Incorporation of Vanadium(V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells

Published in:
Journal of Physical Chemistry Letters

DOI:
10.1021/acs.jpclett.0c01600

Published: 16/07/2020

Please cite the original version:
Incorporation of Vanadium (V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells

Marina M. Tepliakova1,2, Aleksandra N. Miheeva1,3, Lyubov A. Frolova1,2, Aleksandra G. Boldyreva1, Aly Elakshar1, Artyom V. Novikov1,2, Sergey A. Tsarev1, Marina I. Ustinova1,2, Olga R. Yamilova1,2, Albert G. Nasibulin1,4, Sergey M. Aldoshin3, Keith J. Stevenson1, and Pavel A. Troshin*1,2

1 Skolkovo Institute of Science and Technology, Nobel st. 3, 143026 Moscow, Russia
2 Institute for Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS), Semenov av. 1, 142432, Chernogolovka, Moscow region, Russia
3 Mendeleev University of Chemical Technology of Russia (MUCTR), Miusskaya sq. 9, 125947, Moscow, Russia
4 Aalto University, P.O. Box 16100, FI-00076 Aalto, Espoo, Finland

AUTHOR INFORMATION

Corresponding Author

* Pavel A. Troshin. E-mail: p.troshin@skoltech.ru
ABSTRACT

Recent studies have shown that charge transport interlayers with low gas permeability can increase operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole-transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium (V) oxide (VO\textsubscript{x}). Devices with PTAA/VO\textsubscript{x} top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoO\textsubscript{x} as HTL lose ~50% of their initial efficiency under the same aging conditions. It was shown, that the main origin of the enhanced device stability lies in the higher tolerance of VO\textsubscript{x} towards MAPbI\textsubscript{3} compared to the MoO\textsubscript{x} interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VO\textsubscript{x} hybrid HTL enables long-term operational stability of perovskite solar cells thus bringing them closer to commercial applications.

TOC GRAPHICS
Perovskite solar cells (PSCs) demonstrated rapid improvement in the light power conversion efficiency (PCE) since the first reported 3.8% in 20091 to the current record of 25.2\%.2 The technology owes this rapid progress to the simplicity of manufacturing of the absorber films using various processing techniques3, combined with the exceptional properties of the lead halide perovskite materials such as high absorbance, bandgap tunability, good charge transport properties and remarkable defect tolerance.4-6 Nevertheless, there are several obstacles to commercialization of PSCs7 with the insufficient operational stability being the most important among them.8

PSCs are comprised of APbX\textsubscript{3} absorber material with the perovskite crystal structure (where A is a univalent cation and X is halide anion) placed between charge transport interlayers that selectively extract and transport charges to the opposite electrodes. It is well documented now that lead halide perovskites incorporating organic cations can decompose with the formation of volatile byproducts under the action of stress factors such as elevated temperature, light, or electric bias.9 However, most of these decomposition reactions can be reversed if volatile components do not leave the active layer of the device, which can lead to at least partial restoration of the device efficiency in the dark e.g. during day/night cycling.10 Therefore, the most severe degradation pathways of PSCs can be suppressed if we block migration and loss of volatile aging products from the photoactive layer by using appropriate adjacent charge transport interlayers. In other words, charge transport interlayers have to function as encapsulation for perovskite absorber, so they are supposed to be composed of the materials with low gas-permeability. In case of conventional n-i-p PSCs architecture,11 the hole-transport layer (HTL) deposited atop the perovskite absorber film plays the most crucial role. Metal oxides are known to have good barrier properties for volatile perovskite decomposition products. For example, using an ALD-grown SnO\textsubscript{2} electron-transport interlayer in combination with a 150 nm thick layer of ITO was reported to boost the stability of p-i-n devices at 85°C.
for up to 1000 h.12 Furthermore, the introduction of a bilayer composed of aluminum-doped zinc oxide (AZO) and SnO\textsubscript{2} layer under the metal electrode tends to preserve perovskite decomposition products in the structure leading to improved thermal and ambient stability.13 Using vanadium oxide as HTL component in n-i-p PSCs enabled decent efficiencies of up to 16.8\% and provided reasonable device stability under ambient conditions and at elevated temperatures, while the operational stability of the devices under light exposure was not investigated.14–15

Spectacular improvement in the operational stability of n-i-p PSCs was achieved by incorporation of just 15 nm of MoO\textsubscript{x} oxide interlayer between organic HTL and the aluminum top electrode.16 In particular, non-encapsulated devices with MoO\textsubscript{x}/Al electrode maintained 91\% of the starting efficiency after 1000 h of continuous operation under 1 sun equivalent and using MPP tracking regime.17 However, such an impressive result was reached using low humidity (RH<20\%) in combination with vigorous external device cooling to preserve the sample temperature at ~30°C. These results show that while using the MoO\textsubscript{x} interlayer as HTL component greatly improves the operational stability of PSCs, the problem of heat sensitivity of this system still has to be addressed.

While this work was in preparation for publication, using VO\textsubscript{x} as a more suitable replacement for MoO\textsubscript{x} oxide interlayer in combination with a low molecular weight HTL material18 was reported at NanoGe conference.19 In particular, it was shown that MoO\textsubscript{x} tends to delaminate and forms wrinkles at elevated temperature of 70°C, which was suggested to be the main reason for a drop in the current density of the degraded devices.

In this paper, we show that using MoO\textsubscript{x} as HTL component is challenged by intrinsic properties of this oxide since it rapidly degrades lead halide perovskites at elevated temperatures on the contrary to vanadium pentoxide (VO\textsubscript{x}), which was shown to be much less aggressive. The combination of VO\textsubscript{x} with polytriarylamine (PTAA) enabled high efficiencies of n-i-p PSCs
approaching 20% and their much superior operational stability as compared to the reference cells comprising MoOx/PTAA as HTL.

The concept pursued (Figure 1a) is based on the different nature of defects in organic and inorganic materials, therefore their combination is expected to have low gas permeability and good encapsulation properties, which are commonly exploited in designing plastic barrier foils. Both polymeric PTAA and inorganic VOx films have relatively small roughness (Figure 1b–c), therefore, they can be combined to form the hybrid bilayer HTL. In addition, we expected that donor-acceptor interactions between the electron-deficient metal oxide and electron-rich amine centers in the polymer structure will enable excellent fusion between these two layers, while possible doping effects may also provide improved charge transport.

Figure 1. The concept of n-i-p PSCs with hybrid organic-inorganic HTL with low gas-permeability and excellent barrier properties with respect to the volatile perovskite decomposition products (a). Molecular structure of p-type transport polymer PTAA and topography of the spin-coated thin film of this material on glass (b). Linked pyramid-based structure and the topography of the evaporated 30 nm thick film of vanadium pentoxide on glass (c)

At the first stage of this work, the thickness of VOx layer was optimized and it was shown that 30–45 nm deliver the best performance in n-i-p devices with the
ITO/SnO$_2$/PCBA/MAPbI$_3$/PTAA/VO$_x$/Ag configuration (Figure S1, Supporting information, SI). It should be emphasized that using single-layer HTLs based on either PTAA or VO$_x$ leads to low device characteristics and poor reproducibility (Figure S2, SI). Therefore, combining inorganic and organic materials in one hybrid HTL is crucially important for reaching superior device performance.

Afterward, we explored the performance of PTAA/VO$_x$ binary hybrid HTL in PSCs using a panel of different absorber and electron transport materials. The current-voltage (J-V) characteristics of devices with various configurations were obtained (Figure 2a–d, the configurations are shown in the insets). The current densities were confirmed with external quantum efficiency (EQE) spectra (Figure S3, SI), and the performance parameters reached for all studied configurations are summarized in Table 1.

Table 1. Characteristics of perovskite solar cells using VO$_x$ as HTL component

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>V_{OC}, mV</th>
<th>J_{SC}, mA/cm2</th>
<th>FF, %</th>
<th>PCE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO/SnO$_2$/PCBA$^{(a)}$/CsFAPbI$_3$/$^{(b)}$/MAI$^{(c)}$/PTAA/VO$_x$/Ag</td>
<td>1021±47</td>
<td>23.7±1.0</td>
<td>76±2</td>
<td>18.1±1.2</td>
</tr>
<tr>
<td></td>
<td>(1044)</td>
<td>(24.6)</td>
<td>(78)</td>
<td>(20.1)</td>
</tr>
<tr>
<td>ITO/SnO$_2$/PCBA/MAPbI$_3$/PTA/PS$^{(d)}$/VO$_x$/Ag</td>
<td>1029±12</td>
<td>21.0±0.8</td>
<td>76±4</td>
<td>16.3±1.1</td>
</tr>
<tr>
<td></td>
<td>(1032)</td>
<td>(22.1)</td>
<td>(80)</td>
<td>(18.3)</td>
</tr>
<tr>
<td>FTO/TiO$_2$/PCBM/CsFAPbI$_3$/PTA/VO$_x$/Ag</td>
<td>960±11</td>
<td>23.7±0.7</td>
<td>70±3</td>
<td>16.0±1.1</td>
</tr>
<tr>
<td></td>
<td>(974)</td>
<td>(24.0)</td>
<td>(76)</td>
<td>(17.7)</td>
</tr>
<tr>
<td>ITO/SnO$_2$/PCBA/CsFAPbI$_3$/PTAA/VO$_x$/Ag</td>
<td>994±</td>
<td>23.6±1.8</td>
<td>58±6</td>
<td>13.1±2</td>
</tr>
<tr>
<td></td>
<td>(1009)</td>
<td>(24.2)</td>
<td>(71)</td>
<td>(17.4)</td>
</tr>
<tr>
<td>ITO/ZnO/PCBA/CsFAPbI$_3$/MAI/PTA/VO$_x$/Ag</td>
<td>1022±9</td>
<td>22.8±1.3</td>
<td>72±6</td>
<td>15.3±1.4</td>
</tr>
<tr>
<td></td>
<td>(1027)</td>
<td>(23.0)</td>
<td>(75)</td>
<td>(17.7)</td>
</tr>
<tr>
<td>ITO/ZnO/PCBA/CsFAPbI$_3$/PTA/VO$_x$/Ag</td>
<td>1012±23</td>
<td>22.0±2.4</td>
<td>53±7</td>
<td>10.4±2.0</td>
</tr>
</tbody>
</table>

a) PCBA – Phenyl C$_6$ butyric acid20,21, (Figure S4, SI); b) CsFAPbI$_3$ stands here and below for Cs$_{0.12}$FA$_{0.88}$PbI$_3$; c) MAI stand for CH$_3$NH$_3$I d) PS stands for polystyrene
Devices comprising VO$_x$ as an inorganic component of the hybrid bilayer HTL demonstrated good performances while using different perovskite formulations such as CsFAPbI$_3$ and MAPbI$_3$, and various electron transport layer materials: ZnO, SnO$_2$, TiO$_2$ combined with either PCBM or PCBA passivation coatings.21 It should be noted that PTAA was replaced in some cases by very similar PTA analog having fewer methyl groups (Figure S4, SI)22 and hence demonstrating improved charge transport characteristics. The best PCE was achieved for the device incorporating CsFAPbI$_3$ photoactive layer additionally covered with a thin layer of CH$_3$NH$_3$I (MAI). According to the literature, such treatment leads to passivation of the defects at the grain boundaries of the perovskite material23, which is also reflected in improved open-circuit voltage ($V_{OC} = 1035–1044$ mV, Figure 2d) compared to the cells with a similar configuration without MAI passivation ($V_{OC} = 990–1009$ mV, Figure 2b). Thus, the obtained results feature vanadium (V) oxide as highly promising and quite universal HTL material suitable for multiple types of PSCs.
At the next stage, we explored the impact of PTAA/VO$_x$ hybrid HTL on the operational stability of n-i-p PSCs assembled using ZnO and CsFAPbI$_3$ as ETL and light absorber components, respectively (Figure 3a). While using Ag and Au top electrodes is preferable for achieving high power conversion efficiencies, it was shown that such electrodes might compromise device operational stability due to the tendency of these metals to diffuse and react with the lead halide perovskite.24 Following previous reports, we used Al top electrodes, which slightly decreased the PSCs efficiency while contributing to their superior stability.16,25 Thus, the best devices assembled in configuration ITO/ZnO/CsFAPbI$_3$/PTAA/VO$_x$/Al showed PCEs of 16.2 and 14.5% for reverse and forward scans, respectively (Figure 3b, Table 1).

The stability tests were performed using aging chamber integrated into the nitrogen-filled glovebox as described in detail previously (Figure 3a).9,26 The samples were first exposed to the light of metal halide lamps (37±3 mW/cm2) at the temperature of 45±1 °C for 3200 h. Afterward, light soaking was continued for >1000 h using high-power LEDs as a light source (light flux 100±3 mW/cm2) at the temperature of 50±1 °C. No UV filters were used, while the devices were under open-circuit conditions throughout all aging experiment. The used aging conditions correspond to the recommended protocol ISOS-L-2I.27 The evolution of the device efficiencies under illumination was collected (Figure 3c). The reference cells assembled using PTAA/MoO$_x$ combination as HTL showed decent stability with ~24% drop in efficiency after 3200 h under 30 mW/cm2 and further ~25% decrease after 1300 h under 100 mW/cm2. The observed accelerated aging at the second stage was due to higher light power and temperature, which is critical for PSCs assembled with MoO$_x$ as it was mentioned above. The devices with PTAA/VO$_x$ HTL have demonstrated spectacular stability: no efficiency loss within the first 3200 h of light soaking and relatively minor (~10%) decay after 1300 h at 100 mW/cm2. Thus, the obtained results clearly indicate that VO$_x$ enables much superior operational stability of PSCs as compared to MoO$_x$.

Figure 3. Stability of perovskite solar cells. Configuration of the devices and the experimental setup (a), the J-V characteristics of the best device (b), stability of perovskite solar cells with hybrid HTLs under illumination (c).

Improvement in operational stability of PSCs achieved by replacing MoO$_x$ with VO$_x$ might be attributed either to different phase behavior of their films as proposed recently19 or to the principally different chemical activity of these oxides towards the lead halide perovskites. In particular, previous studies suggested that MoO$_x$ can facilitate MAPbI$_3$ decomposition and might be also aggressive to other complex lead halides.28
To verify this hypothesis, we first investigated the behavior of glass/VO\textsubscript{x}/MAPbI\textsubscript{3} and glass/MoO\textsubscript{x}/MAPbI\textsubscript{3} stacks under thermal annealing at 75–80°C in dark. The rapid evolution of the absorption spectra of the glass/MoO\textsubscript{x}/MAPbI\textsubscript{3} samples within 18 h and spectacular change of their color from dark brown to yellowish were observed (Figure 4a), thus evidencing poor thermal stability of this system. It is worthy to mention that the reference glass/MAPbI\textsubscript{3} samples showed no detectable aging under the same conditions, which proves that degradation of the glass/MoO\textsubscript{x}/MAPbI\textsubscript{3} stacks is entirely due to the presence of MoO\textsubscript{x}. On the contrary, glass/VO\textsubscript{x}/MAPbI\textsubscript{3} samples were much more stable under the same conditions since no significant changes were observed in their optical spectra and visual appearance (Figure 4b).
Incorporation of thin (~20 nm) organic PTAA layer between MoO_3 and MAPbI_3 slowed down the rate of the perovskite decomposition but failed to prevent it completely (Figure 4c). Finally, the glass/VO_x/PTAA/MAPbI_3 stacks showed no signs of degradation (Figure 4d), which explains why the PSCs using PTAA/VO_x material combination as HTL revealed superior operational stability. These results demonstrate that VO_x has good compatibility with perovskite absorbers on the contrary to MoO_x, which is quite aggressive and facilitates decomposition of lead halides most likely via redox pathway, due to a strong oxidizing nature of MoO_x reagent implicating its possible reaction with I^{-}.

To summarize, in this work we introduced vanadium (V) oxide as a highly promising inorganic component of hybrid organic semiconductor/metal oxide HTLs delivering high efficiencies of up to 20% in n-i-p perovskite solar cells using various combinations of ETL and absorber materials. Most importantly, incorporation of VO_x as HTL component enables impressive operational stability of perovskite solar cells over few thousands of hours under continuous illumination. We also showed that faster degradation of the reference cells using MoO_x interlayer is associated with the aggressive chemistry occurring between this oxide and complex lead halides at elevated temperatures. On the contrary, VO_x was shown to be much more chemically inert with respect to the oxidation of the absorber material, which accounts for the observed largely increased lifetime of PSCs assembled using this oxide material. Finally, we strongly believe that the application of hybrid HTLs utilizing vanadium (V) oxide as an inorganic component (e.g. explored PTA(A)/VO_x systems) represents an important step towards increasing operational lifetime of perovskite photovoltaics which is essential for practical use of this technology.

ASSOCIATED CONTENT

Supporting Information Available: experimental procedures and figures S1–S4 with additional J-V characteristics and EQE spectra.
AUTHOR INFORMATION

The authors declare no competing financial interests.

ACKNOWLEDGEMENTS

This work was supported by Russian Science Foundation (project No. 19-73-30020) at IPCP RAS and Skolkovo Foundation grant at Skoltech.

REFERENCES

