detecting application-layer DDoS attacks due to the resem-
blance between the traffic patterns generated by those attacks
and benign activities. The authors in [11] demonstrated the
potential of ML techniques in detecting low-rate application-
layer DDoS using the characteristics of malicious TCP flows.
A detection accuracy of over 97% has been achieved using K
Nearest Neighbor, Decision Trees and DNN techniques.

While the aforementioned contributions have focused on
the opportunities of ML techniques to empower intelligent
detection of DDoS attacks, they have overlooked their security
concerns. In fact, it has been demonstrated that ML techniques,
even the emerging ones (e.g., Reinforcement Learning (RL)),
are prone to several attacks targeting both training phase (i.e.,
poisoning attacks) and test phase (i.e., evasion attacks) [12],
[13], [18]. In poisoning attacks, an attacker aims at tampering
the training data, by injecting carefully crafted malicious sam-
ples, to impact the learning outcome. Meanwhile, an evasion
attack focuses on bypassing the learned model by introducing
small perturbations to the test samples. Such perturbations are
called adversarial examples. Adversarial Machine Learning
(AML) [19] is an emerging research discipline that focuses
on making ML techniques resilient to adversarial attacks by
assessing their vulnerability to attacks and devising appropri-
ate countermeasures. Unlike computer vision field, very few
contributions (e.g., [20]) have been targeted at ML security in
the context of networking field. The work in [20] investigates
the resilience of RL to different forms of poisoning attacks in
the context of autonomous cyber-defense in SDNs. While the
authors have briefly discussed the potential countermeasures,
they did not implement any defense strategy.

To deal with application-layer DDoS attacks in presence of
adversarial attacks and in a fully autonomous way, we propose
a robust application-layer DDoS self-protection framework
leveraging both ML and SDN enablers.

III. ROBUST APPLICATION-LAYER DDOS
SELF-PROTECTION FRAMEWORK

A. Framework’s High-Level Architecture

Fig. 1 depicts the basic architectural components of the
proposed solution to mitigate the application-layer DDoS
attacks in a fully autonomous way. The “App-Layer DDoS
Protection” component is in charge of detecting the malicious
activity and issuing the security policy in case the attack is
detected. It consists of four main modules: the “Network Flow
Collector”, the “Features Extractor” and the “Detector”. The
Network Flow Collector permanently collects network flows
via port mirroring. To limit the impact of mirroring on the net-
work performance, only traffic flowing from/to the monitored
asset (e.g., Web server) is mirrored. The collected traffic is
periodically exported to Features Extractor to retrieve flow’s
features relevant to application-layer DDoS attack detection.
Once extracted, the flow features are passed to the Detector for
uncovering suspicious behavior. If a malicious traffic pattern
is identified, the Detector issues a security policy (e.g., flow
dropping or steering) to the Security Policy Manager. Upon
receiving the security policy, the Security Policy Manager
converts the policy into a flow command and sends it to the
SDN controller. Based on the received flow command, a flow
rule is pushed by the SDN controller to the corresponding
virtual Switch (vSwitch) to fulfill the defined security policy.

Fig. 1. The Robust App-Layer DDOS Self-Protection Framework’s High-
Level Architecture.

B. Attacker Model

The attacker’s goal is to exhaust the server’s resources (e.g.,
CPU, memory, I/O), preventing the server from providing
services to legitimate users. To this end, we assume that
the attacker has the capability to launch application-layer
DDoS attacks, particularly HTTP-based flooding attack that



aims to overwhelm the server by a voluminous number of
legitimate HTTP requests. The HTTP-based flooding attack
can be performed either in high-rate or slow-rate mode. In
high-rate mode, the attacker mimics a flash-crowd event by
flooding the web server with a large number of legitimate
HTTP requests in a short period of time. The low-rate mode,
however, consists in establishing multiple HTTP connections
with the web server by sending partial HTTP requests at a
very slow rate.

We consider that an attacker may be smart; that is, he/she
has the capability to launch an application-layer DDoS attack
while evading detection by a ML-based detector. A smart
attacker is supposed to be able to craft application-layer
(D)DoS flow that will be misclassified as a legitimate flow
by the ML-based model. In this work, we assume that a
smart attacker has a full-knowledge (i.e., white-box attack)
on the targeted ML model, including its architecture and
parameters. The white-box attack Fast Gradient Sign Method
(FGSM) [21] is considered for the purpose of this work. The
FGSM attack generates adversarial examples by performing a
one step gradient update in the direction of the gradient’s sign
of the loss function relative to the input. The input is then
altered by adding a perturbation that can be expressed as:

η = ε.sign(5xJ(θ, x, y)) (1)

where x is a sample (i.e., network flow), y is the label of x
(i.e., Benign or DDoS flow), J(θ, x, y) is the loss function
used to generate the adversarial example and ε denotes the
perturbation magnitude.

C. Detector Module

To identify the application-layer DDoS attacks, Deep Learn-
ing (DL) is leveraged in this study. DL approaches have
recently gained momentum for solving several problems in
networking ranging from resource allocation to network se-
curity [22]. The adoption of a DL model is motivated by
its capacity of uncovering complex non-linear relationships
between inputs and outputs, yielding higher accuracy in distin-
guishing application-layer DDoS flow patterns from legitimate
flow patterns.

1) Model structure: The detection model is built using
Multi-Layer Perceptron (MLP) algorithm. The proposed model
consists of 1 input layer, 2 hidden layers with 64 neurons each,
and a two-class softmax output layer. The model’s input is the
flow features received from the Extractor. The model’s output
is the traffic class; that is, DDoS traffic or legitimate traffic.

2) Adversarial Training: The detector module is resilient
to adversarial attacks performed by the smart attackers. To
counteract the white-box attacks, we adopt the adversarial
training defense. In adversarial training, the DL model is
explicitly trained on adversarial examples in order to learn how
to resist them. Considering the FGSM attack, the adversarial
training is performed based on adversarial examples generated
using FGSM.

Fig. 2. Testbed Architecture.

IV. PERFORMANCE EVALUATION

Fig 2 illustrates the setup environment used to evaluate
the performance of the proposed framework. We have used
three (03) VirtualBox VMs hosted on the same physical server
and running Ubuntu 16.04 operating system. The first VM
(Controller), with a minimal configuration of 2 CPU cores
and 2GB RAM, acts as an SDN controller, where an instance
of ONOS 1 (Open Network Operating System) is deployed.
The second VM (Attackers) is used to simulate the attackers’
network. Eight (8) attackers, deployed on 8 LXD containers,
perform simultaneous App-layer DDoS attack against the web
server. The high-rate HTTP-based flooding attack is launched
using Hulk 2 tool. The hulk attack generates a high volume
of unique and obfuscated HTTP GET requests. The low-rate
HTTP-based flooding attack is launched using Slowloris 3

tool. The slowloris attack allows to make the web server
inaccessible by holding multiple connections open for a long
time. The attackers can generate either ordinary malicious
traffic or adversarial malicious traffic. The Cleverhans 4 library
is used to craft adversarial application-layer DDoS flows based
on FGSM attack using a perturbation magnitude ε = 0.5.
In fact, the smart attacker’s aim is to generate application-
layer DDoS traffic on which slight perturbations are introduced
by the FGSM attack in order to be recognized as legitimate
traffic, resulting in detection evasion. To make the DL-based
model robust against adversarial examples, the model has been
adversarially trained on adversarial flows generated by FGSM
attack using the same perturbation magnitude (i.e., ε = 0.5).
The third VM (Server) contains the Apache web server with
its default configuration and the App-Layer DDoS Protection
component, each of them deployed on an LXD container. This
VM is connected to the Attackers VM through Open vSwitch
(OVS) using a Virtual Extensible LAN (VXLAN) tunnel as
illustrated in Fig. 3. The OVSs are controlled by the SDN
controller.

The MLP-based model integrated in the Detector mod-
ule is trained on the recent intrusion detection dataset, CI-

1https://onosproject.org
2https://github.com/grafov/hulk
3https://github.com/gkbrk/slowloris
4https://github.com/tensorflow/cleverhans



Fig. 3. Testbed’s Network Topology.

CIDS2017 [23] (where only network flows corresponding to
legitimate traffic and DoS/DDoS attacks are used) augmented
by application-layer DDoS flows generated in our testbed.
The dataset used in this study is available on [24]. 70%
of the datasets flows are used to train the model and the
remaining 30% flows are used as a test set to assess the
models performance on unseen data. The model is trained for
10 epochs with a batch size of 128, Adam as an optimizer, and
a learning rate of 0.001. The model is implemented using the
Python’s DL library Keras running on a TensorFlow backend.
It achieved an accuracy of 99.65% on the test set.

The framework performance is assessed in terms of web
server’s response time and system load. The response time is
defined as the time elapsed between when the request is sent
and when the corresponding response is fully received. The
system load is measured in terms of CPU and RAM usage.
The performances are measured before (1min), during (3min)
and after (1min) the App-layer DDoS attack is launched. To
this end, Apache JMeter is used to simulate a legitimate client
sending an HTTP request every one second. Four scenarios are
considered, namely: (1) Normal attack without the proposed
defense system - this scenario is used as a baseline to eval-
uate the effectiveness of the DL-based detection module; (2)
Normal attack while using the original DL-based model (i.e.,
without adversarial training) for detection; (3) Adversarial
attack while using the original DL-based detection model;
and (4) Adversarial attack while using the adversarially-trained
DL-based detection model.

A. Web Server’s Response Time

Fig. 4 and Fig. 5 show the web server’s response time
when Hulk and Slowloris attacks are launched, respectively.
The server’s average response time is 3.5ms without attack.
The depicted results show a high increase in the response
time during the attack phase. A key observation is that
Slowloris attack exhibits a significant impact on the response
time (279.4s in average) compared to Hulk attack (2.6s in
average). The proposed defense framework using the original
DL-based model succeeds in detecting and blocking normal
attacks in a very short time, allowing the web server’s response
time to go to normal. Indeed, the attack is counteracted in
roughly 10s in the case of Hulk (See Fig. 4(b)) and 25s

in the case of Slowloris (See Fig. 5(b)). Nevertheless, the
original DL-based model fails in detecting the adversarially-
generated attacks (See Fig. 4(c) for Hulk and Fig. 5(c) for
Slowloris). In fact, the original DL-based model’s accuracy
dropped considerably in presence of adversarially-crafted App-
layer DDoS flows, which are misclassified as legitimate
flows. Unlike the original DL-based model, the use of its
adversarially-trained variant allowed to prevent both ordinary
and adversarially-generated attacks (See Fig. 4(d) for Hulk and
Fig. 5(d) for Slowloris). Thus, adversarial training has signif-
icantly improved the model’s robustness against adversarial
flows. It is worth mentioning that while the adversarial Hulk
attack is stopped in 10s, the adversarial Slowloris is thwarted
in 45s, which is about 2 times longer than the mitigation
of the ordinary Slowloris attack by the original DL-based
model. This can be explained by the fact that the patterns
of adversarial Slowloris flows will become much closer to
legitimate patterns, making their detection more complex.
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(d) Adv. Hulk (Adv. Detection)

Fig. 4. The Web server’s response time over the time in the case of Hulk
attack
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Fig. 5. The Web server’s response time over the time in the case of Slowloris attack

B. Web Server’s System Load

The results depicted in Fig. 6 demonstrate the significant
impact of Hulk attack on the Web server’s CPU usage, where
the average CPU usage increased from 1.7% without attack to
36% during the attack. However, Fig. 7 shows that Slowloris
attack has a negligible effect on the CPU usage. In the
conducted tests, the average CPU usage increased to about
3.5%.

Fig. 8 and Fig. 9 display the Web server’s RAM usage
in the case of Hulk and Slowloris attacks, respectively. It is
observed that both attacks exhibit almost the same behavior in
impacting the RAM usage. In fact, the RAM usage is linearly
increasing with the increase of attack duration, and starts
gradually decreasing when the attack is stopped. It is worth
observing from Fig. 8(b) that the original DL-based model
was able to detect some adversarial Hulk samples during the
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Fig. 6. Hulk attack: System Average Load (CPU)
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Fig. 7. Slowloris attack: System Average Load (CPU)

attack period, which explains the gradual drop in RAM usage
between 160s to 240s.

V. CONCLUSION

In this paper, we presented a Robust Application-Layer
DDoS Self-Protection Framework that empowers the fully au-
tomated detection and mitigation of Application-Layer DDoS
attacks leveraging both DL and SDN. The framework’s robust-
ness stems from its ability to mitigate adversarially-generated
attack flows, thanks to the adversarial training defense used
to train the model on adversarial DDoS flows. The devised
framework was implemented and deployed on an experimental
testbed. The obtained results demonstrate the effectiveness of
the implemented solution in tackling the Application-Layer
DDoS attacks even in the presence of adversarially-crafted
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malicious flows. In the near future, we will consider other ML
techniques (e.g., RL) and defenses against adversarial attacks.
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