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Abstract

Background: The binding sites of transcription factors (TFs) and the localisation of
histone modifications in the human genome can be quantified by the chromatin
immunoprecipitation assay coupled with next-generation sequencing (ChIP-seq). The
resulting chromatin feature data has been successfully adopted for genome-wide
enhancer identification by several unsupervised and supervised machine learning
methods. However, the current methods predict different numbers and different sets
of enhancers for the same cell type and do not utilise the pattern of the ChIP-seq
coverage profiles efficiently.

Results: In this work, we propose a PRobabilistic Enhancer PRedictIoN Tool (PREPRINT)
that assumes characteristic coverage patterns of chromatin features at enhancers and
employs a statistical model to account for their variability. PREPRINT defines
probabilistic distance measures to quantify the similarity of the genomic query regions
and the characteristic coverage patterns. The probabilistic scores of the enhancer and
non-enhancer samples are utilised to train a kernel-based classifier. The performance of
the method is demonstrated on ENCODE data for two cell lines. The predicted
enhancers are computationally validated based on the transcriptional regulatory
protein binding sites and compared to the predictions obtained by state-of-the-art
methods.

Conclusion: PREPRINT performs favorably to the state-of-the-art methods, especially
when requiring the methods to predict a larger set of enhancers. PREPRINT generalises
successfully to data from cell type not utilised for training, and often the PREPRINT
performs better than the previous methods. The PREPRINT enhancers are less sensitive
to the choice of prediction threshold. PREPRINT identifies biologically validated
enhancers not predicted by the competing methods. The enhancers predicted by
PREPRINT can aid the genome interpretation in functional genomics and clinical studies.
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Background
In recent years, there have been many papers describing computational methods to pre-
dict genomic regulatory enhancers. The methods have adopted the chromatin feature
data produced by the next-generation sequencing technologies. Developing methods
to identify enhancers in the human genome is important, as enhancers are estimated
to be over-represented (60–80%) in the discoveries of genome-wide association studies
(GWAS) aiming to detect single nucleotide polymorphisms (SNPs) associated with both
rare and common diseases [1–3]. Moreover, enhancers have been ascertained to be the
main regulators of the cell type-specific gene expression, and they have an important
function in cell differentiation [4–6]. Therefore, the accurate identification of enhancers
could support the interpretation of the GWAS findings, the results from the functional
genomics studies and finally the deployment of the precision medicine.
The number of enhancers in the human genome is estimated to be in the hundreds

of thousands. Enhancers are difficult to locate as they are independent in position, dis-
tance, and orientation with respect to their target genes [7, 8], and lack general sequence
specificities. Enhancers have been shown to possess certain molecular and structural
chromatin features, which can be utilised to locate them genome-wide. Chromatin
resides inside the cell nucleus and consists of DNA wrapped around nucleosomes and
other protein structures. Chromatin features comprise, for example, the binding sites of
transcriptional regulatory proteins (TRF) and the epigenetic modifications of the nucleo-
somal histone tails, i.e., histone modifications. The chromatin features can be quantified
genome-wide using high-throughput next-generation sequencing (NGS) techniques. In
particular, the Chromatin Immunoprecipitation coupled with sequencing (ChIP-seq) can
quantify the chromosomal locations for tens to hundreds of individual TRFs and histone
modifications [9, 10]. Thus, various combinations of the chromatin features have been
adopted in several studies to locate enhancers [5, 11–18].
The NGS techniques quantifying the chromatin features produce a large collection of

short sequence reads randomly sampled from the input material, e.g., the cell popula-
tion. In the analysis of the sequence data, the reads are first aligned back to the reference
genome. Secondly, for each base pair (bp) or subsequent non-overlapping genomic locus,
a count is defined as the sum of reads aligning to the locus. The read counts along
the whole genome or a stretch of DNA are denoted as read coverage signals. The high
value of the coverage signal at a given locus compared to the background coverage sig-
nal corresponds to the enrichment of the particular chromatin feature at the locus. The
genome-wide coverage signals of many individual chromatin features can be processed
with machine learning methods to cluster and classify the genomic loci. Consequently,
several machine learning methods have been developed for the enhancer prediction task;
for earlier reviews and comparisons of the approaches, see [19–24].
Among the most popular machine learning methods to predict enhancers are a hid-

den Markov model-based unsupervised method, ChromHMM [25, 26], and a supervised
Random Forest-based Enhancer identification from Chromatin States (RFECS) [27].
ChromHMM is restricted to modelling binary data, i.e. the chromatin features are either
present or absent depending on a predefined threshold. The choice of the threshold is
non-trivial, and due to the binarization, the quantitative information of the ChIP-seq
coverage is lost. Moreover, ChromHMM considers the signal in 200 base pair (bp) bins
and ignores the characteristic pattern of the coverage signal observed at the regulatory
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regions. In contrast, RFECS considers the chromatin feature coverage vectors extracted
in a 2 kilobase (kb) window centred at the genomic loci of interest, and the window is
divided into 20 bins of length 100 bps. Hence, one feature of one locus is a 20-dimensional
vector. The vectors are employed to train the RFECS classifier. When training RFECS,
at each node in a tree, a subset of chromatin features are randomly selected from the
feature set, and the single feature that produces the best separation of classes accord-
ing to a predetermined criterion is utilised to partition the training data. To reduce the
dimension of a feature from 20 to 1 at each node, RFECS applies Fisher Linear Discrim-
inant Analysis, an example of a multi-variate node-splitting technique. The authors of
RFECS claim that this approach allows the utilisation of both the coverage pattern and the
signal intensity. RFECS was demonstrated to outperform the other supervised methods
Chromia [28], CSIANN[29], and ChromaGenSVM [30]. RFECS does not make any distri-
butional assumptions of the data, and the algorithm automatically discovers the optimal
subset of the chromatin features for the enhancer prediction task. [27] However, mod-
elling the chromatin feature data according to a distribution that captures the variation
of the coverage values has proved to be advantageous [31–34]. The variation of the cov-
erage values due to the random sampling of the DNA fragments during sequencing can
be modelled with the Poisson distribution [31, 32]. However, the coverage data exhibits
widespread and consistent overdispersion, i.e., there is a large number of genomic loci
with high coverage, much more than expected under a Poisson assumption [35, 36]. The
overdispersion results from biological and technical variation, for example, the strength
of the interaction between a nucleosome and the DNA, the fragmentation efficiency, the
antibody efficiency in the ChIP step, and the local chromatin properties, such as chro-
matin openness, i.e., DNA accessibility. The observed variation in the read counts among
enhancers can also reflect the heterogeneity of the cell line population. Further sources of
variability are the ambiguities during the read alignment due to repetitions in the refer-
ence genome, and the insufficient sequencing depth. Some of these sources of variation
can be taken into account, for example, in ChIP-seq experiments by performing the con-
trol experiment without the ChIP step. At a given genomic loci, the variation is usually
assumed to originate from a local source.
Despite the vast amount of research, the suggested machine learning methods predict

divergent sets of enhancers for the same cell type and do not generalise well between
data from separate cell types; in addition, the enhancers predicted by different methods
may have unique properties [23, 24, 37, 38]. For example, the lengths of enhancers pre-
dicted by the different methods vary (from a few hundreds to a few thousands of bps),
and the set of enhancers might not be saturated [38]. The set of enhancers would be
saturated if by lowering the prediction thresholds or by analysing more cell types, the col-
lection of enhancers would not change significantly. The inconsistencies between the sets
of predicted enhancers likely result from many factors. Firstly, most methods consider
the coverage signal in a large genomic window and, hence do not efficiently utilise the
pattern of the coverage in subsequent small windows, i.e., bins within the large window.
Hence, the methods miss regions with a low coverage which still display the characteristic
enhancer patterns. Another challenge involved in enhancer prediction is the calibration
of the prediction scores produced by the classifiers, for example, to control the false
positive rate. Finally, a crucial challenge in developing a computational enhancer predic-
tion method is the estimation of the accuracy and specificity of the final genome-wide
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predictions. This is due to a lack of a large gold standard set of human enhancers. At
an enhancer, multiple transcription factor-DNA interactions together with the binding of
transcription co-factors are required for the enhancer to regulate the target gene expres-
sion [39]. As a result, enhancers acquire a high number of co-localised TRF ChIP-seq
peaks. Therefore, clusters of TRF ChIP-seq peaks have been employed both to predict
enhancers and to validate the predictions [40–42].
This paper introduces PRobabilistic Enhancer PRedictIoN Tool (PREPRINT), a super-

vised enhancer prediction method based on probabilistic modelling of the characteristic
chromatin feature patterns observed at enhancers and other genomic regions. PREPRINT
presumes that the coverage patterns, for example, at individual enhancers resemble each
other, although the coverage intensity may vary. Moreover, the coverage values along
the characteristic feature patterns are assumed to involve certain dependency structures,
such as two-modal peak patterns. In addition, PREPRINT defines two distance measures
to quantify “the closeness” or “fit” of the genomic query regions and the characteristic
coverage patterns. The distance measure could be as simple as correlation employed in
the earlier studies [12, 13]. In contrast, PREPRINT introduces two new probabilistic dis-
tance measures. Firstly, PREPRINT assumes Poisson distributed coverage counts with a
scaled mean parameter. The scaled mean consists of the characteristic coverage pattern
and a scaling parameter. Although an approximation, introducing the characteristic cov-
erage pattern as an estimate of the Poisson mean incorporates the dependency structure
of the feature patterns into the model. In addition, the scaling parameter accounts for the
coverage signal variability due to the various sources listed above. The scaling parame-
ters are estimated utilising two approaches: either sample-specific scaling parameters are
estimated with a maximum likelihood (ML) approach or a global Gamma distribution
is estimated for the scaling parameter (Bayesian approach). Furthermore, two proba-
bilistic distance measures are defined depending on the approach employed to learn the
scaling parameters. Hence, the two approaches are referred to as PREPRINT ML and
PREPRINT Bayesian. PREPRINT is trained and tested on the next-generation sequenc-
ing data produced by ENCODE for the myelogenous leukaemia cell line (K562) and
the lymphoblastoid cell line (GM12878). PREPRINT predicts genome-wide enhancers
in both cell lines. The probability of misclassification for the whole-genome predictions
is assessed in advance. This is a requirement for a general tool to predict enhancers on
data originating from any cell line. Moreover, the prediction performance of PREPRINT
is computationally compared to the state-of-the-art methods RFECS and ChromHMM.
Finally, in this work, the enhancers predicted by the computational methods were val-
idated with the largest collection to date of the TRF binding sites produced by the
ENCODE consortia [43].

Results
Evaluating the classification and generalisation performance of PREPRINT and RFECS

This paper introduces a new enhancer prediction method called PREPRINT. In this
section, the classification performances of PREPRINT and the competing method RFECS
were compared. The classification performance was evaluated with the area under the
receiver operating characteristics curve (AUC). The performance of the methods was
evaluated on two small data sets containing chromatin feature data at 1000 enhancers,
1000 promoters, and 2000 random genomic locations. The first data set extracted from
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the K562 cell line is referred to as training data whereas the second data set extracted from
the GM12878 cell line is referred to as test data. The chromatin feature data at the random
genomic locations contained data for two separate definitions of the random locations:
Firstly, 1000 random locations were sampled uniformly across the whole genome, these
locations are referred to as pure random regions. Secondly, another set of 1000 random
locations was sampled requiring the chromatin feature signal values at these locations
to exceed a certain threshold; hence these locations are referred to as random regions
with a signal. Finally, the pure random regions and the random regions with a signal were
merged to form the set of combined regions. For more details on the training and test
data definition, see the Section Methods.
Next, the training data from the K562 cell line were divided into cross-validation (CV)

sets to evaluate the performance of the methods when the training and test data origi-
nated from the same cell line (K562). In contrast, the test data from the GM12878 cell line
were employed to test the generalisation performance of the methods between the data
originating from different cell lines. The AUC values for the different methods and data
sets are presented in Table 1. Accordingly, the classification performance of PREPRINT
on the K562 CV data set was almost perfect (0.99), and the performance decreased only
slightly when predicting enhancers on the GM12878 data with the classifier trained on
the K562 data. In addition, the Bayesian version of PREPRINT achieved the best AUC
values in both cell lines. For comparison, the methods were also trained and tested on
data containing either pure random regions or random regions with a signal. The AUC
values from this comparison are presented in Supplementary Table S1, Additional file 1.
As expected, the enhancers were easier to separate from the pure random regions than
from the random regions with a signal. This was especially the case in the GM12878 cell
line. Again, PREPRINT achieved the highest AUC value in all comparisons, PREPRINT
Bayesian slightly exceeding the performance of PREPRINT ML in most of the compar-
isons. When comparing the AUC values of the methods trained on the different random
region definitions, the AUC values of methods trained on the combined random regions
in Table 1 were between the AUC values of themethods trained on the two random region
definitions separately (Supplementary Table S1, Additional file 1). Although the training
data definition affected the classification performance on the training and test data sets,
the results in the following sections were mainly presented for the methods trained on
the combined random regions. To conclude, the classification performance of PREPRINT
Bayesian exceeded the performance of PREPRINT ML on data from the same cell line
that the methods were trained on (K562). Moreover, PREPRINT achieved superior per-
formance to RFECS when generalising to the data from another cell line (GM12878).

Table 1 The classification performance (AUC) of PREPRINT and RFECS in the 5-fold CV data set from
the K562 cell line and the test data from the GM12878 cell line

Method Cell line AUC

PREPRINT Bayesian K562 0.993

PREPRINT ML K562 0.990

PREPRINT Bayesian GM12878 0.981

PREPRINT ML GM12878 0.978

RFECS GM12878 0.963

For RFECS, the AUC values were not computed on the K562 CV data. The method with the best performance on the K562 or the
GM12878 data were indicated with the bold font
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However, classifying the small set of highly significant enhancers and promoters is a rather
simple task. Thus, next the evaluations of the whole-genome predictions are presented.

PREPRINT predicted a larger number and shorter enhancers than RFECS and ChromHMM

PREPRINT and RFECS trained on the whole K562 training data predicted enhancers
genome-wide in both cell lines, K562 and GM12878. Both PREPRINT and RFECS
scanned the genome in subsequent 2 kb windows advancing in 100 bp shifts along the
genome. For each of the genomic windows, PREPRINT and RFECS assigned a prediction
score. If the prediction score exceeded a certain threshold, the window was predicted as
an enhancer. Choosing the prediction threshold for a classifier is a critical task. Therefore,
as a first choice, a prediction threshold of 0.5 was adopted by both PREPRINT and RFECS.
For PREPRINT this implied that in order to predict a genomic region as an enhancer, the
enhancer class probability needed to exceed 0.5. In contrast, in order for RFECS to predict
a genomic region as an enhancer, 50% or more of the trees of the random forest needed
to vote for an enhancer class. However, the prediction threshold of 0.5 was likely subop-
timal and not well calibrated. Hence, for PREPRINT, the best operating point threshold
and the 1% false positive rate (FPR) threshold were estimated from the performance eval-
uation measures on the K562 CV data set. In addition, the best operating point threshold
and the 1% FPR threshold were estimated from the performance evaluation measures on
the GM12878 test data. In both cases, the classifiers were trained on the K562 data. It
must be stressed that the prediction thresholds estimated from the K562 training data
should be adopted when predicting enhancers in other cell lines, since the test regions
might be unavailable for the other cell lines. The best operating thresholds, the 1% FPR
thresholds as well as the number of enhancers predicted by the different methods with
varying thresholds are listed in Table 2. The number of predictions was conditional on the
chosen method and the adopted threshold. In the following sections, the method com-
parison results are often presented for an equal number of enhancer predictions obtained
by PREPRINT and RFECS. Therefore, to equalise the number of enhancers predicted
by RFECS and PREPRINT for comparison purposes, the prediction thresholds of the
methods were adjusted so that both methods predicted the same number of enhancers.
Predicting enhancers with PREPRINT and RFECS resulted in subsequent windows with

a prediction score higher than the chosen threshold. To increase the resolution of the pre-
dictions, one or several single windows needed to be chosen within a wider region. RFECS
predicted very wide regions and aimed to find multiple local maxima within a region. In
turn, PREPRINT chose only one window with the maximum prediction score, and if mul-
tiple windows received the same maximum score, one was selected at random. Instead
of predicting an enhancer as a single window, the whole region of subsequent enhancer
predictions could be considered as an enhancer. Consequently, the proportions of the
prediction region lengths were computed for the different enhancer prediction methods.
The RFECS and PREPRINT predictions were produced with two different thresholds, 0.5
and 0.75. In addition to PREPRINT and RFECS, ChromHMMStrong Enhancer andWeak
Enhancer clusters obtained from ENCODE were included in the method comparison [25,
26]. The ENCODE accession numbers of the ChromHMM predicted chromatin states
for both cell lines are provided in Supplementary Tables S3 and S4, Additional file 2. The
proportions of the prediction lengths in the K562 cell line are illustrated in Fig. 1. Figure 1
indicates that PREPRINT and RFECS predicted proportionally shorter enhancers than
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Fig. 1 The normalised frequencies of the enhancer lengths. The enhancers were predicted in the K562 cell
line by PREPRINT and RFECS with the thresholds of 0.5 and 0.75. For each method and threshold, the
frequencies were divided by the total number of regions predicted as enhancers. The regions were formed
by combining the subsequent enhancer predictions into a single region

ChromHMM, ChromHMM predicting mostly enhancers with lengths varying from 1 kb
to 10 kb. RFECS predicted a high proportion of enhancers with a length of 100 bp. In
contrast, PREPRINT predicted proportionally more enhancers with lengths varying from
200 bp to 1 kb. In addition, PREPRINT Bayesian and RFECS predicted proportionally
more enhancers with lengths larger than 1 kb compared to PREPRINTML. Hereafter, the
enhancers with lengths 100–1000 bp are referred to as short enhancers, and the enhancers
with a length larger than 1 kb are referred to as long enhancers. The proportions of short
and long enhancers predicted by RFECSwere increased and decreased, respectively, when
adopting the more stringent threshold of 0.75. This behaviour was expected because with
the more stringent threshold, large prediction regions were divided into separate smaller
regions and/or became shortened. In contrast, when adopting the more stringent thresh-
old for PREPRINT, the distribution of the length frequencies remained almost the same.
This suggests that the prediction scores of PREPRINT advanced from a low value to a
high value and back within a short region (within a low number of window shifts) whereas
the prediction scores of RFECS increased and decreased smoothly within a large genomic
window. To conclude, the lengths of the PREPRINT enhancers were less sensitive to
changes in the prediction threshold compared to the RFECS enhancers. Similar results
were obtained for the genome-wide enhancers predicted on the GM12878 data (Supple-
mentary Figure S4, Additional file 1). In comparison to Fig. 1, the differences between
the methods in the normalised frequencies of short and long enhancers were even more



Osmala and Lähdesmäki BMC Bioinformatics          (2020) 21:317 Page 9 of 37

evident in the GM12878 cell line. Finally, a large proportion of PREPRINT enhancers con-
sisted of only one window (100 bp) or of short enhancers (< 2 kb). This suggests that
choosing the window with the maximal score within a larger prediction region was an
adequate approach to define the exact locations of the PREPRINT enhancers.
The number of genome-wide enhancer predictions obtained by PREPRINT, RFECS and

ChromHMM in both cell lines K562 and GM12878 are provided in Table 2. The number
of predictions were recorded before and after TSS removal. In addition, the number of
predictions obtained by PREPRINT and RFECS with varying thresholds were reported.
The RFECS predictions were obtained with the prediction thresholds of 0.5 and 0.25. The
PREPRINT enhancers were obtained with the prediction threshold of 0.5, the best oper-
ating point threshold, and the 1% FPR threshold. The numbers of PREPRINT predictions
in the GM12878 cell line were obtained either utilising the thresholds estimated from
the K562 CV data or the thresholds estimated from the GM12878 data. As a result, the
best operating point threshold for PREPRINT ML in the K562 cell line were close to 0.5
whereas the best operating point thresholds for the PREPRINT Bayesian as well as the
thresholds estimated on the GM1287 data ranged from 0.2 to 0.3. These lower best oper-
ating point thresholds resulted in significantly larger number of enhancers compared to
the threshold of 0.5. Finally, the 1% FPR thresholds estimated from the GM12878 test data
were more stringent compared to the 1% FPR thresholds estimated from the K562 CV
data, especially for the PREPRINT Bayesian approach. The observed differences in the
prediction thresholds and hence in the prediction numbers suggest a need for a careful
calibration of the prediction thresholds. Especially, additional caution is required when
generalising the prediction thresholds between data originating from different cell lines.
Overall, the number of enhancers predicted by RFECS with the prediction threshold

of 0.5 was lower than the numbers predicted by PREPRINT with the threshold of 0.5
and by ChromHMM. The prediction numbers obtained by PREPRINT with the 1% FPR
threshold became comparable with the prediction numbers obtained by RFECS with the
prediction threshold of 0.5. Accordingly, the number of RFECS enhancers obtained with
the lower prediction threshold of 0.25 became comparable with the number of enhancers
obtained by PREPRINT with the threshold of 0.5. In addition, the Bayesian approach
predicted a higher number of enhancers than the ML approach. The larger number of
enhancer predictions for PREPRINT may result from PREPRINT predicting proportion-
ally more short enhancers than RFECS, as seen, for example, in Fig. 1 and Supplementary
Figure S4, Additional file 1. The larger number of PREPRINT enhancers may also result
from PREPRINT prediction score fluctuating between the enhancer and non-enhancer
class unnecessarily often within a short stretch of DNA.
For comparison, the number of genome-wide enhancer predictions and thresholds for

the different methods trained separately on the two random region definitions are pro-
vided in Supplementary Table S2, Additional file 1. The number of enhancer predictions
were notably higher compared to the number of predictions obtained by the methods
trained on the combined random regions. Especially, the methods trained on the pure
random regions predicted a substantial number of enhancers, even with the 1% FPR
thresholds. In contrast, the methods trained on the combined random regions resulted
in an adequate classification performance and in a sensible number of genome-wide
enhancer predictions.While studying further the differences between the results obtained
by themethods on varying training data definitions would be interesting, the results in the
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following sections are presented only for the methods trained on the combined random
regions.

Proportions of predictions overlapping a varying number of transcription factor and

co-regulatory ChIP-seq peaks

The genome-wide enhancer predictions were validated by first inspecting the overlap
between the predicted enhancers and the histone acetyltransferase (p300) binding sites.
In addition, a large set of TF and other co-regulatory protein binding sites as the opti-
mal irreproducible discovery rate (IDR) thresholded ChIP-seq peaks produced by the
ENCODE Consortium Analysis Working Group we utilised for validation. The peaks for
RNA Pol II, CTCF, CREB-binding protein (CBP) and p300 were removed from the ChIP-
seq peak sets resulting in the peak sets of 111 and 76 individual DNA binding proteins for
cell lines K562 and GM12878, respectively. The TF and co-regulatory factors are referred
to as transcription related factors (TRF).
As mentioned in the “Background” section, the co-occurrence of multiple TRF ChIP-

seq peaks could be strong evidence for the transcriptional regulatory potential of the
predicted enhancer. Thus, the first step in the validation was to investigate the number
of overlapping TRF binding sites at the genome-wide enhancer predictions. An enhancer
prediction overlapped a TRF binding site if the 2 kb prediction window overlapped with
at least 1 bp of the TRF ChIP-seq peak. For each enhancer prediction obtained by the dif-
ferent methods, the number of overlapping TRF ChIP-seq peaks were computed. When
computing the number of TRF ChIP-seq peaks overlapping a given enhancer, the individ-
ual TRF ChIP-seq peaks were not required to overlap with each other. The proportions
of enhancer predictions overlapping a varying number of TRF binding sites in the K562
cell line are illustrated in Fig. 2. In both comparisons a and b in Fig. 2), an equal number
of enhancers were predicted by PREPRINT and RFECS. In comparison a, the number of
enhancers were 35089, the number of enhancers predicted by RFECS with the threshold
of 0.25. In comparison b, the number 15531 corresponded to the number of enhancers
predicted by PREPRINT ML with the 1% FPR threshold. Thus, in comparison a, a larger
number of top enhancer predictions were considered, and notably the proportion of pre-
dictions without any TRF binding site were smaller for PREPRINT Bayesian than for
RFECS and PREPRINT ML. In addition, the proportions of predictions overlapping 1–5
TRF binding sites were slightly higher for the PREPRINT methods. For the larger num-
ber of TRF binding sites (> 5), all methods demonstrated comparable proportions of
overlap. In contrast, in comparison b, a smaller set of enhancer predictions were consid-
ered. The RFECS achieved the smallest proportion of predictions lacking a TRF binding
site as well as the largest proportions of predictions with TRF binding sites ranging from
10 to 20. Conversely, the proportions of enhancers overlapping a small number (1–6)
of TRF binding sites were higher for PREPRINT, especially for the PREPRINT Bayesian
approach.
Similar proportions of enhancer predictions overlapping a varying number of TRF bind-

ing sites were obtained for the predictions in cell line GM12878 (see Supplementary
Figure S5, Additional file 1). In comparison a, the number of enhancers was the number
of predictions obtained by RFECS with the threshold of 0.25 (49699), and in comparison
b, the number of enhancers was the number of predictions obtained by the PREPRINT
ML approach with the 1% FPR threshold estimated on the K562 CV data (22088). Again,
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Fig. 2 The proportions of the genome-wide enhancer predictions overlapping the varying number of TRF
ChIP-seq peaks in the K562 cell line. The number of enhancers in each comparison are shown above the
figure. In comparison a, the number of enhancers was the number of enhancers predicted by RFECS with the
threshold of 0.25, and in comparison b, the number of enhancers was the minimum number of enhancers
predicted by PREPRINT methods with their 1% FPR thresholds

with the larger set of enhancers in Figure S5a, the proportion of predictions lacking a
TRF binding site were smaller for the PREPRINT methods than for RFECS. Moreover,
the proportions of predictions overlapping from 1 to 10 TRF binding sites were higher for
PREPRINT than for RFECS. Considering a smaller set of enhancer predictions in Sup-
plementary Figure S5b, Additional file 1, the proportion of predictions lacking a TRF
binding site were higher for PREPRINT than for RFECS. Nevertheless, the proportions
of enhancers overlapping a small number (1–3) of TRF binding sites were higher for
PREPRINT than for RFECS, the PREPRINT Bayesian achieving higher proportions that
PREPRINTML.
To conclude, the proportions of PREPRINT predictions overlapping a varying number

of TRF binding sites demonstrated desirable distributions. Firstly, the low proportion of
predictions lacking a TRF binding site would be a preferable result for a set of enhancer
predictions. According to the results, the proportion of predictions lacking a TRF bind-
ing site was lower for the PREPRINT methods than for RFECS when requiring a large
set of predictions by relaxing the prediction threshold. Secondly, PREPRINT enhancers
contained proportionally more enhancers overlapping 1–10 different TRF peaks than
the predictions obtained by RFECS; these enhancers may have displayed weaker chro-
matin feature signals and may have been missed by RFECS, while they were still validated
according to the TRF ChIP-seq data. Thirdly, the proportion distributions between
RFECS and PREPRINT were comparable when requiring a large number (> 10) of TRFs
overlapping the enhancer predictions. In addition, the proportions between methods
became comparable when the number of predictions increased. Finally, as stated above,
the co-occurrence of multiple TRF ChIP-seq peaks could indicate strong validation evi-
dence of the predicted enhancer. However, defining the threshold for the number of
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overlapping TRF peaks is not straightforward, for example, according to the results pre-
sented here. Therefore, instead of requiring a more stringent thresholds for the number of
overlapping TRF peaks, the most relaxed setting possible was adopted for the validation.
In the results presented in the following sections, an enhancer prediction was validated if
at least 1 bp of the 2 kb prediction window overlapped with at least 1 bp of at least 1 TRF
ChIP-seq peak. Similar validation procedure was adopted to the 2 kb RFECS predictions
and the ChromHMM predictions of varying lengths.

The validation of genome-wide predictions

To study the performance of the methods to predict enhancers in the whole human
genome, again an equal number of enhancers predicted by PREPRINT and RFECS were
selected. In addition to the enhancer predictions, an equal number of non-enhancer pre-
dictions were chosen. The non-enhancers were sampled randomly from the regions which
obtained a prediction score less or equal to 0.5. For both RFECS and PREPRINT, the
number of enhancers and non-enhancers was set to the number of enhancers predicted
by RFECS with the threshold of 0.25 or to the number predicted by PREPRINT meth-
ods with the 1% FPR threshold. The number were the same numbers of enhancers as in
the comparisons illustrated in Fig. 2 and Supplementary Figure S5, Additional file 1. The
predicted enhancers and non-enhancers were labelled either as true positives, false pos-
itives, true negatives or false negatives considering the overlap between the regions and
the TRF ChIP-seq peaks. The TRF ChIP-seq peaks were divided into two validation sets:
the p300 ChIP-seq peaks and the TRF ChIP-seq peaks containing all other peaks except
the p300 peaks. The genome-wide enhancer and non-enhancer predictions with the the
validation information were utilised to compute the AUC values. The AUC values are
provided in Table 3. As a result, RFECS achieved the highest AUC scores in all settings.
Nevertheless, PREPRINT achieved comparable AUC values to RFECS when considering
the TRF validation data, especially in the GM12878 cell line. Of the PREPRINT meth-
ods, the Bayesian approach outperformed the ML approach in most of the comparisons
(5 out of 8). To conclude, the validation performance of the genome-wide predictions was

Table 3 The AUC values for the genome-wide predictions

Cell line method #enhancer predictions p300 TRF

K562 PREPRINT ML 35089 0.857 0.874

K562 PREPRINT Bayesian 35089 0.855 0.887

K562 RFECS 35089 0.911 0.900

K562 PREPRINT ML 15531 0.850 0.898

K562 PREPRINT Bayesian 15531 0.856 0.908

K562 RFECS 15531 0.912 0.929

GM12878 PREPRINT ML 49699 0.826 0.889

GM12878 PREPRINT Bayesian 49699 0.833 0.888

GM12878 RFECS 49699 0.911 0.895

GM12878 PREPRINT ML 22088 0.821 0.911

GM12878 PREPRINT Bayesian 22088 0.826 0.910

GM12878 RFECS 22088 0.881 0.941

The true labels of the predictions were based on the overlap between the predictions and the TRF ChIP-seq peaks. An equal
number of enhancers predicted by PREPRINT and RFECS were chosen; the numbers are indicated in the column #enhancer
predictions. In each combination of the validation data (p300 or TF) and the method, the AUC value for the best method was
highlighted with the bold font. In addition, the AUC values for PREPRINT predictions in cell line GM12878, computed utilising the
TRF validation data, were highlighted due to a comparable generalisation performance to RFECS
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comparable across methods, and the PREPRINT achieved a good generalisation perfor-
mance between data from different cell lines. However, the various settings, e.g. the cell
line adopted for training and prediction, the type of validation data, and the number of
enhancers and non-enhancers led to divergent results.
To further investigate the performance of the methods to predict the enhancers

genome-wide, the proportion of validated enhancers, e.g., the validation rate, was com-
puted for a varying number of the top genome-wide predictions. The validation rates
for the predictions obtained in the K562 cell line by the different methods are illustrated
in Fig. 3. In Fig. 3, the numbers on the x-axis correspond to the number of enhancers
predicted by: RFECS with the prediction threshold of 0.5 (15786), PREPRINT ML with
the threshold 0.5 of (21238), PREPRINT Bayesian with the threshold of 0.5 (29747), and
RFECS with the threshold of 0.25 (35089). In addition to computing the validation rate for
the given set of enhancer predictions, the validation rates were computed for a random
region set of equal size (yellow bars in Fig. 3). For comparison, the validation rates were
also provided for the ChromHMM Weak and Strong Enhancers clusters. To conclude,
the validation rates of enhancers predicted by any of the methods were clearly higher
than the validation rates of the random regions. When comparing the different methods,
the validation rates were higher for RFECS than for PREPRINT with a low number of
enhancer predictions (15786 and 21238). Nevertheless, when considering a high number
of enhancers (29747 and higher), PREPRINT achieved comparable or better validation
rates than RFECS. Notably, for the high number of enhancers, the predictions obtained

Fig. 3 The validation rate of the genome-wide enhancer predictions obtained by the different methods and
thresholds in the cell line K562. An enhancer prediction was validated if the 2 kb prediction window
overlapped with at least 1 bp of at least one TRF ChIP-seq peak
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by PREPRINT Bayesian achieved a higher validation rate than the predictions obtained
by RFECS.
The validation rates for the predictions obtained in the GM12878 cell line by the differ-

ent methods are demonstrated in Supplementary Figure S6, Additional file 1. Considering
the smallest set of top predictions (17746), RFECS achieved the highest validation rate.
However, with the larger set of predictions (38048 and larger), the validation rate of
RFECS dropped rapidly whereas the PREPRINT methods stayed at the same valida-
tion rate level. In the GM12878 cell line, the difference between the performance of the
PREPRINTmethods was negligible. These results suggest that RFECSmay have predicted
well a restricted set of enhancers with the strongest chromatin feature signals whereas
PREPRINT predicted a larger number of enhancers, containing enhancers with both
strong and weak feature signals. When requiring the methods to predict a large number
of enhancers, the PREPRINT enhancers had a higher validation rate compared to RFECS
and ChromHMM enhancers. Moreover, PREPRINT trained on the K562 data generalised
well on data from the GM12878 cell line.

The overlap between enhancers predicted by different methods

The overlaps between the enhancers predicted by the different methods were investi-
gated. The overlap was defined as follows: PREPRINT and RFECS predictions were again
considered as 2 kb genomic regions whereas the ChromHMM enhancers were regions of
varying lengths. For any two enhancers predicted by any two separate methods to over-
lap, at least 1 bp overlap was required. As an enhancer predicted by the one method
might overlap with two enhancers predicted by the other method, the overlap between
enhancers predicted by a pair of methods were not symmetrical. Hence, the overlap
was computed in both directions. The numbers of overlapping genome-wide predictions
obtained by the different methods as well as the numbers of the unique enhancer predic-
tions for each method were illustrated as Venn diagrams. In each region or intersection
set defined by the Venn circle curves, the number of enhancers belonging to that set was
provided together with the percentage of validated enhancers in that set. The validation
was again performed as described above.
The Venn diagram of the predictions obtained in the K562 cell line is illustrated in Fig. 4.

In comparisons a and c, the PREPRINT predictions were obtained by the ML approach
whereas in b and d, the predictions were obtained by the Bayesian approach. In each
comparison, the number of PREPRINT and RFECS enhancers was equal. In comparisons
a and b, the numbers were chosen as the minimum number of enhancers predicted by
RFECS with the threshold of 0.5 and PREPRINT methods with the 1% FPR threshold.
The numbers were 15531 and 15787, respectively. In comparisons c and d, the numbers
were the number of enhancers predicted by RFECS with the prediction threshold of 0.25
(35089). Overall, around half of the enhancers predicted by PREPRINT or RFECS were
predicted by all of the three methods, and this intersection set had the highest valida-
tion rate (90% or larger). In addition, in the intersection set, the number of enhancers
predicted by ChromHMM were much larger than for PREPRINT or RFECS. Hence, the
validation rate of ChromHMM enhancers in the intersection set was lower (around 70%),
likely reflecting the fact that ChromHMM enhancers were imprecise and/or the cluster
labels along the genome alternated frequently between the enhancer state and the other
states. Furthermore, the enhancer predictions shared by any two methods attained high
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Fig. 4 The unique and overlapping genome-wide enhancer predictions obtained by different methods in
cell line K562. In comparisons a and c, the PREPRINT predictions were obtained by the ML approach whereas
in comparisons b and d, the PREPRINT predictions were obtained by the Bayesian approach. The overlap
between the PREPRINT, RFECS and ChromHMM predictions were quantified as the number of enhancers. In
each comparison, the number of enhancers predicted by PREPRINT and RFECS was equal. The numbers were:
a 15531, b 15786, c 35089, and d 35089. Inside every region or intersection, the number of enhancers in the
given the set is indicated together with the percentage of validated enhancers in the set. The areas of the
intersection sets are not proportional to the number of overlapping regions due to the asymmetry of overlaps

validation rates (60–90%), and for the enhancers predicted uniquely by a single method,
the validation rate ranged from 50 to 90%. Of the enhancers uniquely predicted by the
different methods, the RFECS enhancers tended to achieve the highest validation rate.
Nevertheless, the unique enhancers predicted by PREPRINT Bayesian reached a com-
parable validation rate (64%) to the unique enhancers predicted by RFECS (65%) when
considering the larger set of enhancer predictions (Fig. 4d).
Considering the intersecting enhancers predicted by all of the three methods,

PREPRINT predicted a larger number of enhancers than RFECS, implying that one
RFECS prediction overlapped with multiple neighbouring PREPRINT predictions. Thus,
PREPRINT behaved similarly as ChromHMM by predicting multiple enhancers along
a short stretch of DNA. With relaxing the threshold (Fig. 4c and d), the number
of ChromHMM enhancers in the intersection set increased; this was a consequence
of PREPRINT and RFECS beginning to cover more ChromHMM enhancers. Finally,
PREPRINT methods predicted the smallest number of unique predictions in all compar-
isons, which could be seen as an advantage.
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The Venn diagrams for the predictions in the GM12878 cell line are provided in Supple-
mentary Figure S7, Additional file 1. In comparisons a and c, the PREPRINT predictions
were obtained by the ML approach whereas in comparisons b and d, the predictions
were obtained by the Bayesian approach. In each comparison, the number of PREPRINT
and RFECS enhancers was equal. In comparisons a and b, the numbers were chosen as
the minimum number of enhancers predicted by RFECS with the threshold of 0.5 and
PREPRINT methods with the 1% FPR threshold. The numbers were both 17746. In com-
parisons c and d, the numbers were the number of enhancers predicted by RFECS with
the prediction threshold of 0.25 (49699). The results in the GM12878 cell line were com-
parable to ones obtained in the K562 cell line. However, in all comparisons, the number
of unique enhancers predicted by RFECS was considerably high, and their validation rate,
especially when relaxing the prediction threshold (Supplementary Figure S7c and d), was
low (30%). In contrast, when relaxing the prediction threshold, the validation rate of the
unique PREPRINT predictions remained almost the same (50–60%).
Finally, to compare the overlap between predictions made by PREPRINT ML and

PREPRINT Bayesian together with their overlap with RFECS predictions, the number
of unique and intersecting predictions were computed. The resulting Venn diagrams are
shown in Supplementary Figure S8, Additional file 1. The comparisons a and b illustrate
the unique and intersecting genome-wide enhancers predicted by PREPRINT and RFECS
in the K562 cell line whereas in comparisons c and d, the predictions were obtained in the
GM12878 cell line. In each comparison, an equal number of top enhancer predictions was
selected for each method, and the numbers were: a the minimum number of enhancers
predicted by PREPRINT with 1% FPR threshold in the K562 cell line, b the number of
enhancers predicted by RFECS with the threshold of 0.25 in the K562 cell line, c the mini-
mum number of enhancers predicted by PREPRINTwith the 1% FPR threshold in cell line
GM12878, and d the number of enhancers predicted by RFECS with the threshold of 0.25
in the GM12878 cell line. Overall, again around half of the enhancers predicted by any of
the method were found by all methods, and this intersection set achieved the highest val-
idation rate (85–95%). In addition, there were significant numbers of enhancers predicted
by any pair of methods. Notably, the validation rate of intersecting enhancers between
PREPRINT and RFECS exceeded the validation rate of intersecting enhancers between
the PREPRINTML and Bayesian approach. Lastly, there were also significant numbers of
enhancers predicted by one method only. RFECS predicted the highest number of unique
enhancers achieving a high validation rate (88–91%) when considering a smaller number
of enhancer predictions (Supplementary Figure S8a and c, Additional file 1). However,
the validation rates of unique RFECS predictions were low when requiring a larger set of
enhancer predictions, especially in the GM12878 cell line (37%). Of the unique enhancers
predicted by PREPRINT, the predictions obtained by the Bayesian approach achieved the
highest validation rate (70–85%).
As a conclusion, PREPRINT trained on the K562 data generalised successfully on the

GM12878 data, and the Bayesian approach performed sufficiently. In some compar-
isons, the Bayesian approach attained similar or even superior performance to RFECS.
When relaxing the prediction threshold, RFECS began to predict more enhancers not
covered by the other methods, and these enhancers obtained a low validation rate. In
contrast, PREPRINT predicted a low number of unique enhancers even when relaxing
the prediction threshold; this may be a desirable property of PREPRINT. However, it
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was challenging to compare the validation performance of the overlaps between different
methods due to various reason. The first reasons was the number of the unique enhancers
varying greatly between the methods. Secondly, multiple PREPRINT enhancers tended to
overlap with one RFECS enhancer, complicating the comparisons further. The asymmet-
ric overlap was likely due to PREPRINT prediction scores fluctuating along the genome
instead of changing smoothly as the RFECS prediction scores. Thirdly, RFECS required
a distance of at least 2 kb between two subsequent enhancers. In contrast, PREPRINT
did not involve such a requirement for the distance between predicted enhancers. Thus,
PREPRINT tended to predict multiple individual enhancers within a short stretch of
DNA. Predicting multiple individual enhancer within a short stretch of DNA also permit-
ted two PREPRINT predictions to overlap with the same validating TRF ChIP-seq peak.
This may have resulted in high validation rates for the PREPRINT predictions.

Examples of validated enhancers uniquely predicted by PREPRINT

Some examples of validating enhancers uniquely predicted by PREPRINT were visualised
in a genome browser together with the chromatin feature data. The examples of the pre-
dicted enhancers in a 20 kb genomic locus in chromosome 1 are demonstrated in Fig. 5.
The enhancers were predicted in the K562 cell line. Starting from the top, the validating
predictions are indicated as red arrows. Below the arrows, the PREPRINT and RFECS
predictions are provided, together with the predictions scores and the 0.5 threshold line.
In addition, the ChromHMM predictions, the GENCODE genes, a subset of the chro-
matin feature ChIP-seq data tracks, and a subset of the validating TRF ChIP-seq peaks
are displayed in Fig. 5. The data tracks for all 15 chromatin features as well as the whole
collection of the TRF Chip-seq peaks in the 20 kb locus are provided in Additional file 3.
In the 20 kb locus illustrated in Fig. 5, PREPRINT methods predicted two individ-

ual enhancers in an intron of a gene CROCC whereas RFECS predicts none. However,
there is likely only 1 enhancer in the region indicated by the red arrows, according to
the chromatin feature patterns and the localisation of the validating TRF ChIP-seq peaks.
Moreover, the prediction scores of PREPRINT changed gradually from low values to high
values in a stepped fashion, resulting in multiple predictions within a short stretch of
DNA. Therefore, by lowering the prediction threshold, PREPRINT would predict only
one enhancer at the location of the red arrows. Predicting multiple enhancers within
a short stretch of DNA likely contributed to PREPRINT predicting a larger number of
enhancers compared to RFECS with the threshold of 0.5. In addition, this behaviour likely
resulted in a large number of PREPRINT predictions in the common set of enhancers pre-
dicted by all three methods, for example, as demonstrated in the Venn diagrams in Fig. 4.
Furthermore, predicting multiple adjacent enhancers caused the individual enhancers to
overlap the same set of validating TRF ChIP-seq peaks, possibly producing overly high
validation rates for the PREPRINT predictions. To further define the PREPRINT predic-
tions, the two neighbouring predictions could be combined, for example, considering only
one of them or their middle position.
In the 20 kb locus illustrated in Fig. 5, there were also two possible enhancers indicated

as black arrows. According to the TRF ChIP-seq peaks, they would validate as enhancers,
hence they could be false negatives. At the leftmost black arrow, PREPRINT Bayesian
reached prediction score just below the 0.5 threshold line, and the region at the right-
most black arrow was labelled as Weak promoter and Weak Enhancer by ChromHMM.
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Fig. 5 Examples of enhancers uniquely predicted by PREPRINT visualised with the UCSC genome browser
[44]. The data originated from cell line K562. Colour codes for ChromHMM clusters: light green: Weak
transcription, dark green: Transcription elongation/transition, blue: Insulator, grey: Repetitive/Copy Number
Variation (CNV) or repressed, purple: Poised promoter, light red: Weak promoter, yellow: Weak enhancer

All locations indicated by arrows have acquired DNase-seq peaks corresponding to open
chromatin. To assure the enhancer function of these locations, one would need to perform
in vivo functional enhancer assay.
Figure 6 demonstrates examples of enhancers predicted in the GM12878 cell line in a

40 kb intergenic genomic region in chromosome 4. The full set of data is provided in
Additional file 4. In this genomic region, PREPRINT predicted uniquely two neighbour-
ing enhancers indicated as red arrows. There indeed might be two individual enhancers
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Fig. 6 Examples of enhancers uniquely predicted by PREPRINT visualised with the UCSC genome browser
[44]. Data originated from cell line GM12878. Colour codes for ChromHMM clusters: Grey: Heterochromatin

indicated by the chromatin feature signals and the validating TRF ChIP-seq peaks. How-
ever, the PREPRINT prediction (the leftmost red arrow) was slightly off the exact location
of the validating TRF ChIP-seq peaks (black arrow). The locus denoted as the black
arrow displayed weak signals of H3K4me1, H3K27ac and DNase I HS, although was not
clearly predicted as an enhancer by any of the methods. The RFECS did not predict any
enhancers in this genomic window; the prediction scores for RFECS remained just below
the 0.5 threshold line. ChromHMM labelled the region as heterochromatin.
To conclude, PREPRINT predicted apparent enhancers not predicted by RFECS or

ChromHMM.However, the visual inspection of the properties of the predictions reflected
the results and challenges reported in the previous sections. One challenge is to predict
enhancer locations with high accuracy. On one hand, the challenges are related to the def-
inition of an enhancers and its boundaries. On the other hand, the challenges concern the
choices adopted in the data analysis steps, such as the resolution of the data, the choice for
the prediction threshold, the choice of the number of overlapping TRF ChIP-seq peaks
for validation, and the definition of an overlap between two genomic regions or the set
of regions. In other words, visual inspection of the individual predictions further justifies
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the concerns of being cautious when drawing conclusions about the enhancers predicted
by machine learning methods.

Discussion
This paper introduced PRobabilistic Enhancer PRedictIoN Tool (PREPRINT), a super-
vised enhancer prediction method based on probabilistic modelling of the characteristic
chromatin feature patterns observed at enhancers and other genomic regions. PREPRINT
recognises the dependency structure of the chromatin feature pattern associated with
enhancers. In addition, PREPRINTmodels statistically the variability of the coverage pat-
terns among individual enhancers. The statistical modelling provides robustness to the
proposed approach and improves the generalisation ability of the classifier, for example,
on data originating from cell line not utilised for training.
PREPRINT introduces two new probabilistic distance measures to quantify "the close-

ness" or "fit" of the genomic query regions and the characteristic patterns. Firstly,
PREPRINT assumes Poisson distributed coverage counts with a scaled mean parameter.
The scaled mean consists of the characteristic coverage pattern and a scaling parame-
ter. Although an approximation, introducing the characteristic coverage pattern as an
estimate of the Poisson mean incorporates the dependency structure of the feature pat-
terns into the model. In addition, the scaling parameter accounts for the coverage signal
variability due to various sources. The scaling parameters are estimated utilising two
approaches: either sample-specific scaling parameters are estimated with a maximum
likelihood (ML) approach or a global Gamma distribution is estimated for the scaling
parameter (Bayesian approach). Furthermore, two probabilistic distance measures are
defined depending on the approach employed to learn the scaling parameters. Hence, the
two approaches are referred to as PREPRINTML and PREPRINT Bayesian.
PREPRINTwas trained and tested on the next-generation sequencing data produced by

ENCODE for the myelogenous leukaemia cell line (K562) and the lymphoblastoid cell line
(GM12878). Moreover, the prediction performance of PREPRINT was computationally
compared to the state-of-the-art methods RFECS and ChromHMM. According to the
results, the PREPRINT Bayesian trained on the data originating from the cell line K562
achieved the best performance on the test data originating from the GM12878 cell line.
To decrease the probability of misclassification for the whole-genome predictions, i.e.,

to control for the false positive rate, the prediction thresholds were calibrated. Adopting
cross-validation within the training data, the threshold resulting in the 1% false positive
rate (FPR) were obtained for PREPRINT. The threshold estimated from the K562 train-
ing data was assumed to generalise to the whole genome data and the GM12878 data.
Therefore, the estimated threshold was utilized by PREPRINT to predict genome-wide
enhancers in both cell lines. In addition, the threshold was altered to study the effect on
the genome-wide predictions. Generally, the methods compared in this work predicted
wide regions as enhancers. To pinpoint the individual enhancers within a wider prediction
region, the methods compared in this study encountered challenges. Firstly, the predic-
tion score threshold affected the width of the prediction region. For example, increasing
the prediction threshold, one wide enhancer prediction region could be partitioned into
two regions. Secondly, although RFECS predicted proportionally more short enhancers of
length 100 bp compared to PREPRINT, the prediction scores of RFECS usually increased
and decreased smoothly along the genome, resulting in very wide prediction windows
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and possibly uncertain predictions. Nevertheless, the prediction scores of PREPRINT
advanced from a low value to a high value and back within a short region (within a low
number of window shifts). As a result, the lengths of the PREPRINT enhancers were less
sensitive to changes in the prediction threshold. However, PREPRINT was demonstrated
to predict multiple enhancers within a short stretch of DNA.
The genome-wide enhancers predicted by the computational methods were validated

with the largest collection to date of the TRF binding sites produced by the ENCODE
consortia [43]. Firstly, the proportions of genome-wide predictions with a varying num-
ber of overlapping TRF ChIP-seq peaks were investigated. The proportions of predictions
lacking a TRF binding site were lower for PREPRINT when requiring a larger set of pre-
diction obtained by relaxing the prediction threshold. In addition, PREPRINT enhancers
contained proportionally more enhancers overlapping 1–10 different TRF peaks than
the predictions obtained by RFECS; these enhancers may have displayed weaker chro-
matin feature signals and beenmissed by RFECS, while they were still validated. Secondly,
the validation rates of genome-wide enhancers obtained by different methods and pre-
diction thresholds were compared. In this comparison, PREPRINT reached comparable
or better performance to RFECS, especially when requiring the methods to predict a
larger set of enhancers, i.e., employing a relaxed threshold. Moreover, the PREPRINT
methods achieved a good generalisation performance between data from different cell
lines. Finally, the common and unique set of enhancers predictions obtained by different
methods and their validation rates were investigated. The unique enhancers predicted by
PREPRINT Bayesian in cell line K562 reached a comparable validation rate (64%) to the
unique enhancers predicted by RFECS (65%). The number of unique enhancers predicted
by RFECS was considerably high, especially in cell line GM12878, and their validation
rate, especially when relaxing the prediction threshold (Supplementary Figure S7c and
d), was low (30%). When relaxing the prediction threshold, RFECS likely began to pre-
dict more enhancers not covered by the other methods, and these enhancers obtained a
lower validation rate. In contrast, when relaxing the prediction threshold, the validation
rate of the unique PREPRINT predictions remained almost the same (50–60%). However,
PREPRINT behaved similarly as ChromHMM by predicting multiple enhancers along
a short stretch of DNA. To conclude, PREPRINT trained on the K562 data generalised
successfully on the GM12878 data, and the Bayesian approach performed sufficiently.
In some comparisons, the Bayesian approach attained similar or even superior perfor-
mance to RFECS. According to the results, PREPRINT Bayesian often outperformed the
PREPRINT ML approach. This implies that using a global genome-wide distribution of
the scaling parameter should be used, instead of modelling locally the fit of an individual
sample, for example, to the enhancer aggregate pattern.
As stated above, the methods compared in this work predicted very wide genomic

regions as enhancers. For a set of enhancer predictions to benefit, for example, the inter-
pretation of SNPs, the exact enhancer location inside the wide prediction region need to
be identified. In general, the concepts such as the exact enhancer location, length of an
enhancer, the enhancer boundaries and the enhancer middle position are vague and need
to be refined. An approach would be to define an enhancer as a stretch of DNA bounded
by TRFs with the boundaries limited by the two well-positioned nucleosomes. To pin-
point the individual enhancers within a wider prediction region proved to be challenging.
For example, PREPRINT often predicted two neighbouring enhancers (as in examples
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demonstrated in Figs. 5 and 6). It is unclear whether these should be considered as sep-
arate enhancers, or whether any two neighbouring predictions should be combined. For
example, the two enhancers could be merged by considering their middle location as
the exact location of the enhancer. Finally, the resolution of the data, 100 bp adopted in
this work, likely affected the widths of the predicted regions. Thus, increasing the data
resolution could improve the resolution of the prediction.
For an enhancer to be validated, at least 1 bp overlap was required between an enhancer

prediction window of size 2 kb and at least 1 TRF ChIP-seq peak. This definition of
validation is not without problems: Firstly, a more rigorous requirement for the num-
ber of overlapping peaks could be adopted. However, to choose the threshold for the
required number of overlapping peaks might not be straightforward and in this work, the
most relaxed setting was adopted. In addition, instead of the prediction window of size
2 kb, a narrower prediction window, such as of 500 bp centred at the prediction location
could have been utilized. Moreover, if two predictions were very close to each other, and
both overlapped the same single TRF ChIP-seq peak, both were validated. Nevertheless,
choosing the most relaxed setting is an adequate approach as the widths of the ChIP-seq
peaks and the uncertainty associated to identifying the exact binding site of a TRF varies
depending on many factors, such as the antibody specificity in the ChIP experiment, the
TRF ChIP-seq data quality filtering, preprocessing of the raw reads, and the peak-calling
methods. Some TRF ChIP-seq peaks might have been missed as they reside just below
the selected significance threshold, often selected arbitrarily. Secondly, not all TSS-distal
TRF binding sites are enhancers; they might be some other type of regulatory regions,
such as insulators or silencers, or repressed enhancers. However, our training data does
not support the identification of the latter. In addition, the TRFs may contain also repres-
sive factors, not only activating. Finally, the human genome is estimated to encode around
1700 transcription factors [45] and a large number of co-regulatory factors whose binding
sites in more than 200 different cell lines are largely unknown, for example, due to lack
of antibodies. The co-occurrence of multiple TRF ChIP-seq peaks could be strong evi-
dence for the transcriptional regulatory potential of the predicted region. However, this
view is challenged by the recent work suggesting that these regionsmight be just technical
artefacts of ChIP-seq, and the observation that these regions lack clear motifs [46, 47].
PREPRINT adopted a distribution resembling the Gamma-Poisson compound distribu-

tion to model the non-negative count data. However, different distributional assumptions
could be considered. The exact negative binomial distribution [33, 34] could be utilised, or
the count data could be corrected by the log-concave Poisson approach [36]. As the sub-
traction of the normalised control signal from the ChIP-seq signal resulted in continuous
and negative values, instead of converting the data into non-negative counts and adopt-
ing the Gamma-Poisson compoundmodel, Skellam [48] distribution or a distribution that
models the difference between two independent negative binomial random variables [49]
could have been employed. Moreover, the enhancer and non-enhancer aggregate patterns
and the uncertainty inhered in them could be modelled, in contrast to assuming a fixed
mean. However, this would lead to a more challenging estimating procedure, such as the
expectation-maximisation (EM) algorithm. In contrast, RFECS does not involve any dis-
tributional assumptions and adapts readily to the continuous and real-valued ChIP-seq
data. This can be an advantage for RFECS, as the data discretisation and especially the
conversion of negative values to nonnegative both lose information. RFECS had access to
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the sharp negative dip of the chromatin feature coverage signals between the high posi-
tive signals from the two well-positioned nucleosomes, thus facilitating the separation of
enhancers from the background coverage signal.
As demonstrated in this work, the choice for the random regions in the training data

affected the performance of the methods. In addition to the random regions and pro-
moters, other definitions of non-enhancers could be adopted, such as promoters driving
different levels of gene expression, inactive promoters, exons, introns, miRNA and other
non-coding genomic sites exhibiting at least some epigenetic signals. In addition, the
feature patterns at individual non-enhancer regions could be scrambled to generate a ver-
satile set of non-enhancer examples. Moreover, although not studied in this work, the
choice of training data enhancer definition likely affects the results. To study the effect of
the training data enhancer definition, the enhancers could be clustered to identify sub-
classes among them. The enhancers belonging to separate clusters might display different
patterns and intensities of chromatin features [50–52]. It would be interesting to correlate
the obtained clusters to biological and functional properties of the enhancers to iden-
tify enhancer subclasses or various enhancer states, such as poised, silenced, primed and
active enhancers. The clustering could be done prior to the classifier training. Further-
more, in this work, the middle base of an enhancer was defined as the summit of the
p300 ChIP-seq peak; this approach has naturally an inhered uncertainty associated with
it. The individual ChIP-seq profiles could be shifted to improve the alignment between
the enhancers. Moreover, the distribution of nucleosomes might vary between differ-
ent enhancers, for example, the distance between the two well-positioned nucleosomes
varies, and this should be considered in the prediction task.
With the advancements in the new types of sequencing data generation, big data anal-

ysis methods and machine learning, the race towards the ultimate genome annotation
will accelerate. The genome annotation includes the identification of genomic enhancers,
likely based on the chromatin features observed at them. The collection of chromatin
features usable for enhancer prediction continue to grow, including, for example, the
co-regulatory factor cohesin [4, 53] and DNA methylation [54]. The largest collections
of chromatin feature data for numerous human cells are produced by the Epigenetic
Roadmap data and ENCODE Phase 3 and 4. However, the available data is far from com-
plete. There is a clear need for a large-scale open contest for benchmarking computational
and experimental methods for enhancer prediction, also suggested by others [38, 55].
This is still hindered by the lack of sufficient data for different cell types and the lack of
a gold-standard set of enhancers and non-enhancers. The set of massive parallel reporter
assay (MPRA) validated enhancers could be adopted as the training examples [56, 57],
although the set sizes are still rather restricted in the human cells. Moreover, the MPRA
approaches have their limitations: the length of the assayed DNA is small, and chromatin
environment of the assayed region is not considered in the plasmid-based assay.

Conclusion
The supervised machine learning methods for the enhancer prediction task may not
have adopted the full potential of the probabilistic approach. Therefore, a PRobabilistic
Enhancer PRedictIoN tool (PREPRINT) was developed assuming characteristic patterns
of chromatin features at enhancers and other genomic regions. PREPRINT included two
separate approaches to statistically model the chromatin feature data, the PREPRINT
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maximum likelihood (ML) and the PREPRINT Bayesian approach. The performances of
PREPRINT and the state-of-the-art methods RFECS and ChromHMM were compared
on chromatin feature data from the ENCODE first data production phase Tier 1 cell lines
K562 and GM12878.
To control the false positive rate of genome-wide enhancer predictions, the predic-

tion threshold for PREPRINT was calibrated. Although the lengths of the PREPRINT
enhancer predictions were less sensitive to changes in the prediction threshold than
the lengths of the RFECS predictions, the prediction threshold was demonstrated to
influence the final number of predicted enhancers and their validation rates. In gen-
eral, PREPRINT performed comparably to or outperformed the state-of-the-art methods,
especially when requiring the methods to predict a larger set of enhancers, i.e., employing
a relaxed threshold. Firstly, the PREPRINT Bayesian trained on the data originating from
the cell line K562 achieved the best performance on the small test data originating from
the GM12878 cell line. Secondly, the proportions of genome-wide predictions lacking a
TRF binding site were lower for PREPRINT when requiring a larger set of prediction.
In addition, PREPRINT enhancers contained proportionally more enhancers overlap-
ping a small number of different TRF peaks than the predictions obtained by RFECS.
Thirdly, when considering the genome-wide predictions, the PREPRINT trained on the
K562 data generalised successfully on the GM12878 data, and the Bayesian approach
performed sufficiently. In some comparisons, the Bayesian approach attained similar or
even superior performance to RFECS. The enhancers predicted by PREPRINT, RFECS
and ChromHMM were demonstrated to be highly congruent. Nevertheless, the unique
enhancers predicted only by the PREPRINT Bayesian approach possessed robust valida-
tion rates, despite varying the prediction threshold.When comparing the two PREPRINT
approaches, the performance of PREPRINT Bayesian often exceeded the performance
of the ML approach. This implies that a global genome-wide distribution of the scaling
parameter (PREPRINT Bayesian) should be adopted, instead of modelling locally the fit
of an individual sample, for example, to the characteristic enhancer chromatin feature
pattern (PREPRINTML).
Accurate annotation of the regulatory regions across the human genome is a

prerequisite for the interpretation of the findings of regulatory genomics studies,
the GWAS studies as well as the clinical studies. In this work, a machine learn-
ing tool was developed to predict genomic regulatory enhancers in the human
genome based on the chromatin feature data quantified by next-generation sequenc-
ing technology. In the future, the next-generation sequencing methodologies will
likely transition to standard clinical tests, and in clinical diagnostics, the analysis
will be broadened from genotyping the protein-coding genes towards profiling the
non-coding DNA.
There are many general problems related to the computational genome-wide enhancer

prediction, and future studies are necessary. There is a need to generate a golden
standard set of enhancers to develop and benchmark the computational meth-
ods. In addition, there are likely enhancer subsets possessing different features and
feature patterns. Therefore, clustering as a preprocessing step or semi-supervised
approaches should be adopted. The resolution of the data and the prediction pre-
cision and accuracy should be increased, for example, to pinpoint the individual
enhancers.
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Methods
PREPRINT outline

This paper presents a new method called PRobabilistic Enhancer Prediction Tool
(PREPRINT). PREPRINT consists of several data processing and analysis steps, which are
sketched in Fig. 7 as five modules (black rounded boxes). The modules are the data pre-
processing (Fig. 7a and b), statistical modelling (Fig. 7c), computing probabilistic scores
to build the final training data matrix (Fig. 7d and e), using the data matrix to train a
Support Vector Machine (SVM) classifier with a Gaussian kernel (Fig. 7f), and finally
computing the probabilistic scores for the genome-wide data and employing PREPRINT
to obtain genome-wide enhancer predictions (Fig. 7g and h). The five modules are shortly
described in the Supplementary Methods section, Additional file 1. A more detailed
description of the modules and the steps inside eachmodule are provided in the following
sections.

Data

This work adapted the publicly available data from ENCODE Consortium [43]. The data
contained the ChIP-seq sequencing reads for 10 histone modifications, a histone vari-
ant H2AZ, the RNA polymerase II, and a protein CTCF. Due to the binding of TRFs,
enhancers exhibit chromatin openness quantified by DNase I hypersensitivity (DNase I
HS) sequencing technique (DNase-seq) [58]. In addition, the location of nucleosomes
at enhancers can be quantified applying micrococcal nuclease digestion followed by
sequencing (MNase-seq) [59, 60]. The DNase-seq andMNase-seq data were downloaded
in the aligned format (bam-format). Data for chromosomes chrY and chrMwere excluded
from all data. The data were downloaded for the myelogenous leukaemia cell line K562
and the lymphoblastoid cell line GM12878. The data for the K562 cell line with their
ENCODE accession numbers for files and datasets, as well as the direct web links to
the files are included as Supplementary Table S3 in Additional file 2. The data for the
GM12878 cell line are listed in Supplementary Table S4, Additional file 2.
In the preprocessing module of PREPRINT (Fig. 7a), the ChIP-seq data were processed

with the following steps:

1. Raw reads were aligned to the human genome version hg19 with Bowtie 2 [61]
(bowtie2-2.3.3.1) adopting the default options.

2. Reads aligned to the exact same locations were considered as Polymerase Chain
Reaction (PCR) duplicates [62], and only one of the duplicate reads was retained for
the analysis.

3. Possible isogenic replicates were pooled.
4. The fragment lengths for ChIP-sed reads were estimated from the cross-correlation

profiles obtained with phantompeakqualtools (spp version 1.14) [63, 64] and R
version R-3.3.1.

5. The ChIP-seq reads were shifted by the half of the estimated fragment length with
the combination of bedtools2 and samtools, In addition, the MNase-seq reads were
shifted by 149/2, the half of the length of DNA wrapping around a nucleosome
(∼ 149 bps). In contrast, the DNase-seq and control reads were not shifted.

6. The genome-wide coverage signals were generated. When creating the coverage
signal, the control coverage was normalised wrt. the ChIP coverage to equalise the
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Fig. 7 Diagram of the PREPRINT steps. The PREPRINT procedure consists of five modules. In the
preprocessing module, the genome-wide coverage signals for K chromatin features were first extracted from
the short sequencing reads (Step a). In the second Step b, the training data coverage matrices and the
aggregate patterns were obtained. In the statistical modelling module (Step c), the individual samples were
assumed to follow a Poisson distribution given the scaled aggregate patterns as parameters. In the third
module, to quantify the fit of the samples to the aggregate patterns, maximum likelihood (ML) or Bayesian
probabilistic scores were computed (Step d). The probabilistic scores were collected into the final training
data matrix (Step e). In the fourth module, an SVM classifier was trained with a Gaussian Kernel (Step f).
Finally, in the fifth module, the probabilistic scores were computed along the whole genome (Step g) and
the probabilistic scores were classified by PREPRINT to obtain the enhancer predictions (Step h). The aligned
reads and coverage signals were visualised with the UCSC genome browser [44]

library sizes, and the control coverage was subtracted from the ChIP coverage. Data
for GM12878 were normalised wrt. the K562 library size. The normalisation was
performed as previously described [63, 65, 66].

7. For PREPRINT, the control signal was not subtracted from the DNase-seq and
MNase-seq signal. In contrast, RFECS requires the control signal for all data types, as
it is adapted to the histone modification ChIP-seq data. Hence, RFECS normalises
and subtracts the control from the DNase-seq and MNase-seq signals.

8. For PREPRINT, the coverage was computed in 100 bp bins, the coverage values were
rounded to the nearest integer, and the negative values were converted to zero.
RFECS also utilised data in 100 bp bins.
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Definition of the training data

This section describes the extraction of the training data matrices in the preprocess-
ing module (Fig. 7b). In many earlier studies, the binding sites of co-regulatory proteins
and histone acetylases, such as CBP or p300, have been used to identify enhancer loca-
tions [11–14, 67]. Therefore, the training and test data enhancer samples were defined
as the summits of the 1000 most significant (based on q-values) histone acetylase P300
binding sites. The summit is the location with the highest read pileup within a ChIP-seq
peak, often considered as the precise binding location of the TRF. In addition, each P300
binding site summit was required to overlap a DNase I hypersensitivity (HS) peak. As
the binding sites of P300, the optimal IDR thresholded ChIP-seq peaks produced by the
ENCODE Consortium Analysis Working Group were adopted in both cell lines. As the
DNase I HS peaks, the Open Chromatin data set from Gregory Crawford Lab (Duke Uni-
versity) was utilised. The ENCODE accession numbers of the datasets and files for p300
and DNase I HS peaks are listed in Supplementary Tables S3 and S4, Additional file 2. The
distances between the training or test data enhancers and the protein-coding transcrip-
tion start sites (TSS) from Gencode v27 [68] were required to equal or exceed 2 kb. The
direct web link to download the Gencode v27 annotation is provided in Supplementary
Table S5, Additional file 2. The enhancers were centred at the p300 peak summits, i.e., the
summits were considered as the enhancer anchor points.
As examples of non-enhancers, promoters were defined as the 1000 GENCODE v27

TSSs that overlapped a DNAse I HS peak and whose distance to any other TSSs nearby
exceeded 2 kb. For both cell lines, the 1000 promoters overlapping the most signifi-
cant DNase-seq peaks (based on the p-values) were selected. The TSSs were used as the
anchor points for the promoters. When defining the training data samples, the enhancers
and promoters (defined as the 5 kb regions centred at the anchor points) overlapping
the ENCODE blacklist regions were excluded. The ENCODE blacklist regions contained
repetitive elements, such as α- and β-satellite repeats, ribosomal and mitochondrial
DNA, and some other regions that are listed in the Mappability or Uniqueness of Ref-
erence Genome data set [69]. The ENCODE accession numbers for the blacklist region
datasets and files are provided in Supplementary Table S5, Additional file 2.
For the training and test data enhancers and promoters, 2 kb genomic windows centred

at the anchor points were defined, and the coverage matrices of the chromatin features
were extracted at 100-bp resolution. Figure 8 illustrates the coverage matrices and the
aggregate profiles of the different chromatin features at the training data enhancers. In
contrast, Supplementary Figure S1, Additional file 1, illustrates the heatmaps and aggre-
gate profiles at the training data promoters. The promoters were not oriented according
to the transcription direction. In addition to promoters, random genomic regions were
included as examples of non-enhancers. Thus, 1000 random genomic locations were sam-
pled for both cell lines requiring that the distance between a sampled single bp genomic
coordinate and any cell line-specific P300 ChIP-seq peak exceeded 2.5 kb. Moreover,
the sampled coordinate was required to have a distance exceeding 2 kb to the near-
est TSS. Further, random genomic locations overlapping the ENCODE blacklist regions
were removed. These regions were referred to as the pure random regions. The cover-
age matrices and the aggregate profiles at the pure random regions in the K562 cell line
are demonstrated in Supplementary Figure S2, Additional file 1. At the pure random
regions, the feature patterns were close to zero, hence the classifier would apparently learn
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Fig. 8 The coverage matrices and the aggregate patterns of 15 different chromatin features at the 1000
enhancer samples. The coverage matrices were visualised as heatmaps together with the aggregate patterns
illustrated above the heatmaps. The data originated from cell line K562, and the feature patterns were
extracted in a genomic window of length 4 kb centred at the enhancer anchor points indicated by the
dashed line and the coordinate 0. The resolution (bin size) of the data was 100 bp. The visualisations were
generated by the functions in the EnrichedHeatmap bioconductor package [70]

to distinguish the random regions from the enhancers. Therefore, another set of ran-
dom locations was defined as follows. Firstly, the sum of genome-wide coverage signals
excluding the MNase-seq signal was computed in 100 bp bins. The bins with the cover-
age sum equal to or exceeding 5 were selected. Again, the p300 binding sites, the TSSs
and the ENCODE blacklist regions were removed from the selected regions. The selected
regions comprised around 4% of the whole genome. The random regions were sampled
within the selected regions requiring that the coverage sum in all 100 bp bins of the 2
kb window centred at the anchor point was equal to or exceeded 5. Thus, these random
locations acquired some non-zero signal and are referred to as random regions with a sig-
nal. The coverage matrices and the aggregate profiles at the 1000 random regions with a
signal in the K562 cell line are visualised in Supplementary Figure S3, Additional file 1.
To conclude, the final training data contained n enhancers, n promoters and 2n random
locations; here n = 1000.

Probabilistic modelling

This section describes the second and the third module of the PREPRINT procedure
(Fig. 7c, d, and e). The chromatin features were indexed by k = 1, . . . ,K , where K was
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the total number of chromatin features. The training coverage data for the chromatin
feature k were represented as a (4n × d) matrix Yk of 4n samples and d bins, i.e., d was
the length of the feature patterns. In the training coverage matrix, there were n enhancer
samples, n promoter samples and 2n random region samples. The matrix Yk was further
divided into (nenh × d) training data enhancer matrix Yenh

k , the (nprom × d) training data
promoter matrix Yprom

k , and the (nrand × d) training data random region matrix Yrand
k .

The feature pattern of the chromatin feature k for an enhancer sample i was denoted as
yenhik , i = 1, . . . , nenh. The elements of the feature pattern vector yenhik = (

yenhi1k , . . . , y
enh
idk

)

indexed by j = 1, . . . , d were assumed to follow a Poisson distribution. Further assuming
the conditional independence of the feature pattern elements, the likelihood of yenhik was

p
(
yenhik | αenh

1k , xenhk

)
=

d∏

j=1
Poisson

(
yenhijk | λjk = αenh

1k xenhjk

)
, (1)

where λjk denotes the rate parameter of the jth feature pattern element. The parameter λjk
was an auxiliary variable and a product of the aggregate pattern xenhk = (

xenh1k , . . . , xenhdk
)

and a scaling parameter αenh
1k . The subindex 1 in αenh

1k referred to the class of sample
yenhik , namely 1 (see also Fig. 7c). In this model, the enhancer aggregate pattern xenhk cap-
tured the characteristic pattern of the chromatin feature k at enhancers, and the scaling
parameter αenh

1k was shared between the elements of the feature pattern vector yenhik . The
scaling parameter αenh

1k modelled the statistical variation of the feature pattern elements at
enhancers resulting from the sources listed in the “Background” section. Nevertheless, the
variability in the feature pattern elements were assumed to originate from a local source.
In other words, the variation was shared by the elements of the feature pattern vector. A
natural choice to model the scaling parameter αenh

1k was the Gamma distribution with the
hyperparameters a0k and b0k , the conjugate distribution of the Poisson distribution

αenh
1k ∼ Gamma(a0k , b0k) . (2)

The parameters of the model were estimated from the data as follows: Firstly, the vari-
able xenhk was estimated as the training data enhancer average coverage, i.e., the aggregate
pattern. The elements of the aggregate pattern were computed as

xenhjk =

nenh∑

i=1
yenhijk

nenh
. (3)

Secondly, the Gamma distribution of the scaling parameter αenh
1k was learned by first

obtaining themaximum likelihood (ML) estimates of αenh
1ik for each training data enhancer

sample. The likelihood in Eq. 1 was maximized to obtain the ML estimates

α̂enh
1ik =

d∑

j=1
yenhijk

d∑

j=1
xenhjk

for i = 1, . . . , nenh . (4)

Next, a Gamma distribution was fitted to α̂enh
1ik values to obtain the empirical estimates for

the hyperparameters a0k and b0k . Finally, to quantify the fit of any training data sample i =
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1, . . . , 4n to the enhancer aggregate pattern, a posterior predictive score was computed as

p(yik) =
∫

Gamma
(
αenh
1k | a0k , b0k

) d∏

j=1
Poisson

(
yijk | αenh

1k xenhjk

)
dαenh

1k (5)

=
�

(

a0k +
d∑

j=1
yijk

)

ba0k0k

d∏

j=1

(
xenhjk

)yijk

�(a0k)
(

b0k +
d∑

i=1
xenhjk

)a0k+
d∑

j=1
yijk d∏

j=1
yijk !

.

The posterior predictive scores are referred to as probabilistic scores. As the individual
training data samples were considered independent, the posterior predictive scores could
be also derived for the individual samples as provided in Eq. 5; there were no product
over all the samples. Equation 5 resembled the Gamma-Poisson compound distribution,
equivalent to the negative binomial distribution. However, the Eq. 5 could not be simpli-
fied into the negative binomial distribution due to the product over d adjacent bins and
the product λjk = αkxjk (sub- and superindices omitted for clarity); this removed the con-
jugacy between Gamma and Poisson distributions. The computation of the probabilistic
score to quantify the fit between each training data sample and the enhancer aggregate
patterns of K chromatin features resulted in a matrix of size 4n × K .
The genomic regions with patterns of chromatin features resembling the aggregate pat-

terns of enhancer while lacking the characteristic patterns of promoters and random
regions should receive a high prediction score. Therefore, in addition to quantifying the
fit of the individual sample to the enhancer aggregate pattern, we computed the fit of the
sample to the non-enhancer aggregate pattern. The elements of the promoter aggregate
pattern were computed as

xpromjk =

nprom∑

i=1
ypromijk

nprom
, (6)

and the ML estimates of αprom
1ik (see Fig. 7c) were computed as

α̂
prom
1ik =

d∑

j=1
yenhijk

d∑

j=1
xnegjk

for i = 1, . . . , nenh . (7)

Notably, the parameter α
prom
1ik scales the promoter aggregate profile to fit the training data

enhancer sample. Again, a Gamma distribution was fitted to the α̂
prom
1ik values to obtain

the (empirical) estimates for the hyperparameters aprom0k and bprom0k . Then the probabilistic
scores of the samples were computed again using Eq. 5. However, instead of integrating
over αenh

1k , the integral was over α
prom
1k . Furthermore, the scaling parameters αrand

1k (see
Fig. 7c) corresponding to the random aggregate patterns were estimated similarly as in
Eq. 7. The quantification of the fit of any training data sample to the random aggregate
pattern were computed again using the Eq. 5, this time the integral was over αrand

1k . Finally,
the fit of any training data sample to the aggregate pattern of enhancer, promoter and
random regions resulted in three posterior predictive scores (Fig. 7d), and for all K chro-
matin features, the final training data vector consisted of 3K elements (see Fig. 7e). This
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approach is referred to as PREPRINT Bayesian, due to the computation of the posterior
predictive scores.
For comparison to the PREPRINT Bayesian approach, a simplified model was consid-

ered where the scaling parameters αenh
1ik , α

prom
1ik , and αrand

1ik were estimated individually for
each training and test data enhancer using Eqs. 4 and 7. In addition, for a non-enhancer
(class 0) sample yik , the scaling parameters were denoted as αenh

0ik , α
prom
0ik , and αrand

0ik (see
Fig. 7c). The ML estimates for these were obtained, for example, as

α̂enh
0ik =

d∑

j=1
yijk

d∑

j=1
xenhjk

for i = 1, . . . , nprom + nrand (8)

and

α̂
prom
0ik =

d∑

j=1
yijk

d∑

j=1
xpromjk

for i = 1, . . . , nprom + nrand . (9)

To quantify the fit of any sample pattern to the enhancer, promoter and random aggregate
pattern, the likelihood values were computed as the probabilistic scores. For the training
and test data enhancers (class 1) the likelihood was computed, for example, as

p
(
yik|xenhk , α̂enh

1ik

)
=

d∏

j=1
Poisson

(
yijk|α̂enh

1ik x
enh
jk

)
(10)

and

p
(
yik|xpromk , α̂prom

1ik
) =

d∏

j=1
Poisson

(
yijk|α̂prom

1ik xpromjk

)
. (11)

The likelihood values for the training and test data non-enhancers (class 0) samples were
computed, for example, as

p
(
yik|xenhk , α̂enh

0ik

)
=

d∏

j=1
Poisson

(
yijk|α̂enh

0ik x
enh
jk

)
(12)

and

p
(
yik|xpromk , α̂prom

0ik
) =

d∏

j=1
Poisson

(
yijk|α̂prom

0ik xpromjk

)
. (13)

For each sample, three separate likelihood scores were computed corresponding to the fit
between the sample and the enhancer, promoter and random region aggregate patterns
(see Fig. 7d). This simpler approach is referred to as PREPRINT maximum likelihood
(ML). In the PREPRINT ML, a sample specific fixed scaling parameter αik was estimated
for each sample pattern individually. TheML estimate for αik scaled the aggregate pattern
to fit the individual sample pattern, and the fit was quantified by the likelihood score. In
contrast, the PREPRINT Bayesian approach involved global Gamma distributions for the
scaling parameters associated to the enhancer, promoter and random region aggregate
patterns. In other words, in the PREPRINT Bayesian approach, the probabilistic score
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in Eq. 5 was computed as the likelihood integrated over the distribution of the scaling
parameter α1k .

Classifier training and cross-validation, performance on the test set

This section describes the fourth module in the PREPRINT procedure (Fig. 7f). A sup-
port vector machine (SVM) classifier implemented in libSVM version 3.22 [71] was
trained on the final training data matrix presented in Fig. 7e. The training data origi-
nated from cell line K562, and the SVM utilised a Gaussian kernel. The hyperparameters
of the SVM classifier were estimated and the classifier performance was evaluated by a
nested cross-validation (CV). In the nested CV, the outer cross-validation assessed the
performance of the model and the inner optimised the hyperparameters, namely the
SVM misclassification penalty C and the Gaussian kernel width γ . The hyperparame-
ter optimisation was performed by a grid-search with values C = 2−5, 2−4.5, . . . , 225 and
γ = 2−25, 2−24.5, . . . , 210. For both the outer and inner cross-validation, a 5-fold CV was
adopted. The method performance for cell line K562 was evaluated by concatenating
the predictions obtained from separate cross-validation rounds and computing the area
under the receiver operating characteristics curve (AUC). The final PREPRINT classifier
was trained on the whole training data matrix from the K562 data, and again a 5-fold
CV was performed to optimise the SVM hyperparameters. The final classifier predicted
enhancers on the GM12878 test data.
The classification performance of PREPRINT was compared to RFECS, a state-of-the-

art supervised enhancer prediction method. For RFECS, the CV within K562 training
data was not performed; the AUC values would have likely achieved values close to 1.
The performance RFECS trained on K562 data was evaluated on the GM12878 test data
as follows. Firstly, the RFECS predicted enhancers genome-wide in cell line GM12878.
The genome-wide RFECS predictions closest to the test regions were selected. The
performance on the test set was again evaluated by the AUC values.

Genome-wide enhancer predictions and their validation

The PREPRINT and RFECS classifiers trained on the K562 training data predicted
enhancers genome-wide in both cell lines, K562 and GM12878. Before studying the prop-
erties of the predicted enhancers and validating the results, the training data enhancers
and promoters were removed from the final genome-wide predictions. In addition, any
obscure genomic regions were removed from the genome-wide predictions. The removed
regions included predictions (defined as 2 kb genomic windows) overlapping at least 1
bp with the ENCODE blacklist regions as well as the K562 cell line predictions with a
distance equal or smaller than 1 kb to any training data enhancer. To remove promoters
from the set of enhancer predictions, we excluded the predictions whose middle base had
a distance equal or smaller than 2 kb to any GENCODE v27 transcription start site (TSS).
The genome-wide enhancer predictions were validated by inspecting the overlap

between the predicted enhancers and the histone acetyltransferase (p300) binding sites.
In addition, a large set of TRF binding sites as the optimal IDR thresholded ChIP-seq
peaks produced by the ENCODE Consortium Analysis Working Group were utilised for
validation. The peaks for RNA Pol II, CTCF, CREB-binding protein (CBP) and p300 were
excluded from the peak set resulting in peaks for 111 and 76 individual TRFs for cell
lines K562 and GM12878, respectively. The ENCODE accession numbers of TRF datasets
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and files together with the direct web links are provided in Supplementary Tables S3 and
S4 in Additional file 2 for cell lines K562 and GM12878, respectively. An enhancer was
validated if the 2 kb prediction window overlapped with at least 1 bp of at least 1 TRF
ChIP-seq peak. The ChromHMM enhancer clusters contained regions with varying sizes;
these were validated similarly by requiring at least 1 bp overlap between the variable size
ChromHMM enhancer region and at least 1 TRF ChIP-seq peak. When considering the
number of overlapping TRF ChIP-seq peaks at a given enhancer prediction, the peaks for
the individual TRFs were not required to overlap, an overlap was required only between
the 2 kb prediction window and a single TRF ChIP-seq peak.
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