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How much physics is in a current-voltage curve?
Inferring defect properties from photovoltaic device

measurements
Rachel C. Kurchin, Jeremy R. Poindexter, Ville Vähänissi, Hele Savin, Carlos del Cañizo, Tonio

Buonassisi, Member, IEEE

Abstract—Defect-assisted recombination processes are critical
to understand, as they frequently limit photovoltaic (PV) device
performance. However, the physical parameters governing these
processes can be extremely challenging to measure, requiring
specialized techniques and sample preparation. And yet the fact
that they limit performance as measured by current-voltage (JV)
characterization indicates that they must have some detectable
signal in that measurement. In this work, we use numerical
device models that explicitly account for these parameters
alongside high-throughput JV measurements and Bayesian in-
ference to construct probability distributions over recombination
parameters, showing the ability to recover values consistent
with previously-reported literature measurements. The Bayesian
approach enables easy incorporation of data and models from
other sources; we demonstrate this with temperature dependence
of carrier capture cross-sections. The ability to extract these
fundamental physical parameters from standardized, automated
measurements on completed devices is promising for both estab-
lished industrial PV technologies and newer research-stage ones.

Index Terms—Bayesian parameter estimation, crystalline sili-
con, Shockley-Read-Hall (SRH) recombination, high-throughput
experiment (HTE), high-performance computing (HPC), iron
contamination

I. INTRODUCTION

Recombination mediated by point defects is a performance-
limiting mechanism in many photovoltaic (PV) technologies
[1–3]. Identifying and characterizing these defects is essential
to mitigating their effects. Typically, defect characterization
is performed on wafers or semifabricates using temperature-
and/or injection-dependent lifetime spectroscopy (TIDLS) [4,
5], deep level transient spectroscopy (DLTS) [6–8], and related
spectroscopy techniques. However, these techniques are time-
consuming, and the deep expertise necessary to master them
is rare. Measurements on semifabricates may not be represen-
tative of finished devices, as final processing can affect defect
populations. With the maturation of data-science methods, we
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Fig. 1. Current vs. voltage for uncontaminated and intentionally contaminated
samples at 300K and 1.01 Sun illumination.

explore the possibility of extracting defect information directly
from non-destructive electrical device measurements.

Any defects detrimental to device performance should by
definition have a signature in device performance such as
current-voltage (JV) measurements. However, such a signal
is convoluted with those from so many other physical pro-
cesses that it cannot be extracted or interpreted through a
simple fitting approach, as the fit would be underconstrained.
However, by combining current-voltage measurements at a
range of temperatures and light intensities (JVTi) with physics-
based device models [9–11] and Bayesian statistics, these
signals can be disentangled, providing fits for many types of
underlying parameters, often with greater precision than direct
characterization allows.

We previously demonstrated this Bayesian parameter esti-
mation (BPE) approach to measure materials properties such
as minority carrier mobility and lifetime in a finished tin
sulfide solar cell. [12] The Bayesian framework enables quan-
tifying parameter-specific uncertainty as well as observing
emergent relationships between parameters (such as mobility-
lifetime product in Reference [12]). In this work, we apply this
approach to extract defect-assisted recombination parameters
for interstitial iron in silicon, obtaining results consistent
with reported literature values. Our results demonstrate a
novel approach to extract defect properties from inexpensive
measurements of completed devices, demonstrating promise
for characterization of both established and novel PV tech-
nologies.
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II. METHODS

A. Experimental Methods

For this study, silicon solar cells were obtained from the
same set used in previous work where samples were inten-
tionally contaminated with specific amounts of interstitial iron
(Fei); see Ref. [13] (“60A” samples) for details regarding
sample fabrication and measurements of iron concentration.
Two of these samples were further characterized in this work:
one intentionally contaminated sample with a known Fei
concentration of 2×1012 cm−3 (after gettering), and a control
sample with no intentional contamination (with estimated
[Fei] ≤ 1010 cm−3, based on measurement detection limits).
Measurements were first performed on a 1-Sun (AM1.5G,
1000W/m2) solar simulator setup (Newport Oriel Sol3A, class
AAA, 450 W Xe lamp, AM1.5G filter, Keithley 2400) to
verify open-circuit voltage degradation of less than 1.5% rel.
since the samples were first fabricated. Samples were apertured
during all JV and JVTi measurements to ensure accurate short-
circuit current values would be obtained. QE (PV Measure-
ments QEX7, 300–1100 nm, 75 W Xe lamp, Spectral Products
CM110 monochromator) and reflectance data (Perkin-Elmer
Lambda 950 UV-Vis spectrophotometer, 150 mm integrating
sphere) were also obtained for the purposes of fitting to the
PC1D model (see below).

JVTi measurements were performed under vacuum (approx.
10−3–10−5 Torr) using a liquid helium cryostat (ARS DE-
204SI) and compressor (ARS-4HW) to reach colder sample
temperatures while avoiding the condensation of atmospheric
species; measurements were taken from 300 to 175 K at
increments of 25 K. Precise temperature control within ±1
K was achieved by placing a thermocouple (Omega CY670)
directly on the sample surface and using a polyimide resistive
heater (Minco HAP6943) and PID temperature controller
(Lakeshore 331) to control total heat flux to the sample.
Sample illumination at four different intensities (1.01, 0.69,
0.31, and 0.09 Suns, measured with a silicon photodiode)
was achieved using a Newport Oriel Solar Simulator (LCS-
100, class ABB, 1.5”×1.5” uniform output) along with an
array of neutral-density filters placed within two filter wheels
(Thorlabs FW102C). JV sweeps were performed using a
Keithley 2400 sourcemeter. To ensure all iron present was
in the form of Fei (vs. Fe-B pairs), samples were soaked
for 15 min at 1 Sun and 300 K before measurements began,
as suggested from calculations of temperature-dependent re-
pairing rates based on Refs. [14] and [15]. JV data at 300K
and 1 Sun illumination are shown in Figure 1. For more JV
data and figures of merit (open-circuit voltage, short-circuit
current, fill factor), see SI Figures S3 and S4. Diffusion length
measurements on a reference wafer performed concurrently
with the work in Reference [13] of 140 and 55 µm before and
after a light soak, respectively, further support the assertion
that Fei is the limiting defect. Furthermore, QE measurements
(See SI Figure S5) show little difference between samples
in the low wavelengths, indicating negligible differences in
junction quality.

B. Computational Methods
The 1-Sun JV, quantum efficiency (QE), and reflectance

measurements were used to construct a numerical device
model accessed by the Bayesian inference framework (see
below). The use of a modified, command-line version of
PC1D [9, 10] enabled scripted methods for modifying sim-
ulation parameters. Specific input parameters were obtained
from previous measurements [13], estimated from literature
values, or varied in the model to match the JV, QE, and
reflectance data of the uncontaminated sample. A full list of
device parameters is listed in the Supplementary Information
(Tables S1-3).

For the 3-parameter analyses at separate temperatures
(shown in Figure 2), BPE was performed on a 3D grid
of 36 logarithmically spaced points from 10−11 to 10−5 s
in τn, 28 logarithmically spaced points from 10−5 to 10−1

s in τp, and 28 linearly spaced points spanning from the
valence band maximum to the conduction band minimum
(with energies referenced to the intrinsic Fermi level) in
Et. For the 5-parameter analysis, the grid consisted of 16
logarithmically spaced points from 10−19 to 10−15 cm2 in
σn0, 12 logarithmically spaced points from 10−16 to 10−13

cm2 in σp0, 8 linearly spaced points from 0.15 to 0.23 eV in
Ea,n, 9 linearly spaced points from -0.12 to -0.03 eV in Ea,p,
and 16 linearly spaced points from the valence band maximum
to 0.16 eV below the conduction band minimum in Et.

Uniform priors (equal initial probability in every grid box)
were used in each analysis; it is worth noting that with
hundreds of experimental data points, the final outputs are
not very sensitive to the choice of prior. Model uncertainty is
estimated from numerical derivatives of model output along
the parameter grid, and the standard deviation is taken as the
maximum of the model uncertainty and the pre-characterized
experimental noise level. We used a modified Gaussian likeli-
hood, wherein the argument was only ever evaluated as an
integer number of standard deviations. This has the effect
of spreading probability out along grid boxes and reducing
incidence of artificially low probability densities arising from
the maximally correct parameter space point lying near the
edge of a box. This is especially important for the analysis
undertaken here, where the output variable can vary extremely
sensitively with the input parameters in certain regions of the
parameter space.

These BPE calculations were performed using the
Bayesim package, for more details see Reference [16],
the source code on Github (https://github.com/
PV-Lab/bayesim), and/or the package documentation
at https://pv-lab.github.io/bayesim/_build/
html/index.html. PC1D simulations were run on MIT
Supercloud [17] using Wine [18] and the LLMapRe-
duce [19] function. Code to reproduce figures plotted herein
is available at https://github.com/PV-Lab/Fe_Si_
Bayes_code.

III. THREE-PARAMETER FITS AT SEPARATE
TEMPERATURES

Defect-assisted recombination is described by the Shockley-
Read-Hall (SRH)[20, 21] equation, where the SRH lifetime
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Fig. 2. Visualizations of results of three-parameter fit for contaminated sample at 300K. a) Probability distribution, with single-variable marginalizations
along the diagonal and two-variable marginalizations off-diagonal. Two-variable marginalizations have increased contrast relative to defaults (with intensity of
color proportional to square root of probability rather than its value) to better show shapes. b) Simulated SRH lifetime vs. injection for the highest probability
sets of parameters. Intensity of lines proportional to probability, top 80 parameter sets (corresponding to 46% of total probability mass) shown. Green region
shows simulated data based on ranges of parameters found in the literature. c) Marginalization between Et and τn from (a) (but with default visualization
contrast) with calculated iso-injection curves overlaid.Each curve differs from the next by a factor of 10.

τSRH is given by:

τSRH =
τn

(
n+ ni exp

(
Et−Ei
kBT

))
+ τp

(
p+ ni exp

(
Ei−Et
kBT

))
np− n2i

,

(1)
where n, p are the concentrations of electrons and holes,
respectively, ni is the intrinsic electron concentration, Et is
the energy level of the defect (trap), Ei is the intrinsic Fermi
level, T is temperature, kB is Boltzmann’s constant, and the
lifetime parameters τn, τp are given by:

τn =
1

Ntσnvth,n
(2)

τp =
1

Ntσpvth,p
, (3)

where Nt is the defect concentration, σn and σp are the defect
capture cross sections for electrons and holes, respectively, and
vth,n, vth,p are the thermal velocities of electrons and holes,
respectively.

Interstitial iron is one of the most detrimental (and hence
best characterized) point defects in silicon PV devices. In
this work, we seek to characterize τn, τp, and Et from JVTi
measurements. Varying temperature and illumination intensity
is critical to distinguish the influences of different defect

parameters. These dependencies on experimental conditions
are encoded in PC1D [9, 10], the device simulation software
we chose for this study. (For a visualization of the impact
of various parameters, see Figure S1) In general, carrier con-
centrations depend linearly on light intensity. PC1D does not
explicitly include temperature dependence of capture cross-
sections; we account for this ourselves and the mathematical
model is discussed below (see Equations (4) and (5)).

Using JV measurements taken from 175–300 K and 0.09–1
Sun, we first construct posterior probability distributions (for-
mally, because they are discrete, probability mass functions, or
PMF’s) over τn, τp, and Et at each temperature separately.(See
Methods section for discussion of special likelihood function
to capture the correct iso-probability-density curve shapes) An
example (at 300 K) is plotted in Figure 2a (See Supplementary
Figures S6 and S7 for what this plot would look like with data
from only one voltage point and only one illumination level,
respectively). Note that, as expected, this PMF does not show
a unique high-probability point, as it has been well-established
in the literature [4, 22] that without measurements at multiple
temperatures and/or doping levels, the SRH equations do not
have a unique solution. (We will incorporate data from mul-
tiple temperatures into a single fit in the subsequent section,
but this simpler analysis can nonetheless be illustrative.)

Next, we choose the highest-probability regions in this
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three-dimensional parameter space and use them to construct
simulated SRH lifetime curves as a function of carrier injection
level, shown in Figure 2b. Also shown (in green) is the range
corresponding to the ranges of parameters reported in the
literature [4, 23] and constructed using tabulated values for
thermal velocities in silicon [24] and previously-characterized
defect densities on this sample [13]. The simulated curves
from this study are generally within the literature ranges (see
discussion below regarding disagreement at high injection).

Figure 2c shows the marginal distribution between τn and
Et from Figure 2a, with iso-injection curves overlaid. These
were constructed using a fixed τp value for the purposes of
visualization, chosen as roughly the center (i.e. logarithmic
average) of the high-density region in Figure 2a. τSRH was
fixed to the logarithmic average over the range computed
from literature parameters in Figure 2b, and then Equation (1)
inverted to give a relationship between τn and Et. The results
are consistent with the fact that these devices should be in low
injection under the illumination levels used. (Interestingly, in
Figure 2b we also see a better agreement with literature in
low injection, emphasizing the importance of data spanning
all relevant conditions to get the best fit.) This analysis again
demonstrates that similar information to lifetime spectroscopy
can be gleaned from our approach.

IV. FIVE-PARAMETER FIT ACROSS ALL TEMPERATURES

As alluded to above, because thermal velocities in silicon
are tabulated and trap density in this sample has been charac-
terized, we can directly correspond time constants to capture
cross sections (see Equations (2) and (3)). A widely-accepted
model for carrier capture is as a thermally activated pro-
cess [23, 25] Implementing such a model allows an Arrhenius
relation to be used for each capture cross-section, introducing
two new parameters for each carrier: a prefactor σ0 and an
activation energy Ea:

σn = σn0e
Ea,n/kBT (4)

σp = σp0e
Ea,p/kBT . (5)

The parameter space is now five-dimensional, but we can
also constrain a single posterior distribution using all the
data rather than needing separate fits at each temperature.
The probability distribution resulting from this analysis is
shown in Figure S2. Moving forward, we focus on σp in
literature data comparisons, because significantly more data
has been reported than for σn. Figure 3a shows an excerpt
from Figure S2, namely, the marginalization between Ea,p
and σp0. The line of similar posterior probability seen in
Figure 3a (note that σp0 is logarithmically spaced) represents
the inherent tradeoff between prefactor and activation energy
when fitting an exponential model like this over a finite
temperature range. This tradeoff is clear from Figure 3b, which
shows the literature-sourced σp values at discrete temperatures
as well as the lines corresponding to the highest-probability
Arrhenius parameter sets from this analysis. See SI Figure
S3 for comparisons between modeled and observed JV data
at all sets of experimental conditions. Literature values are

Fig. 3. a) Ea,p-σp0 marginalization from five-parameter Arrhenius fit.
(Excerpt from Figure S2) b) σp data from literature (References 23, 26–
32) with inferred Arrhenius fits, intensity of line proportional to probability
of parameters, and Arrhenius fit from literature [23]. c) Marginalization from
(a) conditioned on Ea,p value being within .01 eV of the literature value of
-0.045 eV. d) Same plot as (b) but for the marginalized PMF from (c). (top
20 Arrhenius fit parameter sets plotted in both (b) and (d))

from Refs. [26–32] and were originally collated by Ref. [23];
acquisition methods include DLTS, thermally stimulated ca-
pacitance (TSCAP, a predecessor technique to DLTS), and Hall
effect.

The dotted line in Figure 3b represents the Arrhenius fit
from Ref. [23]. However, that fit allowed only the prefactor
to vary, fixing the activation energy according to the results
of a separate measurement, while in our analysis we allowed
the activation energy to be a fitting parameter. A strength
of the Bayesian approach is that information from such a
measurement can be explicitly incorporated via conditioning
the posterior distribution further. To do this, we simply set the
probability to zero in all grid boxes that do not have activation
energies near this value (-0.045 eV), then renormalize the
overall distribution. After this operation, Figure 3a becomes
Figure 3c, and 3b becomes 3d, with the results agreeing even
more closely with the literature fit.

V. CONCLUSIONS

In this work, we demonstrate the ability to extract SRH
recombination parameters from device-level measurements
(rather than characterization of semifabricates) and Bayesian
parameter estimation utilizing a modified Gaussian likliehood
that yields comparable results to TIDLS and DLTS. In partic-
ular, our results fall well within the range of values reported
by different DLTS practitioners, and simulated IDLS data are
also in agreement. However, our approach utilizes a much
simpler and more widely applicable experimental setup – a
temperature-controlled JV stage with a solar simulator and
neutral-density filters, making defect characterization poten-
tially accessible to a broader range of researchers, including
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those investigating earlier-stage materials. Furthermore, JV
measurement is a standard industrial characterization tech-
nique, meaning this approach could be integrated into man-
ufacturing environments where samples from production lines
could be tested using this technique to provide valuable
feedback into impurities introduced during the manufacturing
process, potentially utilizing sample heating rather than (or
in addition to) cooling to remove the need for a cryostat.
It also shifts a significant number of person-hours of effort
to computational resources, which are becoming increas-
ingly inexpensive, plentiful, and user-friendly. In addition,
the Bayesian framework allows easy incorporation of any
preexisting information from other sources, such as (in this
work) parametrization of thermal velocity or prior characteri-
zation of trap density or capture barrier. We note that within
the range of experimental conditions of our measurements
(in particular, all measurements being in the low-injection
regime), we were not able to significantly constrain the trap
level. This would likely be resolved with a setup capable
of concentrated measurements significantly above 1 Sun of
illumination. Another interesting direction in this regard would
be applying the BPE approach to Suns-Voc measurements.

In this study, we investigated a system (interstitial iron)
for which parameters have been extensively reported in the
literature to allow for validation of results. We believe that
this approach could be used for identification of unknown
defects provided that there is reasonable confidence of one
defect dominating the SRH signal (a frequent but not universal
occurrence). However, if multiple defects were present, it is
likely that some prior knowledge constraining their parameters
relative to each other would be needed, as it has been shown
that unambiguous identification of two defects is not feasible
in all cases. [33]

We emphasize that in any analysis of this kind, the quality
of the results obtained is strictly bounded above by the appli-
cability of the model whose parameters are being estimated.
For example, if in reality the temperature dependence of
capture cross sections deviates from a thermally activated
model, the meaning of the associated parameters and their
probability distributions could be called into doubt as well.
(Some authors [34, 35] have also suggested a power law
relationship between capture cross section and temperature.)

This work represents a simple, rapid (O(1 day) each exper-
iment time and simulation time on a sufficient HPC cluster)
approach to access SRH parameters from finished devices,
which promises to be useful both in screening of novel PV
materials as well as characterizing better-known ones, as
defect parameter data is generally very sparse in literature due
to the complexity of its collection.
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