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rationalized by the affinity between the unidirectional mesoporous structure and the polymer, 

involving capillary forces and hydrogen bonding. The leakage-proof FPCM outperforms 

available systems (based on PEG or other PCMs) supported on minerals or other wood species. 

Compared to the latter group, the results obtained with balsa relate with its morphology and the 

effect of residual hemicelluloses in hierarchically-aligned cellulose nano- and microfibrils. The 

FPCMs resist compressive loads and performs stably for at least 200 cycles of heating and 

cooling. An insignificant loss in latent heat is observed compared to that of pure PEG. The phase 

transition temperature fluctuation and non-leaking characteristics under load make the 

balsa-based FPCM a superior alternative for passive heating/cooling, especially for uses at high 

ambient temperatures. The reversible thermoregulatory capacity, low cost, high efficiency, 

renewability, and operability of the balsa-supported FPCM, indicate an excellent option for 

thermal energy storage and conversion devices. 

Keywords: Form-stable phase change material; thermal energy storage; balsa; cooling; heating. 

1. Introduction 

The growing concerns of climate change make affordable materials for efficient energy 

conversion and management more relevant than ever [1,2]. As such, thermal energy storage 

materials (TESMs) based on sensible, latent and chemical heat, have emerged as promising 

solutions to cope with imbalances between energy supply and demand [3]. Among the TESMs, 

phase change materials (PCMs) capable of storing, transporting, and converting latent thermal 

energy through phase transition, present an attractive combination of isothermal latent heat, high 

energy storage density, and chemical stability [4,5]. Up to now, various types of PCMs have been 

investigated for solar energy conversion and storage [6,7], for waste heat recovery devices [8], 

intelligent temperature-responsive sensors [9], reversible thermochromic building [10], Li-ion 
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batteries thermal management [11], tunable luminescent materials [12], infra-red stealth [13], and 

thermo-regulated smart textiles [14]. 

Due to the lower degree of supercooling and excellent thermal stability, organic PCMs are 

often considered for TESMs [15,16]. An example is polyethylene glycol (PEG), especially given 

its high latent enthalpy, biocompatibility, low vapor pressure, low cost, easy modification, 

adjustable phase transition temperature, non-corrosiveness, and non-toxicity [17]. However, like 

other organic PCMs (such as fatty acids, fatty alcohols, and paraffin), the transition from 

solid-to-liquid phases makes PEG handling challenging, mainly, because of the fluidity and 

leakage when supported by solids. PEG confinement in a supporting material has been proposed 

as a solution [18], for example, earlier efforts in this direction considered metallic hollow 

substrates. However, the associated high cost as well as low metal thermal conductivity have 

restricted related developments [19]. Recent reports indicate encapsulation with porous scaffolds 

toward form-stable composite phase change materials (FPCMs) that are easily adaptable in 

devices [20]. So far, lightweight natural clay minerals, including diatomite [21], halloysite [22], 

and vermiculite [23] have been used as PEG-based FPCMs. However, the thermal storage 

capability of these powder-based FPCMs is < 60% for PEG, failing to meet the demands for 

efficiently harvesting or releasing thermal energy. Three-dimensional (3D) porous scaffolds 

comprising carbon sponges, ceramic foams, and graphene aerogels have been proposed for their 

relatively high thermal energy storage capacity [24]. However, the needed “bottom-up” 

fabrication strategies, including layer-by-layer assembly of nano- or micro-scale materials 

(carbon nanotubes [25], graphene nanoplatelets [26], and boron nitride whiskers [27]), are tedious 

and result in inhomogeneous porous structures, with disconnected capillarity. In addition, toxic 

organic additives are often required, increasing the environment load. Thus, effective and 

sustainable 3D porous scaffolds that are easy to manufacture and with sustained performance 

remain highly desirable. 
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Responding to the above needs, living plants have brought a new perspective. For instance, 

wood comprises a highly aligned natural structures comprising hollow vessels and tracheid 

elements as well as membranes such as pits that transport water and ions [15]. The hierarchical 

porous structures in wood, ranging from the macroscale to the nanoscale, make it a potential 

functional material for liquid absorption and fluid filtration, and therefore also for PCMs 

encapsulation [28,29]. As such, the removal of non-cellulosic components from the cell walls 

have been considered in the development of anisotropic 3D porous scaffolds. These efforts 

expanded the porosity and removed obstructions related to mass and energy transport in wood, via 

highly oriented cellulose micro- and nanofibrils [30-32]. Compared with natural wood, these 

scaffolds exhibit lower density, larger surface area, and higher porosity (up to 95%), paralleling 

other routes such as those based on cellulose cryogels and aerogels. 

Considering its absorption capability in oil/water separation, tropical balsa (Ochroma 

pyramidale) is a good candidate for encapsulation of PCM. This is because the high fiber 

tracheids content (80% to 90% [33]), and the reported high oil absorption (as high as 15 g/g 

[34,35] after functionalization). Wood-based FPCMs have been fabricated by direct 

delignification of cedar wood slices and subsequent vacuum-assisted impregnation with 

capric-palmitic acid [36]. The obtained FPCMs showed relatively high encapsulation capability 

(~61 %). The near complete removal of hemicellulose and lignin by using NaOH/Na2SO3 

treatment facilitated high porosity and a reasonable PCM uptake. However, this treatment 

degraded the cell wall structure and reduced the mechanical performance, leading to leakage 

when subjected to loading. Therefore, the selective removal of hemicelluloses and lignin at the 

expense of a limited increase of porosity is hypothesized to help retaining the cell structure of 

natural wood and avoiding its collapse under load.  

In this work, we propose light-weighted 3D scaffolds from balsa to sustain high compression 

loads while encapsulating a PCM for energy management. The initial cellular structure of balsa 
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(untreated wood scaffold and that comprising cellulose nanofibrils) were measured following the 

same procedures. 

3. Results and Discussion 

3.1 Balsa-based scaffolds 

The fabrication of balsa-based 3D scaffolds for thermal energy management (form-stable 

composite phase change materials, FPCMs) is illustrated in Scheme 1. So far, untreated wood has 

been shown to have limited PCM encapsulating ability because of its discontinuous pore structure 

[37]. On the other hand, anisotropic wood-based aerogels, obtained after Na2SO3/H2O2 treatment, 

which completely remove lignin and hemicellulose, have expanded the scaffold porosity to values 

as high as 95% [32]. Compared to unmodified wood, a 15% increase in encapsulation was 

measured for 1-tetradecanol for the purpose of thermal energy storage [10]. Despite the promising 

results and the compression strength, these FPCMs are still susceptible to leakage under external 

forces. This motivated our choice of sodium chlorite (NaClO2) to selectively remove lignin while 

preserving the hemicelluloses in wood. Thus, the central hypothesis in this investigation is that a 

stable, cross-linked structure is maintained via the network that is preserved with the 

hemicelluloses and aligned cellulose microfibrils, both of which enhance the dimensional stability 

of 3D scaffolds. Subsequent removal of hemicelluloses via alkali treatment was applied to 

compare the different FPCMs for their encapsulation and structural stability as well as thermal 

performance. 
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Scheme 1. Schematic illustration of the fabrication of wood-based 3D scaffold for solar thermal energy 

storage. Wood blocks (middle row) include, from left to right, natural wood (W); delignified wood (W-L), 

and delignified wood followed by removal of hemicelluloses (W-L,H). The bottom row illustrates the 

possible structure and composition of the respective materials. Form-stable phase-changing composite 

materials (FPCMs), obtained after PEG loading by vacuum-assisted impregnation, are shown in the upper 

row. From left to right: (W+P), (W-L+P) and (W-L,H+P).   

Balsa wood (Ochroma pyramidale) (87.7 ± 3.2 mg/cm3) was first boiled in 1% NaClO2 

solution (pH 4.6) to remove lignin. After 18 h, the lignin content was reduced from 23.3± 1.2% to 

3.8 ± 1.4 % (Figure S1). This delignified wood is thereafter referred to as W-L. Subsequent 

reaction with 10 wt% NaOH solution for up to 6 h reduced the hemicellulose content of W-L, 

from 24.7 ± 1.1% to 5.6 ± 1.4% (Figure S2). The delignified wood, with such reduced amount of 

hemicelluloses is thereafter referred to as W-L,H. The removal of the wood components from 

balsa wood was confirmed by FITR analysis, Figure S3a. For the untreated balsa wood, two 

strong absorption peaks occurred at ~1736 cm-1 and 1235 cm-1, assigned to the stretching 

vibrations of C=O (carbonyl groups) and -CO-OR (ester groups), respectively [38], both are 

fingerprints for hemicelluloses (amorphous polysaccharides). Also, weak peaks at 1590 cm-1, 

1505 cm-1, and 1462 cm-1 correspond to aromatic skeletal vibrations assigned to lignin [39]. After 

treatment with NaClO2 solution, the characteristic peaks of lignin disappeared while those 
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associated with hemicelluloses were preserved, indicating selective removal of lignin. For 

W-L,H, the peaks characteristic of hemicelluloses were absent, indicting the extensive removal of 

hemicelluloses after NaOH solution treatment. The changes in chemical composition for the three 

samples are shown in Figure S3b.  

Figure 1 includes a schematic illustration of the macroscale morphology and axial 

cross-section of untreated balsa wood, and scaffolds based on delignified wood (W-L), and 

delignified wood after removal of hemicelluloses (W-L,H), as well as the respective FPCMs, after 

PEG loading ((W+P), (W-L+P), (W-L,H+P)). The balsa wood presents a distinct pale yellow 

color (Figure 1a1), which is the result of two lignin chromophores, conifer aldehyde and aromatic 

ketones [40]. At the micron scale, the tracheids show a double cell wall thickness of 1.5~2 �m, 

forming a honeycomb-like, hollow structure with vascular lumens with average diameter of ~20 

�m (Figure 1a2, 1a3). The thin wall structure (membrane) between neighboring tracheids and 

homogeneously disturbed pits are apparent in the longitudinal sections (Figure S4a2, 4a3). After 

delignification with NaClO2, the chromophoric groups disappear, which make the resultant 

scaffold to turn white in color (Figure 1b1). The thickness of the cell wall layer becomes thinner 

(Figure 1b3). Separated vertically-aligned vascular structures are observed in the cross section 

(Figure 1b2). The changes in the hierarchical cell wall structure of the balsa wood are the result of 

the removal of the lignin-rich primary wall and the middle lamella. Thin wall structures with 

expanded pits explain an increased porosity, 94.8 ± 1.3 % (Note S1, Figure S4b2, 4b3). Further 

removal of hemicellulose with NaOH solution affected extensively the morphology of the W-L 

sample (Figure 1c1). The anisotropically-aligned hexagonal vascular structures observed in the 

cross and longitudinal sections disappear completely. Deformed cell walls of W-L,H form 

spring-like lamellar structures with stacking curved layers (Figure 1c2, 1c3 and Figure S4c2), 

ascribed to individual aligned cellulose microfibrils that remain after removal of lignin and 
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hemicellulose. It is hypothesized that microfibrils linked with each other by hydrogen bonds are 

assembled in these lamellar structures (Figure S4c3), which are expected to resist compression.  

 

Figure 1. Photographs of untreated balsa wood W (a1), W-L (b1) and W-L,H (c1) and FE-SEM 

cross-section images at low (a2, b2 and c2) and high (a3, b3 and c3) resolution. Axial section morphology 

(axial cut for SEM) upon PEG encapsulation (FPCMs) obtained from untreated balsa W+P (d), W-L+P 
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(e), and W-L,H+P (f). The schematic illustrations in the bottom (from left to right) correspond to 

speculative structures and chemical makeup of the systems shown above, a1-3, b1-3, c1-3, respectively.  

3.2 Form-stable composite phase change materials, FPCMs.  

The balsa-based scaffolds (untreated wood W, W-L, and W-L,H) were impregnated with a 

PCM (PEG), forming the FPCMs ((W+P), (W-L+P) and (W-L,H+P)). As shown in Figure 1d, 1e, 

1f, the macro-scale vascular pores of the samples were filled with PEG; no apparent interface 

separation was observed between the inner, PEG-filled areas and the outer wall of the vessels, 

suggesting a good affinity between PEG and the walls of the scaffold. However, compared with 

W-L and W-L,H, which were fully filled with PEG, some holes were observed in the cross section 

of the untreated wood scaffold. In this latter case, plugged pits and thin wall structures, typical of 

early age tracheids, created a confined space that prevented PEG transport and led to void areas 

within the structure [37]. Removal of lignin and hemicellulose expanded the pits and eliminated 

the thin wall structure between the fibrous tracheids, improving the permeability of the scaffold. A 

relative high encapsulation degree was observed for the FPCMs. The interactions between PEG 

and the scaffold in the FPCMs were further investigated by FTIR analyses (Figure S5, S6, and 

S7). The FTIR spectrum of neat PEG includes a broad absorption peak located at 3430 cm-1, 

assigned to the stretching vibration of–OH (hydroxyl groups), and a sharp peak at around 2880 

cm-1 corresponding to the –CH stretching vibration [41]. In the fingerprint zone ranging from 

2000 cm-1 to 500 cm-1, the asymmetric stretching vibration of -C-O groups were observed at 1110 

cm-1. Moreover, the spectral bands at 841 cm-1 correspond to the –CH bending vibration. The 

characteristic FTIR peaks of PEG were all present in the PEG-filled samples based on untreated 

wood (W+P), delignified wood (W-L+P) and delignified, hemicellulose-free (W-L,H+P) FPCMs. 

A high intensity of PEG peaks in W-L+P and W-L,H+P indicate a high loading. Most 

importantly, the absorption peak of –OH in the three FPCMs shifted from 3430 cm-1 to 3390 cm-1, 

suggesting hydrogen bond interactions between the PEG and the substrates [18]. No chemical 
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interaction exists between PEG and the substrates, which is important in preserving the phase 

transition performance of the FPCMs. 

3.3 Scaffold mesopore distribution and encapsulation capacity 

To further investigate the encapsulation of the balsa-based scaffolds, the changes in 

mesoporosity, before and after PEG impregnation, were followed with Brunauer-Emmet-Teller 

(BET) measurements. Figure 2a shows the nitrogen gas adsorption-desorption isotherms of 

untreated wood W, W-L, W-L,H, as well as W-L,H+P. The adsorbed mass for all the samples 

included a slow rise at the onset, it then grew steadily, and eventually became more extensive at 

a steep rate. Meanwhile, hysteresis occurred during the desorption process. The profiles indicate 

type IV isotherms, which are typical of micro- and mesopore with multimodal distribution [34]. 

The untreated balsa wood exhibited inferior of nitrogen physisorption, with a low specific surface 

area (SSA), 2.9 ± 0.4 m2 g-1. After delignification, the SSA increased significantly, 19.2 ± 1.1 m2 

g-1. As expected, the highest nitrogen absorption was observed in the delignified and 

hemicellulose-free sample (W-L,H) with a SSA value of 24.7 ± 2.3 m2 g-1. The removal of lignin 

and hemicellulose also changed the pore volume distribution, Figure 2b. Compared to untreated 

balsa wood, W-L and W-L,H displayed a distinct nanoscale pore structure, 2-20 nm in diameter. 

Meanwhile, the more extensive removal of the amorphous matrix from the cell wall in W-L,H 

correlates with a broad nanopore distribution, with a pore size < 10 nm, similar to the findings by 

Guan et al. [35]. Interestingly, the as-prepared FPCMs displayed an large reduction in porosity, 

ranging from 5 to 90 nm and a very low specific surface are, SSA = 0.77 ± 0.3 m2 g-1, suggesting 

the filling of W-L,H nanopores with PEG, as suggested by the SEM images (Figure 1f).  

A plausible mechanism for the evolution of the nanoscale structure of the scaffolds can be 

suggested, starting with the untreated wood cell wall, where hemicelluloses form a network with 

cellulose microfibrils and lignin (Figure 2c1). The dense structure presents a low SSA and limited 

mesopores. Lignin removal leads to a mesoporous structure in the scaffold (Figure 2c2). 
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Figure 2. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of untreated wood, 

W-L, W-L,H, and W-L,H+P. The mechanism of mesopore evolution is shown for (c1) untreated wood W, 

(c2) W-L, (c3) W-L,H, and (c4) W-L,H+P. (d) Leakage profile (PEG mass fraction as a function of time) 

of the balsa-based FPCMs. (e) Encapsulation capacity of the wood derived scaffolds prepared in this work 

compared to other porous materials reported in the literature.  

In sum, PEG floods the vascular channels and lumen structures as well as the mesopores 

within the cell wall of the balsa-based scaffolds via strong physical interactions including 

capillary forces and hydrogen bonding. This support the PEG solid-to-liquid phase transition 
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W-L+P had a melting and solidification enthalpy of 134.3 J•g-1 and 125.3 J•g-1, respectively. 

Despite the higher PEG encapsulation capacity for W-L,H+P, the enthalpy values remained 

approximately the same 135.0 J•g-1 and 126.1 J•g-1. This is desirable since the support should 

affect minimally the crystallinity of the contained PCM [18] and maintain the enthalpies values as 

close as possible to that of the neat PCM. Table 1 indicates that the measured effective enthalpy 

content (F) of untreated wood FPCM is 52.8%. To put the data in perspective, we use an ideal 

enthalpy content (I) based on the limiting PEG fraction that is retained after 8 h in the melted state 

(I=53.2% for untreated wood) for a F/I (the ratio of the measured effective enthalpy content (F) 

and ideal phase transition enthalpy (I)) equivalent to 0.99. For W-L+P and W-L,H+P the 

calculated F/I amounts to 0.95 and 0.91, respectively, indicating the tradeoff between mass 

loading and PEG encapsulation and the retention of the crystallization enthalpy. 

As we mentioned above, the confined PEG reduces the enthalpies and crystallinity values of 

composite PCMs, resulting in a lower effective enthalpy content (F) than the ideal value (I).To 

better elucidate the influence of the main components in the wood cell wall on PEG crystallinity, 

an additional experiment was conducted (Note S2 and Figure S10) where a series of 

incompletely filled FPCMs were prepared (with reduced PEG content in the lumens). Figure 3c 

summarizes the F/I value of the different FPCMs as a function of PEG loading. A downward 

trend is noted for the FPCMs with PEG loading, indicating that the balsa-based supports 

affected the crystallinity of the encapsulated PEG. Expectedly, compared to the untreated wood, 

a decreasing trend for F/I was shown for chemically treated wood FPCMs; the W-L,H+P system 

showed the lowest F/I value, with the PEG mass fraction of 20 %. The results are rationalized 

by the interactions of PEG with hydroxyl groups, as has been shown for silica, which 

immobilizes PEG molecules by hydrogen bonds, resulting in a change in the crystallization or 

phase transition of the confined PEG compared to that of neat PEG [42]. The available hydroxyl 

groups in cellulose and wood-derived scaffolds play an important role in the crystallization of 
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encapsulated PEG. Among the wood components, hydrophobic lignin presents an inferior 

affinity with hydrophilic PEG. For untreated wood, lignin fills the aligned cellulose microfibrils, 

which reduce the effective adsorption sites (-OH) on the cellulosic surfaces to hydrogen bond 

with PEG (Figure 3d). Therefore, untreated wood has the lowest effect in the crystallization 

behavior of PEG, resulting in no significant reduction of phase transition enthalpy. The removal 

of lignin facilitated hydrogen bonding with cellulose and hemicellulose, hindering the 

crystallization of PEG in W-L+P (Figure S8a). This effect was further promoted by the removal 

of hemicellulose in W-L,H+P (Figure S8b). Thus, while the PEG encapsulation capacity and its 

retention in the liquid state was increased by the removal of lignin and hemicelluloses, PEG 

crystallization was simultaneously affected, leading to differences in phase transition enthalpy. 

 

Figure 3. Thermal performance of balsa-based FPCMs. DSC curves (a) and the degree of supercooling (b) 

of neat PEG, W+P, W-L+P, and W-L,H+P. The ratio of experimental phase change enthalpy to the 
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Supplementary Materials:  

Porosity of balsa wood; lignin and hemicellulose content in balsa wood during the removal 

process over time; FTIR analysis of untreated wood, W-L, W-L,H, W-L+P, W-L,H+P, and pure 

PEG; digital photograph of untreated wood and its longitudinal FE-SEM cross-section images; 

schematic illustration of the interactions between PEG and the FPCM scaffolds; mechanical 

properties test of different wood scaffolds; data of the results of BET test; FPCMs with partially 

loaded with PCM. 
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Highlights 

 • A form-stable phase change material (FPCM) is prepared from balsa  

• Retention of hemicellulose is critical for FPCM performance  

• High PCM loading, compressive strength and stability are obtained 

 • The observed performance of the FPCM is partially explained by PEG affinity with the 
support  

• Reversible thermoregulation is observed for operation at high room temperatures 
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