Kurvinen, Joni; Kahkonen, Henri; Lehtovuori, Anu; Ala-Laurinaho, Juha; Viikari, Ville

Co-Designed mm-Wave and LTE Handset Antennas

Published in:
IEEE Transactions on Antennas and Propagation

DOI:
10.1109/TAP.2018.2888823

Published: 01/03/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1109/TAP.2018.2888823
Co-Designed mm-Wave and LTE Handset Antennas

Joni Kurvinen, Henri Kähkönen, Anu Lehtovuori, Juha Ala-Laurinaho, and Ville Viikari, Senior Member, IEEE

Abstract—Fifth generation (5G) mobile networks will introduce several new frequencies for short-range high-capacity communications. Future handsets must also support current frequency bands for backward compatibility and long-range communications. This paper presents a proof-of-concept solution for co-designed millimeter-wave (mm-wave) and Long Term Evolution (LTE) antennas in a metal-rimmed handset. The design shows that both antenna types can be accommodated in a shared volume and be integrated into the same structure. Presented antennas operate at 700–960 MHz, 1710–2690 MHz, and 25–50 GHz. Simulations and measurements suggest that the system can be designed in such a way that the mm-wave antenna does not hinder the low-band performance. LTE antennas generally reach over 60% total efficiency while the mm-wave module has a peak gain of 7 dBi with measurement-verified beam-steering capability. The proposed design proves that 5G mm-wave antennas can be embedded to 4G systems without greatly sacrificing display size or sub-6 GHz antenna performance.

Index Terms—Beam-steering, endfire, fifth generation (5G), handset antenna, Long Term Evolution (LTE), metal rim, millimeter-wave (mm-wave), Vivaldi antenna.

I. INTRODUCTION

FIFTH GENERATION (5G) mobile networks will provide means for high-capacity communications by allocating new frequency bands in the RF-spectrum. The foreseen millimeter-wave (mm-wave) frequencies are expected to enable up to 1000 times higher data rates due to obtainable wide bandwidths [1]. Hence, the coming standard has raised interest to place mm-wave antennas in mobile devices, especially in the promising 28 GHz region, as shown in many recently published papers [2]–[12]. Besides the scientific community, also the industry is very interested in the available spectrum around 28 GHz [13]–[15].

Traditional ways to increase transmission rates include applying multiple-input multiple-output (MIMO) and carrier aggregation (CA) techniques. These methods require several antennas, and as known, the usable space for antennas in the mobile devices is very limited. Restricted volume is even more of a challenge for the Long Term Evolution (LTE) antennas, due to antennas required for other applications such as Wi-Fi and GPS. An increased number of antennas means reducing the size of a single antenna, which decreases its efficiency and weakens the overall performance. Especially at the LTE low band (LB) below 1 GHz, at which the antennas consume the most space, this challenge is emphasized. Furthermore, the LB antenna performance is easily deteriorated by other nearby antennas, even if they operate on different frequencies.

As the space is limited, it is important to integrate the antennas into the body of the handset. At present, many commercial smartphones have a metal rim, which is commonly utilized for the LTE antennas [16]–[20]. However, the coming mm-wave antennas require beam-steering, and hence, the antenna is an array of small elements. Therefore, it is not practical to integrate them into the metal frame in the same way as LTE antennas. The whole mm-wave module requires space, and thus, it might negatively affect the sub-6 GHz antennas. For that reason, both antenna types should be considered while designing antennas for 5G smartphones.

To the best of authors’ knowledge, there are not many papers that include both the LTE and mm-wave antennas. This paper presents a proof-of-concept solution for the co-design of LTE and mm-wave antennas in the shared structure, in particular, in such a way that the same volume is required as when designing the LTE antennas only and still keeping the antennas well isolated and their performance not affected by each other. Fig. 1 illustrates the concept of embedding the mm-wave module in the LTE structure. Generally, similar mm-wave modules could be placed on all sides of the device for better coverage and connectivity, but in this paper, we focus on having the two antenna types within the same volume.

Traditionally, the short edges of a smartphone are reserved for the LTE main and diversity antennas. For example, in [3] and [12], mm-wave antennas are located on the sides...
First, we have designed the mm-wave antenna separately. After having that antenna working in the simulations, we moved to the LTE antennas. The space reservation for the mm-wave antenna is considered while designing the LTE antennas. Also, in this phase, we use the whole phone model, whereas in the initial mm-wave antenna design, we used only a small section of the metal frame. The final step is the co-design by embedding the mm-wave module to the LTE antenna. At this point, some fine-tuning of the dimensions and redesigning of matching circuit was required to achieve the desired performance. To verify the simulation results of the embedded antennas, we built and measured a prototype of the co-design.

A. Specifications

As we are presenting a proof of concept of a 5G handset antenna system, we use a simplified phone model with size of $150 \times 75 \times 7$ mm3, which corresponds to the size of current popular commercial smartphones. Antennas are specified to operate at LTE frequencies 700-960 MHz and 1710–2690 MHz and at mm-wave frequency band 25–30 GHz.

The model that we use in our design is for common metal-rimmed phones. The LTE antennas are integrated to the side rim for efficient use of small available volume. The main PCB acts as an RF-ground for the antennas. The used substrate is 0.8-mm thick FR-4 ($\varepsilon_r = 4.3, \tan \delta = 0.025$), and copper plating models the display of the phone. The ground clearance for the LTE antennas is 10 mm.

The mm-wave antenna is implemented on a separate PCB, a 0.101-mm thick Rogers RO4350B substrate ($\varepsilon_r = 3.48, \tan \delta = 0.0037$) enclosed by PREPERM L450 ($\varepsilon_r = 4.5, \tan \delta = 0.0005$) RF-optimized injection moldable plastic. For appropriate radiation performance of the mm-wave antenna, a window must be cut into the metal rim. The size of the mm-wave block should be less than $25 \times 10 \times 6$ mm3 in order to fit within the volume of the LTE antenna and to keep the window size reasonable.

B. Objectives

The performance of both antennas is evaluated with impedance matching, total efficiency, and also with the beam-steering capability in the mm-wave case. For the LTE antennas, the targets for the impedance matching and total efficiency are -6 dB and 60%, respectively, over the whole bands. In addition, the isolation should be at least 15 dB between LB and HB.

The impedance matching target for the mm-wave antenna is below -10 dB. Also, more than 6 dBi of realized gain is desired with ability to steer the beam at least $\pm 25^\circ$.

The main objective is to show that we can achieve good individual performance in both the LTE and the mm-wave antennas in a co-designed system, where the antennas are placed within the same volume. Hence, it is critical that the two antennas do not deteriorate each other’s performance. The aimed low interaction between the two antenna systems should enable us to design them separately, which significantly simplifies and speeds up the design process. As the focus is in the co-design, e.g., implementing MIMO capability to this
such large elements would be difficult to fit inside a mobile planar configurations [6], [21]. A single Vivaldi antenna is usually more than a wavelength in length and width but with such large elements would be difficult to fit inside a mobile phone and could not be electronically steered. In an array configuration, the mutual coupling between the antenna elements improves the matching compared to a similar isolated antenna. Typically, the mutual coupling is used in the optimization of larger electronically scanned arrays but the same method can also be applied successfully to smaller arrays when the elements are properly designed.

To compensate the increased path loss, mm-wave antennas are used in arrays to produce narrow beam and thereby have more gain. However, narrow beam requires pointing directly toward the base station. Thus, mm-wave antennas have to be beam-steerable to handle the random handset orientation and unknown location of the base station.

Another difference is targeted matching levels. Whereas the LTE antennas are traditionally designed for matching level of −6 dB, mm-wave antennas are designed with target of at least −10 dB. Also, dual-polarization is desired by the industry from 5G antennas to avoid polarization mismatch losses and, hence, to improve the connectivity and link quality. However, realizing dual-polarized mm-wave antennas is out of the scope of this paper.

Having a system that supports low frequencies and over 10 times higher mm-wave band brings up simulation challenges. Simulating the whole board is computationally heavy and mostly unnecessary, thus, simulations are conducted separately for LTE and mm-wave bands. Another issue is that mm-wave structure consists of much smaller details compared to the significantly shorter wavelength. Especially when simulating LTE bands this causes problems when constructing the mesh around the structure. Small details to be modeled properly in lower frequencies require a huge amount of mesh cells, which increases the simulation time remarkably. Last simulation challenges come up with the circuit simulations. The lumped elements that we are using for the LTE antennas are specified for up to 8 GHz only, and hence, we cannot by simulations investigate if the LTE antennas cause troubles in the mm-wave band.

III. mm-WAVE ANTENNA

Tapered slot antennas or Vivaldi antennas are known to be good candidates for wideband beam-steerable antennas and their structure has been studied experimentally in linear and planar configurations [6], [21]. A single Vivaldi antenna is usually more than a wavelength in length and width but with such large elements would be difficult to fit inside a mobile

\[x = c_1 e^{\frac{R y}{R_{y2}}} + c_2 \]

where

\[c_1 = \frac{x_2 - x_1}{e^{R_{y2}} - e^{R_{y1}}} \]

\[c_2 = \frac{x_1 e^{R_{y2}} - x_2 e^{R_{y1}}}{e^{R_{y2}} - e^{R_{y1}}} \]
where y_1 and x_1 define the starting point of the tapering, and y_2 and x_2 define the endpoint. R is the opening rate of the tapered slot and it is used as an optimization parameter. The tapering slot is terminated to a circular cavity and the slot is fed with a microstrip which is terminated with a stub. Small cutouts are used between the elements to modify the mutual coupling between the elements to improve the matching. The used PCB substrate is 0.101-mm thick RO4350B as it provides reasonably good rigidity and low losses even with such a thin substrate. The plastic used to enclose the antenna array is PREPERM L450 with a dielectric constant of approximately 4.5. The selected dielectric offers a good compromise between the matching and the size of the hole in the metal rim. Higher permittivity of the plastic would slightly scale down the dimensions of the window but is, however, impractical to use as matching the antenna becomes a very challenging task. Fig. 3 shows the full antenna array and the plastic enclosure.

Ideally, each of the array elements would be fed with separate RF-chains or phase shifters to enable the electronic scanning. In this initial demonstration, however, three different PCBs with different progressive phase shifts between the elements are used. This enables us to measure three separate cases, which are used to demonstrate the beam-steering capability. In addition to the broadside radiation pattern, setups with 50° and 100° phase shifts between the elements were selected to be manufactured and measured. The different designs with the power dividers are shown in Fig. 4.

The size of the PCB for this demonstration is quite large and would not be used as such in a mobile phone. In an actual mobile phone with phase shifters or separate RF-chains, the antenna structure itself would only be approximately the size of the plastic used to enclose the PCB containing the antennas.

IV. CO-DESIGN OF THE LTE ANTENNA

The main objective of this co-design is to achieve good individual performance for both antennas. Crucial issue is to have the interaction between the two systems as low as possible.

A. Antenna Structure

The designed LTE antenna is integrated into the metal rim. The rim acts as a capacitive coupling element (CCE). It covers LTE LB at 700–960 MHz and HB at 1710–2690 MHz. Both bands are covered with the same element to save space for other possible antennas and subsystems in the device.

The antenna is placed at the lower end of the phone, which is the common location for the LTE main antenna. This configuration leaves the other end free for the diversity antenna for possible MIMO communications. However, the MIMO implementation is not included in this paper.

A CCE is chosen as the antenna type due to its simple and compact design and ability to achieve relatively wide bandwidth. Also, CCEs are commonly used in metal-rimmed smartphones [16], [22], [23], thus, it is a good choice for this proof-of-concept design. The structural optimization is done without the mm-wave module present, only its space reservation is taken into account, e.g., when choosing feed positions. In the optimization process, the matching circuitry plays a larger role than structural dimensions. When the mm-wave module is added to the design, the clearance and impedance of the LTE antenna change. Thus, the original matching networks become inapplicable and the circuitries must be redesigned.

LB and HB are realized with their own feeding structures to improve performance in both bands. Antenna structures and feeding networks are adopted from [20] and [24]–[26] combined with aperture matching. The structure is illustrated in Fig. 5. Due to the USB-port, the mm-wave module cannot be placed in the center of the rim and, thus, is located next to the USB. The module reserves nearly the whole area on its side, thus, LB and HB feeds are located on the opposite side. This also minimizes the possible negative effects of having the mm-wave module in the same volume with the LTE antennas. Fig. 6 shows the rim with the plastic-filled window that has aperture size of 23×4 mm2.
As the Vivaldi array is optimized to out of the desired band resulting in strong sidelobes and the antenna and, hence, shift the resonance frequency to be out of the desired band resulting in strong sidelobes and weakened realized gain. As the Vivaldi array is optimized to this plastic-filled window, we obtain a similar radiation pattern and efficiency as a normal Vivaldi array in the free space without any mobile phone structures surrounding it.

The size of the window is optimized to be as small as possible but still large enough for the mm-wave module. The height of the window should be at least half of the effective wavelength, which favors for filling the window with high-permittivity material to keep the window practically small. Otherwise, the propagating wave is below cutoff and will not radiate. On the other hand, the LTE element requires a path for currents, and therefore, the rim cannot be completely cut to separate pieces. The width of the window is determined by the number of elements in the Vivaldi array. Increasing the number elements in the array, e.g., to improve gain and scanning angle would make the plastic-filled window larger. Thus, the LTE antenna should be redesigned to avoid overlapping the mm-wave module with the LTE feeds.

The main source of interaction between the mm-wave and LTE antennas is the plastic-filled window. In practice, the mm-wave antenna is only affected by the window in the metal rim, and as far as the window dimensions are known, the LTE antenna does not need to be taken into account in the design of the mm-wave antenna. However, the LTE antenna is sensitive to the mm-wave module as it affects the clearance and impedance of the LTE antenna. The effect, however, is small enough so that the LTE antenna shape does not need to be redesigned but only the matching network.

Windows in the metal rim could act as slot antennas. This clearly is not desired as the designed antennas are CCEs and a Vivaldi array. Fig. 8 shows the simulated surface currents at all operational bands. At the LTE bands, in Fig. 8(a) and (b), the current is distributed evenly in the rim, and thus, the effect of the slot on the radiation is small. Especially at the mm-waveband, it is clear that the Vivaldi array produces the radiation. Moreover, working beam-steering capability requires the radiating element to be the antenna array instead of the window.

V. Prototype Experiments

The prototype is manufactured carefully based on the simulation model according to the specifications described in
Section II-A. The prototype is shown in Fig. 9. The metal frame is made of 0.125-mm thick laser-cut tin-bronze alloy. The plastic enclosing the mm-wave PCB is glued to the chassis. The main PCB is modified with a milled hole to fit the end-launch connector required for mm-wave feeding. Before manufacturing the prototype, it was verified by simulations that the hole in the ground plane does not affect the LTE performance.

A. Measurement Setups

The measurements consisted of S-parameter measurements with vector network analyzer and far-field measurements. The far-field of the LTE antenna was measured with MVG StarLab and mm-wave antenna with NSI2000 planar near-field scanner equipped with WR-28 measurement probe. Both measurement systems measure the near-field of the antenna, and then perform a near-field-to-far-field transformation.

B. mm-Wave Performance

Matching levels for the three different beam-steering angles are shown in Fig. 10. In each case, the simulated and the measured reflection coefficients behave differently. Despite the differences between simulations and measurements, the antenna is very well matched with at least -10 dB across the whole band for all three phase shifters.

Another important factor for the mm-wave antenna is the beam-steering capability. Fig. 11 shows this performance at 26 and 28 GHz. In Fig. 11(a), we notice that measurements match with simulations rather well at 26 GHz and the desired beam-steering directions are obtained, the maximum direction locating around $\pm 30^\circ$. Peak realized gains are around 5–7 dBi in measurements. Simulated values are slightly higher with 50° or 100° progressive phase shifts.

Fig. 11(b) shows that the realized gain patterns are similar in simulations and measurements at 28 GHz. However, the measured peak values are around 5 dBi, which is 2 dB less than in simulations, except in 100° case, which is of same level. The desired beam-steering directions are also achieved at this frequency, with the maximum at almost $\pm 40^\circ$.

The differences between simulations and measurements might be caused by inaccuracies in the manufacturing process. Possible reasons are that the PCB is not pushed deep enough inside the plastic, the PCB is not centered and aligned with the plastic, or the whole module is slightly tilted with respect to the chassis and the window in the frame. Both steps of assembling the mm-wave prototype, i.e., attaching the PCB to the narrow drilling in the plastic and placing the module into the chassis, are done manually by hand. At mm-wave frequencies, the tolerances are very tight, and even misalignments of fractions of a millimeter will affect the antenna performance. However, this structure is quite robust against these small errors, as its measured performance is very good despite the differences to simulations, especially in matching.
As the exact mm-wave frequency bands are not yet allocated, the used band varies remarkably in different publications. In [6], [10], and [12], the supported band is just around 28 GHz, while our antenna and designs in [3], [4], [7]–[9], and [11] are able to operate on a several gigahertz-wide band around 28 GHz. Peak gain varies mainly from 5 to 15 dBi between publications, whereas our maximum realized gain is 7 dBi. However, our array consists of only four elements, while all other designs have eight or even more elements. Smaller array also allows the module to be physically more compact. In particular, we have verified the beam-steering capability by measurements, while other works have only simulated that. Even though the coverage is better in broadside patterns, the verified beam-steering significantly improves our endfire array. Also, our module is easily applicable to different MIMO configurations for better coverage. Considering the small array size of our mobile Vivaldi design, it performs very well against other published mm-wave antennas for smartphones.

C. LTE Performance

The measured and simulated S-parameters are shown in Fig. 12. The system achieves -6 dB impedance matching for both bands, and despite realizing LB and HB in the same element the mutual coupling between them is below -15 dB. The measured S-parameters agree with simulations as well as matching on both bands is also at least -6 dB and coupling is slightly better than in simulations. The figure also shows that the effect of adding the mm-wave module to the LTE structure is small enough as the matching levels are good after redesigning the matching networks. Coupling between LTE and mm-wave antennas is below -40 dB in the operational LTE bands in simulations. In addition, in a realistic system, both antenna types would have their own RF-transceivers. As the operational bands are far from each other, the direct port-to-port coupling between the systems would not be an issue in this case.

The total antenna efficiency is over 60% for both bands in simulations, as Fig. 13 presents. In measurements, a similar performance is achieved. At the LB, the measured efficiency is 50% at band edges but peaks at 90%, i.e., higher than in simulations. At HB, the measured efficiency varies between 60% and 80% with slightly lower maximum values than in simulations.

Fig. 14 shows the total E-field radiation patterns at both LTE bands in the azimuth and elevation planes. As desired, the azimuth patterns are pretty omnidirectional, and hence, the predicted pattern is not heavily affected by the mm-wave module. The measured patterns are pretty similar with simulations. Small differences between the simulated and measured patterns are most likely caused by the end-launch connector attached to the mm-wave PCB, which was not included in the simulations. For example, at 2.4 GHz, the total efficiency is good but in the azimuth plane the radiation pattern level is clearly lower in measured results than in simulated ones. Also, it is noticed that the antennas radiate better toward other directions, as in elevation plane the simulated and measured patterns are almost identical.

Comparing the LTE performance of this design with similar previously proposed antennas [17], [19], [20] shows our performance is of the same level in total efficiency. The main difference is that in many of other publications the lowest supported frequency is around 800 MHz [19], [20]. In [17], the whole LB is supported, but its reconfigurable structure allows only to use very narrow frequency bands at a time. Our passive implementation covers the whole band and supports carrier aggregation.

D. State-of-the-Art Comparison

To the best of authors’ knowledge, a combined LTE and mm-wave smartphone antenna systems have been published only in [2], which therefore can be considered as the
current state-of-the-art. Despite the design goals having been different, the compared figures-of-merit (FoM) are collected in Table II.

In LTE operations, our design outperforms [2] with larger supported bands and slightly higher peak efficiencies. Although our design does not have MIMO support, it could simply be implemented to the other end of our device. Moreover, [2] covers only a small LTE band with rather large antenna element, thus with MIMO support the space consumption is significant.

In mm-wave performance, our design covers significantly larger frequency spectrum in the possible 5G band around 28 GHz. Also, the proposed system achieves nearly the same peak realized gain with smaller array. The design in [2] probably covers a larger area with its broadside radiation pattern compared to our endfire radiation but to improve our coverage we have verified by measurements a working beam-steering capability. Also, our mm-wave module can be placed within the same volume that the LTE antenna consumes, whereas [2] requires additional space.

This paper excludes many realistic and probably required aspects of future smartphones. Continuation work includes, e.g., realizing dual-polarization and larger beam-steering coverage at the mm-wave band and implementing MIMO at LTE bands. As the plastic-enclosure of the mm-wave antenna allows a low interaction with the LTE antenna, it is likely that the same co-design method could be used with other mm-wave structures as well. Then, e.g., a dual-polarized array could be included in this structure. In this design, we demonstrated the beam-steering capability with only three cases but with real phase shifters, we can have larger phase shifts between the elements and, thus, wider beam-steering coverage. Also, the general angular coverage can be simply improved by adding more similar mm-wave modules around the phone, as we suggested in Fig. 1. Furthermore, the gain of the array could be enhanced by increasing the number of elements as far as there is space available to increase the physical dimensions of the mm-wave antenna.

TABLE II

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>COMPARISON OF THIS PAPER WITH THE STATE-OF-THE-ART</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>This work</td>
</tr>
<tr>
<td>LTE</td>
<td></td>
</tr>
<tr>
<td>Volume (one antenna)</td>
<td>75 x 8 x 7 mm³</td>
</tr>
<tr>
<td>Low band</td>
<td>700–960 MHz</td>
</tr>
<tr>
<td>High band</td>
<td>1710–2690 MHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>50–90 %</td>
</tr>
<tr>
<td>MIMO</td>
<td>No</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

This paper presented a proof-of-concept co-design for mm-wave and LTE antennas in a shared volume inside a metal-rimmed handset. Measurement results show that both antennas can operate independently without deteriorating each other's performance. Implementing both LTE LB and HB on the same structure saves space, and the used multi-feed system enables good performance with total efficiency being over 60%. The Vivaldi array designed for mm-wave communications enables wideband performance around 28 GHz with measured peak realized a gain of 7 dBi. The structure also supports beam-steering angles of at least ±25°, which is verified by measurements with three different power division feed networks. Designing the mm-wave and LTE antennas separately allowed us to achieve good individual performance, as the interaction between the two systems remained small. The presented design demonstrates a promising way of realizing LTE and mm-wave antennas on the same volume for future handsets.

ACKNOWLEDGMENT

The authors would like to thank E. Kahra for his help in manufacturing the prototypes.

REFERENCES

“5G Spectrum Public Policy Position,” Huawei, Shenzhen, China, 2018

Joni Kurvinen was born in Espoo, Finland, in 1991. He received the B.Sc. (Tech.) and M.Sc. (Tech.) (with distinction) degrees in electrical engineering from Aalto University, Espoo, in 2014 and 2016, respectively, where he is currently pursuing the D.Sc. (Tech.) degree.

Since 2016, he has been a Research Assistant with the Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University. His current research interests include handset antennas in 5G and MIMO systems.

Henri Kähkönen was born in Lohja, Finland, in 1989. He received the B.Sc. (Tech.) and M.Sc. (Tech.) degrees in electrical engineering from Aalto University, Espoo, Finland, in 2015 and 2017, respectively, where he is currently pursuing the D.Sc. (Tech.) degree.

Since 2016, he has been a Research Assistant with the Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University. His current research interests include wideband, beam-steerable antenna arrays, especially at millimeter-wave spectrum.

Anu Lehtovuori received the M.Sc. (Tech.) and Lic.Sc. (Tech.) degrees in electrical engineering from the Helsinki University of Technology, Espoo, Finland, in 2000 and 2003, respectively, and the D.Sc. (Tech.) degree in electrical engineering from Aalto University, Espoo, in 2015. She is currently a University Lecturer in circuit theory with the School of Electrical Engineering, Aalto University. Her current research interests include electrically small antennas and design of antennas for mobile devices.

Juha Ala-Laurinaho received the Diploma Engineer (M.Sc.) degree in mathematics and the D.Sc. (Tech.) degree in electrical engineering from the Helsinki University of Technology (TKK), Espoo, Finland, in 1995 and 2001, respectively.

He has been with the Radio Laboratory, TKK, from 1995 to 2007, with the Department of Radio Science and Engineering from 2008 to 2016, and currently with the Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University. In 1995, he was a Research Assistant, and since 1996, he has been a Research Associate, and currently, he is a Staff Scientist. He has also been a Project Manager in many millimeter-wave technology related projects. His current research interests include antennas and antenna measurement techniques for millimeter and submillimeter waves and the millimeter-wave imaging.

Ville Vilkari (S’06–M’09–SM’10) was born in Espoo, Finland, in 1979. He received the M.Sc. (Tech.) and D.Sc. (Tech.) (with distinction) degrees in electrical engineering from the Helsinki University of Technology (TKK), Espoo, in 2004 and 2007, respectively.

From 2001 to 2007, he was with the Radio Laboratory, TKK, where he was involved in antenna measurement techniques at submillimeter wavelengths and antenna pattern correction techniques. From 2007 to 2012, he was a Research Scientist and a Senior Scientist with the VTT Technical Research Centre, Espoo, where he was involved in wireless sensors, RFID, radar applications, MEMS, and microwave sensors. He is currently an Associate Professor and the Deputy Head of the Department with the School of Electrical Engineering, Aalto University, Espoo. His current research interests include antennas for mobile networks, RF-powered devices, and antenna measurement techniques.

Dr. Vilkari has served as the Chair for the Technical Program Committee of the ESA Workshop on Millimeter-Wave Technology and Applications and the Global Symposium on Millimeter Waves in 2011 and 2016, in Espoo, Finland. He was a recipient of the Young Researcher Award of the Year 2014, presented by the Finnish Foundation for Technology Promotion, the IEEE Sensors Council 2010 Early Career Gold Award, the 2008 Young Scientist Award of the URSI XXXI Finnish Convention on Radio Science, Espoo, and the Best Student Paper Award of the Annual Symposium of the Antenna Measurement Techniques Association, Newport, RI, USA, in 2005.