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ON NITSCHE’S METHOD FOR ELASTIC CONTACT PROBLEMS*

TOM GUSTAFSSON', ROLF STENBERGT, AND JUHA VIDEMAN?

Abstract. We show quasi-optimality and a posteriori error estimates for the frictionless contact
problem between two elastic bodies with a zero-gap function. The analysis is based on interpret-
ing Nitsche’s method as a stabilized finite element method for which the error estimates can be
obtained with minimal regularity assumptions and without the saturation assumption. We present
three different Nitsche’s mortaring techniques for the contact boundary, each corresponding to a
different stabilizing term. Our numerical experiments show the robustness of Nitsche’s method and
corroborate the efficiency of the a posteriori error estimators.
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1. Introduction. In this paper, we analyze the Nitsche method for elastic con-
tact problems. Over the last decade, this method has been studied by a number of
authors (see, e.g., [9, 6, 7, 10]) and shown to be a robust and efficient method. The
advantages are an easy implementation based on the displacement variables only and,
when compared to mixed methods with Lagrange multipliers, the absence of an “inf-
sup” stability condition which renders a symmetric positive definite system instead of
one with a saddle point structure.

From a theoretical point of view, the previously mentioned works suffer from two
shortcomings. First, for the problem posed in H', the solution is typically assumed
to be in H?® with s > 3/2. Second, the a posteriori error analyses are often based on
a nonrigorous saturation assumption.

We have addressed these issues in our recent articles; cf. [12, 13]. Our approach
dates back to [23] where different ways to enforce weakly the Dirichlet boundary con-
ditions were discussed in the context of the so-called stabilized mixed methods [2, 3]
wherein the bilinear form of the original mixed finite element method is augmented
with a properly weighted residual term to ensure stability. In [23], it was shown that
the local elimination of the Lagrange multiplier leads essentially to a method intro-
duced by Nitsche in the early age of the finite element analysis [22]. Since Nitsche’s
method is straightforward both to analyze (under the additional smoothness assump-
tion) and to implement, we started to advocate it, in particular for contact problems;
cf. [24, 4].

What we have realized recently is that one should take full advantage of the
relation between Nitsche’s and stabilized method when analyzing the former. In fact,
we were able to get rid of both the smoothness and the saturation assumption for
the membrane obstacle problem in [12]. In this paper, we will continue on this path
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and perform an error analysis, both quasi-optimality and a posteriori, for a simplified
two-body contact problem without friction. Besides the theoretical improvements,
we present three versions of the Nitsche’s method where the changes in the material
parameters between the bodies are taken into account. The simplest is a typical
“master-slave” approach where the contact surface of the stiffer body is chosen as
the master part and the slave surface is then mortared by the Nitsche’s technique.
In the two other variants, the material parameters appear as weights in the Nitsche
formulation so that the methods decide by themselves which part is the master and
which is the slave. In order to simplify the notation, analysis, and implementation of
the adaptive methods, we assume that the elastic bodies are initially in full contact
(see, e.g., [17]) and leave the case with a nonvanishing initial gap between the elastic
bodies for a future work.

Although our analysis is built upon our earlier works (cf. [12, 14]), we will pres-
ent proofs of all the main theorems. We also note that the elastic contact problem
literature is vast, and therefore we only refer to the review paper [27], and to all the
references therein, for the analysis and application of finite element methods arising
from mixed formulations and to [20, 8], and to all the references therein, for the a
posteriori error analyses of contact problems. We end the paper by presenting results
of our computational experiments.

2. The contact problem. Let Q; C RY i = 1,2, d € {2,3}, denote two elastic
bodies in their reference configuration, and assume that the bodies are initially in
contact. Moreover, assume that €2; are polygonal (polyhedral) domains, and denote
by I' = 091 N 0Qy their common boundary. The boundary 0€; is split into three
disjoint sets I'p;,I'nv,;, and I'c;, with I'p; denoting the part where homogeneous
Dirichlet data is given, I'y ; the part with a Neumann boundary condition, and I'c;
the part where contact can occur; see Figure 1.

Letting u; : Q; — R?, i = 1,2, be the displacement of the body §2;, the infinitesi-
mal strain tensor is defined as

(2.1) e(us) = %(Vui T (Vu)").

We assume homogenous isotropic bodies and a plain strain problem in the two di-
mensional case. The stress tensor is thus given by

(22) 0’,(’11,,) = 2‘LL1 €(ul) +)\1 trs(ui)I,
I'pa 0 r Qs I'po
n

Fic. 1. Notation for the elastic contact problem.
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where p; > 0 is the shear modulus and \; the second Lamé parameter of the body
Q; and I denotes the d-dimensional identity tensor. We will exclude the possibility
that the materials are nearly incompressible and hence it holds that A; < u;. (For
nearly incompressible materials the standard approach of reformulating the problem
in mixed form [5] should be used.)

By n,; € R¢ we denote the outward unit normal to 99;, and define n = n; = —ne.
In what follows, t denotes any unit vector that satisfies n -t = 0.

We decompose the traction vector on 9€2;, o;(u;)n;, into its normal and tangential
parts, viz.,

(2.3) oi(u)n; = o n(w;) + o (w;).

For the scalar normal tractions we use the sign convention

(2~4) Ul,n(u1) = Ul,n(ul) -
and
(2.5) oo n(u2) = —o2,(u2) - 1o

and note that on I' these tractions are either both zero or continuous and compressive,
i.e., it holds that

(2.6) o1n(w1) = oo n(u2), oin(u;) <0, i=1,2.
The physical nonpenetration constraint on I' reads as

(2.7) up - Ny +ugy-ng <0,

which, defining

(2.8) Uy = —(u1 - M1 +uz - Na),

can be written as

(2.9) [un] >0,

where [-] denotes the jump over T'.
We thus have the following problem.

PROBLEM 1 (strong formulation). Find u; : Q; — R?, i = 1,2, d € {2,3}, such

that
—diveo;(u;) = f; in
u; =0 onI'p;,
oi(u)n; =0 on 'y,
(2.10) oii(u;) =0 on T,
o1n(u1) — o2 p(ug) =0 on T,
[un] >0 onT,
oin(u;) <0 on T,

[un] oin(u;) =0 onT,

where f; € [L2()]¢ denotes the volume force on ;.
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Letting A = —01 5, (u1) = —02 »(u2) denote a Lagrange multiplier associated with
the contact constraint, we obtain an equivalent mixed formulation in which the normal
traction on the contact surface is an independent unknown.

PROBLEM 2 (mixed formulation). Find u; : Q; — R?, i = 1,2, d € {2,3}, and
A:I' = R, such that

u; =0 onI'p;,
o;(u)n;, =0 on T,
oit(u;)) =0 onT,
(2.11) A+ o1 n(ur) =0, on T,

A+ 0gn(uz) =0, onT,
[un] >0 onT,

A>0 on T,

[unJA=0 onT.

To present a variational formulation for Problem 1, we introduce function spaces
for the displacements

(2.12) Vi = {w; € [H'()]" : wilr,,, = 0}

and equip them with the usual norms || - ||1,q,- Moreover, we write V. = Vi x V;
and assume that I' is a compact subset of 9Q; \ I'p; for ¢ = 1,2. Thus the normal
components of the displacement traces on the contact zone are in Hz(T') with the
intrinsic norm in Hz(T') defined by (cf., e.g., [25])

(@) — w(y)?
5,0 + / / dz dy.
o e |z —yl¢

(2.13) lwl ¢ = llw

The inequality constraint on I' is imposed by the Lagrange multiplier which be-
1 1 1 1
longs to H~2(T"), the topological dual of Hz(T"), i.e., H 2(I") = Hz(T")’. The duality
pairing is denoted by (-, ) : H%(F) X H_%(F) — R, and the norm is then

(w,€)

Tlly o

(2.14) €l - 1.0 = sup
weW

Moreover, we define the positive part of H=2(T') as
(2.15) A={¢cH () : (w,&) >0 Ywe H>([), w >0 ae. on T}

and introduce the bilinear and linear forms
2

(2'16) B(w7§;v777) = Z(ai(wi>7€<vi))91‘ - <[[UTL]] 7§> - <[[wn]] 777>
and
2

(2.17) Lv) = (fi,vi)a.

i=1

The variational problem now reads as follows.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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PROBLEM 3 (weak formulation). Find (u,\) € V' x A such that
(2.18) B(u,\;v,n— ) < L(v) VY(v,n) €V x A

We refer to [16, 15] for the derivation of weak formulation from Problem 1 and
for the proof of existence and uniqueness of solutions to Problem 3.

3. Finite element method. Let the bodies €; C R? be separately divided into
sets of nonoverlapping simplices C;, i = 1,2. The d — 1 dimensional facets of the
elements in C; are further divided into the set of interior facets &}, the set of facets
on the contact boundary gg, and the set of facets on the Neumann boundary N, ;L We
denote by G}? the boundary mesh on I' which is obtained by intersecting the facets
of G} and G7. In particular, each E € G}? corresponds to a pair (F1, E2) € G x G2
such that E = F1 N Es. The finite element subspaces are

(3.1) Vin ={vin € Vi 1 vin|k € [P(K)|Y VK € C}},
Vi =Vin X Vo,
(3.3) Qn={m € H 2(T') : mu| € P,(E) VE € Gi?},

where P,(K) denotes the polynomials of degree p on K. Moreover, we introduce a
subset of A, denoted by Ay, as the positive part of @y, i.e.,

(3.4) Ap = {nn € Qn :mp > 0}
Now, defining a stabilized bilinear form B} through
(3.5) Bh(wr, &n; vn, Mn) = B(Wh, §p; Vhs ) — aSp(Wh, b3 VR, M8),
where a > 0 is a stabilization parameter and
2 he
(3.6) Sn(wn, Ens VhyMR) = ; E%g: m (§h + 03 (Wisn), Mk + Ui,n(vi,h)) o
= h

we arrive at the following finite element formulation which is an extension of the
mortar method introduced in [19, 14].

PROBLEM 4 (stabilized discrete formulation). Find (up, Ap) € Vi, X Ay, such that
(3.7) Bh(why An; vy mn — An) < L(vn)  V(Vh,mn) € Vi X Ap.

We will now derive an equivalent formulation wherein the Lagrange multiplier is
not explicitly present. To this end, we start by defining L?(T)-functions f; through

(3.8) hile =hg VYE€Gi, i=1,2,

and introduce the notation

ﬁzﬂl
+ —F—02.n(U2.n),
ﬁl,u2 + ﬁfzm ( )

i.e., a convex combination of the discrete normal tractions. Furthermore, we let

(310) lh(Uh) - - {071(71'}7.)} - Bh [[Uh,nﬂ 5

(3.9) fon(up)} = ﬁwff“ﬁw o1 (Ui p)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/13/20 to 130.233.191.71. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

B430 TOM GUSTAFSSON, ROLF STENBERG, AND JUHA VIDEMAN

where

M2
3.11 o Vo
( ) o a(hipo + hapr)

Next, we will show that the discrete Lagrange multiplier Ay can be eliminated locally
(i.e., element by element). This leads to a Nitsche formulation with the displacements
as sole unknowns. Choosing v;, = 0 in the variational inequality (3.7) gives

2
h
(3.12) — ([unmlmn = M) = @Y > (A4 0in(in)mn — An)e <0,
i=1 pegj "'

which, in view of the notation defined above, can be written as
(3.13) (An = In(un)ynn — An) <0 Vi € Ap.

Let then F € g}f be an element on which Ay|g > 0, and denote by ¢g one of the
basis functions of Q,|g. Moreover, choose a test function n, in (3.13) in such a way
that it vanishes at I'\ E and nn|p = Ap + €¢p, with € > 0 chosen small enough so
that nn|g > 0. It follows that

(3.14) 0=\ —ln(un), ¢p) = / (An = ln(un))d ds,
E

and, since

(3.15) (An = ln(un))| e € Quls,

we conclude that

(3.16) (A = ln(un))|e = 0.

This shows that

(3.17) A = (ln(un))+

where (a); = max(0,a) denotes the positive part of a.
The discrete contact region, defined as

(3.18) Fe(up)={xel: \(x) >0},
can now, in view of (3.17), be written as
(3.19) To(up) ={z €T :l(up(x)) > 0}.

On the other hand, testing with vy, in (3.7) and using (3.17) yields

2

Z(Ui(ui,h)ve(vi,h))ﬂi —[vnn] s (n(un))+)

(3.20) - Oéz Z th_((lh(Uh))Jr +oin(uin), Uim('vi,h))E

(2

2
= Z(fiv'ui,h)ﬂi Yoy € Vi,
im1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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It follows from (3.10) that

—([vnnl, Un(un))+)

(3.21) _ ({Jn(uh)} vnnl )Fc(uh) + <5h lun.nl s [vnal )

e(un)
and on I'.(uy) it holds that

B2 () + o1n(ur) = g2 (o1 (u1) ~ o)) — i Funa]
h
(323)  ((wn))s + 02n(u2) = g (02 (12) = 010(u2) = B [l
Therefore, defining the jump
(324) [[an(uh)ﬂ = 027n(ul) — O'Ln(’ll,g)
and the L?(T)-function
aﬁlﬁ2
3.25 =12
(3.25) ” Mo + hapn

and substituting the above five expressions into (3.20), we obtain after rearranging
terms the following Nitsche’s formulation for Problem 4 with u; as the sole unknown.

NITSCHE FORMULATION 1. Find up € V}, such that

2

> (@i(win) &), + (Bn [unad Tonal )

i=1 e (uh)

+ (on@n)d Tonad ), -+ (Hon(on)} [unal )

Fc(uh)

(3.26) - (% o (un)] [[Un(vh)ﬂ)

Fc(uh)

-« Z ( Oin uz h Ui,n(vi,h))

F\Fc(uh)
2

= Z(fi,vi,h)m Yo, € V.
i—1

Remark 3.1. Since o, (u;) vanishes on I'\ I'.(up,), this set can be reinterpreted as
being part of I'y ;, ¢ = 1,2. Consequently, the term

2 ﬁ
a <%Ui,n(ui,h)v O'im(vi,h))
P i T\Ce¢(up)

can be dropped.

Next we present two other variants of Nitsche’s method. The first is the so-called
master-slave formulation.
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Assume that the material parameters satisfy p; > po. The body €y is the master
part, 25 the slave, and the mortaring at the contact surface is only done for the latter,
less rigid body, i.e., the stabilizing term is now

hg
~2 M frd —
(3.27) Sh(wh, En; VR, MR) E§692 (fh + o2 n(Wa,n), MH + 0'2,n('027h))E
h

Repeating the steps above, we obtain A\, = (Ip(up))4+ with
M2

(3.28) In(un) = —o2m(uzn) = — [unn] -
ahy

The contact region I'.(uy) is given by (3.19) with I, (u,) taken from (3.28), and we
have the following method.

NITSCHE FORMULATION 2. Find ujp € V}, such that

2

M2
;Ui p), €V, s L —F Whanls [Vrn
N G L) N

i=1

+ (oantuan) Tonal ) |+ (02n(020), [unnl )

Fc(uh)
(3.29)

— <£ZO’27”(’U,2’]—L), Uz,n(vg,h))

M\Lc(up)
2
Z fi;vin)a, Vop € Vi

Again, the term

a (202,71(1;2,;1), ag,n(vg,h))

F\Fc (uh)

can be dropped; see Remark 3.1.
In the third alternative, we follow [18] and define the stabilizing term through

(330)  aSu(wn, & vnmn) = (87 (€ + fon(wn) )+ fon(on)} ) -

Repeating once more the above computations, we arrive at the following method.
NITSCHE FORMULATION 3. Find up € V}, such that

2

> (e (uen):eoiao+ (B bl o] )

i— Fc(uh)

+ (on@n)d Tonad ), -+ (Hon(on)} [unal )
~ (B (o (un) >{{on<vh>}})

(3.31) Le(un)

F\Fc (uh)

2
Z fisvin)a, Yu, € Vi,

with Tc(un) given by (3.19) (and lp(up) as in (3.17)).
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Also here the term

(3.32) (87" Hon(un) 1), fon(on)} )

P\[¢(un)
can be dropped.
4. Error analysis. The energy norm for the problem is

2

(4.1) > (oi(wi), e(w;))g, .

=1

Since we exclude nearly incompressible materials, it holds that \; < u;, and hence
with our choice of boundary conditions the Korn inequality is valid in both regions,
and we have the norm equivalence

2

2
(4.2) D (oi(wi), e(wi)a, = Y pillwl3 g,
=1

i=1

The error estimate will be given in the continuous norm

(4.3) ll(w, &)1 = > (nillw

i=1

1
%,Qi + E ||€||2_%71")a

but in the analysis we will also use the following mesh dependent norm:

(1.4) llGwn, €112 = w02+ 3 3 22 )g,

i=1 pegy M

2
0,E-

THEOREM 4.1 (continuous stability). For every (w,&) € V xQ there existsv € V.
such that

(4.5) B(w,&v,—€) 2 [|(w, )|
and
(4.6) [vllv < [ll(w, -

Proof. 1t is well known that the inf-sup condition

(4.7) sup (2 mi§)

SCilel .. VeeqQ
z; €V; HVZZ'HO,Qi 1||§|| 271" f

holds in both subdomains Q; (cf. [1]). Therefore

([2a].€) (11y
4.8 su >C| —+ — it VéEeq.
( ) z=(z1,zI:)EV (21221 Nz‘”vzi”aﬂi)l/? 11 12 HgH 5,0 5 Q

Assume then that (w,£) € V x Q is given, and let v; = w; — q;, where q; € V; solves
the problem

(0i(qi),e(zi))a, = (—zi -ni,&) Vz €V, i=1,2.
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Choosing z; = q; above, we obtain after summing

2

i=1
Moreover, from (4.7), it follows that
(=2i-ni,§) (0i(gi), £(2i))o,
“ir S sup =" = sup — =" S pillgill10,
Bll-pr S 20 Walon, ~ 5% IVedoa,  ~ 090

and thus

1 1\ /2 2
LY e 2 (Sl
(+a) el (;w

Now, it is easy to see that

1/2
2
1,; :
2

B(w,§;v,—-€) = Z {(Ui(wi),ff(wi))m - (Ui(wi)ae(qi))ﬂi} +([an], €)
2

2 2
1 1
b ZNszzH%Q ~ 3 ZNini”im ) ZMH%‘H?Q
i=1 i=1 i=1

2

+ Z(Ui(qi)ve(qi))ﬂ,i

=1
2 , X
Z if| Wi 3 .+ ( + ) 2 = w, 2
2 piltwilli, + (ot o JIEIE = N O
and that ||'U||V = ||w — q”V 5 |H(w’§)m ;

Above and in the following we write a 2 b (or @ < b) when a > Cb (or a < Cb)
for some positive constant C' independent of the finite element mesh.

To derive the discrete stability estimate, we need the following discrete trace
inequality, easily shown by a scaling argument.

LEMMA 4.1 (discrete trace estimate). There exists C; > 0, independent of the
mesh parameter h, such that

h )
(4.9) Cr Z *}?Hai,n(%h)ug,}s < ,uiH'ULh”iQi Voin e Vi, i=1,2.
Begi "

THEOREM 4.2 (discrete stability). Suppose that 0 < o < Cy. Then, for every
(wp, &) € Vi, X Qy,, there exists v, € V), such that

(4.10) Bi(wh, En; vn, —En) 2 || (wn, &)1}
and
(4.11) Jonllv S [l (wn, €)1l,-

Proof. From the discrete trace estimate it follows that

2 2
« hE
Butwon, Griwn &) > (1 5 ) Cmlwinlto +a X ¥ el
i=1 ’

=1 E€Gy

which proves the result in the mesh-dependent norm of &, for 0 < a < Cf.
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On the other hand, the continuous inf-sup condition (4.8) implies that for any
&, € @y, there exists v € V' such that

<an]] a€h> > <1 + 1) v ||§h|| ir-
(i wall Vo2 o) 2 e -

This means that (cf. the proof of Lemma 3.2 in [12])

@) (Goale 2 (4 + )nm%r—csz S e s

i=1 E€Gy
11 ,
— + — hil_1 >
(o ) Il

where Cy, C3, Cy are positive constants and Ipv € V}, is the Clément interpolant of
v. Using again the discrete trace estimate and inequalities (4.12) and (4.13), we then
obtain

2
(413) Y pilllwvillro, < Ca
=1

2

By (wh, & =10, 0) = = > (os(win), e(Invi))a, + ([(Tn0)n] 1 n)

=1

2
_ Z Z h—E (fh + Ui,n(wi,h)70i,n(lhvi))E’

i=1 pegj "'

e <u1 ) 6l s v Co > llwenlio,

i=1
2

% Z h ||§h||0 E-

i=1 E€Gy,

Now, it is straightforward to show (cf. [14]) that there exists 6 > 0 such that

Bi(wh, &n; w, — 6140, —&x) 2 |[[(wn, &)1

and that [|wp, —0Ipolly < [[(wn, &)l o

In our improved error analysis, we use techniques from the a posteriori error
analysis. Let f;, € Vi, be the [L?(Q;)]? projection of f;, define on any K € C} the
oscillation of f; by

osck (fi) = hillfi = Finllox i=1,2,
and, for each E € G}, let K(F) € G} denote the element such that 0K (E) N E = E.
LEMMA 4.2. For any (vp,nn) € Vi, X Qp, it holds that

1/2
(Z Z - th + 0in (v, h)HOE>

=1 EGQ‘
(4.14)

2 1/2
< llCw = on, A =mn)ll + (Zﬂfl > OSCK<E)(fi)2> :

i=1 Eeg),
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Proof. We follow the reasoning presented for the mortar method in [14]. It is
clearly enough to prove the result in Q. Thus, let by € Py(E), E € G}, be the usual
edge/facet bubble function, and define 75 on K(E) € C} through

hebg

TE’E = (Uh + U1,n(’v1,h)) and TE’@K(E)\E =0,

where K (E) is such that K(E) N E = E. It follows that

2

he
4.15 —H \ <<L n(V1,n)s )
(4.15) o +01,n(v1,1) o< (Mt o (vLn), )

Next, defining 7 € V43, in such a way that 7, := —7-n = ZEeg} 7 and testing
Problem 3 with (vq,v2,n) = (—7,0, ), we obtain

0< (0’1(’11,1),6(7'))91 - <Tnv>‘> - (f17T)Ql‘

Summing (4.15) over the edges in G} gives then

h 2
Z l‘)nh + U1,n(vl,h)H
E€g, i

S (Tusmn = X) + (o1(ur) (1)), = (F1,T)aw + Y (010(v10) 785
Eeg,

0,E

= (T, — A) + (o1(w1),&(7))a, — (f1,7)a,
= (divo(vin), e, — (1(v1n), €(T)o,
= (T, — A) + (o1 (u1) — Ul(vl,h)vs(T))Sh - (diVO'l(’ULh) + f1, 7)o, -
Inverse estimates imply that
_ he 2
416)  mlTlia, Sm Y hE el ki S D I+ orn@in)l g -
EeG} EeG} H

Now, one readily sees, using trace inequalities and the norm equivalence (4.2), that

hg 2
- L+ V1,h
) i H’H o)

Eeg}
_1/2 1/2 1/2 1/2
S = M 27, + w2 = w1l o, I lho,
, 1/2 1/2
+ ( Z ILL—EHdiVOj(’ULh) +f1|g}E> (Ml Z hEQHTEH(Q),K(E)) ’
pegr ™ E€g;,

from which, using the standard estimates for interior residuals (cf. [26]) and the
inverse estimate (4.16) to bound the last term, it follows that

1/2 1/2
h 2 _
( Z fHﬂh + U1,n(v1,h)HO E) < (w—vp, \=np)]||+ (,ul ! Z oscK(E)(fl)Q) ,

Eeg} E€g,

which concludes the proof. 0
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We can now establish the quasi-optimality of the method.
THEOREM 4.3. For 0 < a < C7 it holds that

w—wn A=Al S, inf (Ml = on A =)l + (Tl )

(VhMR)EVR X AR

5 1/2
+ <Z#;1 Z OSCK(E)(fi)2> :
=1

Eegj

(4.17)

Proof. On account of the discrete stability estimate, there exists wy € V such
that

(4.18) lwrllv < I(wn — v, An = 20) I,
and
(4.19) Il(wp, — vn, An — 77h)|||;2L S Br(un — vp, Ap — Mn; Why M — An).

Using the bilinearity and (3.7), we obtain

By (wn — v, A — 00 Why Mh — An)
= B (wn, An; Wh, M — An) — Br(vn, On; W, — An)
(4.20) < L(wp) — Br(vn, Mn; Wiy M — An)
= B(u —vp, A — np; wh, . — An) + L(wp)
— B(u, \;wp, nn — An) + aSp(Vn, h; Wy, M — An).

The terms above can be estimated as follows. First, continuity of the bilinear form B
and inequality (4.18) yield

(4.21)  B(w = wvp, A = 1 way n — An) S l[(w = vn, A=) [ Il (wn — v, An = ) -
Next, using Problem 3 and the fact that Ju,] > 0 and A\, > 0, we obtain

(4.22) L(wp) = B(w, s wn, mn — An) = ([un] s nn = An) < ([un] mn)-

Finally, from the discrete trace estimate (4.9) it follows that

aSk(Vn, Mn; Wi, M — An)

1/2
(4.23) 2 hp )
S m 17h + o5 (win) g g 1(wn — vy An — m0) |-

i=1 Eegi

Using Lemma 4.2 and collecting the above estimates, we arrive at the asserted error
estimate. ]

Remark 4.1. We refrain from giving an a priori error estimate assuming a regular
solution. The reasons are twofold. Firstly, contact singularities are inevitable and
essential in contact problems. Secondly, to derive an a priori bound, one would need
to estimate the term +/([un],nn) with 7 being the interpolant to A. Besides, and
perhaps most importantly, one of the main results of this paper is the fact that we do
not need to assume that the solution belongs to H® with s > 3/2.
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For the a posteriori error analysis, we define the local estimators

h2. . )
(4:24) Mk =~ divoi(uin) + fill o K €,
hE' 2 i
(4:25) o= owwnlly s B e &,
he
(4.26) e = 28 L+ o)l g+ o) s
Hi i
+ #||(Huh,7lﬂ)—||%,E7 E € g,
E
hg 2 i
(4.27) NEry = m loi(uin)nllyz, E €N,

with ¢ = 1,2. The corresponding global estimator 7 is then defined as
2
@9 =, Tt bt X bt 3 b
i=1 \ Kecj, Ee€g; Eeg; EeN}

In addition, we need an estimator S defined only globally as

(4.29) 5% = (([unn])+> An) -
THEOREM 4.4 (a posteriori error estimate). It holds that
(4.30) It — e A= Al S 0+ S.
Proof. In view of the continuous stability estimate, there exists v € V' with
(4.31) lvllv < (e = wn, A= An)l,
and
(4.32) (= wn, A= AP < Blw — wn, A — Ans v, An — A).
Let © € V}, be the Clément interpolant of v. From (3.7), it follows that
(4.33) 0 < —B(up, An; 0,0) + aSp(up, Ap, —0,0) — L(D).

Using Problem 3, this gives
B(u —wup, A — Ap; v, A — A)
< ,C(’U — ’l~i) — B(Uh, AR — 0, A — )\) + aSh(u;“ An, —17,0).

~

(4.34)

Integrating by parts, we obtain for the first two terms above
£('v — ’5) - B(uh, /\h; v —, An — /\)

2
Z Z diveo;(u;p) + fi,vi — 9) K

KecCj

N Z Z ([oi(uwin)n] ,vi —0i)E

(4.35) i=1 Eegj

- Z Z (oi(uipn)n, v —v;)p — Z (oie(wi), (Vit — Vi) E

i=1 BEeN} i=1 Beg}

—ZZ (M + 05n (i), (03 = B) - 1)+ (L] An = A).

=1 Eeg}
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Moreover, using an inverse inequality for the H'/?(I")-norm (cf. [11]) we get
(lunn] s A = A) < (([unnD)+> M) p + ((unnl) = An = A)
< ((TunnD)+ An)
(e =, A = M)l (k1 + p2) [ (Tunnl)- 13 2.0
S (([unnl)+, An)

1/2
+ [ll(w = wn, A = An) II<ZZ | ([un,n]) ||(2)7E> :

=1 Eeg}

>1/2
(4.36)

Finally, using the discrete trace estimate (4.9) and the standard bounds for the
Clément interpolant, and recalling (4.31), we obtain for the stabilizing term

|Sh(wh, An, —9,0)]
1/2
(4.37)
Z Z H)\h + i (win) 5 l(w = wn, A = An)]l-
=1 Eegi

Estimate (4.30) follows from collecting the above bounds. |

The estimator 1 bounds the error from below. For the proof of the following
theorem we refer to [12].

THEOREM 4.5 (a posteriori estimate—efficiency). It holds that
(4.38) 1S (e =, A= Al

The analysis of Nitsche Formulations 2 and 3 is analogous. In the a posteriori

estimates the term
Z Z ||)‘h+ozn(uz h)HOE

=1 Eegh
is replaced by
h
(4.39) Z 7EH>\h+U2 n(u2, h)HOE
EegG}
and
(4.40) 18, 2 (An + fon(un) IR ¢

for Nitsche Formulations 2 and 3, respectively.

5. Computational experiments. All computations presented in this section
were obtained using Nitsche Formulation 3 with the term (3.32) dropped. Had we
considered other formulations, the results would have been practically identical. We
also note that since the stabilized/Nitsche’s method is variationally conforming (as
a mortaring method) it passes the patch test of [21, p. 425]. This was confirmed
numerically up to machine accuracy.

We consider the geometry given by

(5.1) Q; =[0.5,1.0] x [0.25,0.75], €y = [1,1.6] x [0,1]
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1.01

0.8

0.6

0.4

0.2

0.0

050 075 100 125  1.50

Fic. 2. A finite element mesh and the vertices belonging to T.

and define the boundary conditions on the following subsets:

(52) FD,l = {({E7y) e :x= 0.5}, FNJ = 0 \ (F[)’l UF),
(53) FD72 = {(x,y) S 8Q2 T = 16}, FN72 = 392 \ (FDQ UF)

Thus, the geometry is the one given in Figure 1. A nonmatching discretization of the
geometry is depicted in Figure 2. Initially, the material parameters are £y = Fs = 1
and v; = vy = 0.3, and the loading is

(5.4) f1=(x—0.5,0), f2=1(0,0).

For this loading, the displacement is constrained on I'p ;, 4 = 1,2, only in the hori-
zontal direction which minimizes the effect of the singularities—other than the ones
related to the contact boundary—on the rates of convergence. We consider both linear
and quadratic elements with o = 1072 and o = 1073, respectively.

The adaptively refined meshes are shown in Figure 3(a) and (b), and the global
error estimator n+.5 is plotted as a function of the number of degrees-of-freedom N in
Figure 3(c). Since n+ S is an upper bound for the total error, the results suggest that
the total error of the quadratic solution is limited to O(N %) when using uniform
refinements and that adaptivity successfully improves the order of the discretization
error to O(N™1).

Next we fix also the vertical displacement on I'p;, i = 1,2, and consider the
loading

(5.5) f1=(0,-0.05), f>=1(0,0),

which causes the left block to bend slightly downwards and, as a consequence, the
active contact region is a nontrivial subset of I'. The active contact region is found
via an iterative solution of the linearized problem; cf. [12]. See Figure 4(a) and (b)
for the final meshes and contact stresses and Figure 4(c) for the convergence rates.
We observe that the singularity at the upper corner of the contact region is properly
resolved by the adaptive meshing strategy and that the convergence is similar albeit
less idealized as in the first example.

In Figure 5, we demostrate how the improved convergence rates can be obtained
for P, elements even if the value of the Young’s modulus changes significantly over
the contact boundary. In Figure 6, we demonstrate that the effect of the stabilization
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1.0 0.08
= 0.07
0.8
< 0.06
0.6 = =005
S
$0.04
0.4 = =
= " 0.03
0.2 0.02
=
0.01
0.0
050 075 100 125 150 175 0.00 03 04 05 06 07

1.0
0.12

0.8 0.10

0.6 =008
B

0.4 £ 006
I
0.04

0.2
0.02

0.0

050 075 100 125 150 175 0-00 03 0 05 0% 07

(b) P, after 8 adaptive refinements.

—e— Adaptive Py, O(N~095)
—a— Adaptive Py, O(N~048)
T "T]—e— Uniform P, O(N~%49)
—+— Uniform Py, O(N~04)

102

n+S

1073

Ll1ii] Ll Ll
102 10 10*
N

(c) The convergence rates of the total error estimator n + S as a function of the number of
degrees-of-freedom V.

Fi1c. 3. Block against a block example.
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1.0
0.08
0.8 0.07
0.06
0.6 S0
£0.04
0.4 =
0.03
0.2 0.02
0.01
0.0 0.00

0.50  0.75 100 1.25 150 175 03 04 05 0.6 07

(a) Py after 15 adaptive refinements.

1.0

0.8 s
§> .05

0.6 = 0.04

0.4

0.02
0.2

0.01

0.0

0.00 —
050 075 1.00 125 150 1.75 0.3 04 05 06 07

(b) P, after 8 adaptive refinements.

—e— Adaptive Py, O(N~0-91)
—=— Adaptive Py, O(N~94%)

n+.S

10737\\\\\ b b
107 10°% 10
N

(c) The convergence rates of the total error estimator n + S as a function of the number of
degrees-of-freedom N.

Fic. 4. Downward bending block example.
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1.0 0.040

0.035

0.030

0.6 = 0.025

£0.020

0.4

|
0.015

0.2 0.010

0.005

0.0

- - . - - - 0.000
0.50 0.75 1.00 1.25 1.50 1.75 03 04 05 06 07
y

(a) P> after 10 adaptive refinements with Fs = 100.

1.0 0.007

0.006

0.8

0.005

1

0.6

é 0.004

0.4

0.0

050 075 1.00 125 150  1.75 0.3 04 05 0.6 0.7
Y

(b) P, after 10 adaptive refinements with E» = 0.01.

—e— Adaptive Py, Fy = 100, O(N~9-96)

. | = Adaptive P, E, = 0.01, O(N~112)
1072 | .
i N 1
“ I . ]
: |-
1073 | .
L I I I 1
102.5 103 103.5
N

(c) The convergence rates of the total error estimator n 4+ S as a function of the number of
degrees-of-freedom N.

F1a. 5. Effect of a jump in the Young’s modulus.
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1.0
0.05
0.8
0.04
0.6 =
3003
<
0.4 =
0.02
0.2
0.01
0.0
050 075 100 125 150 1.75 000 0.3 0.4 0.5 0.6 0.7
Yy
(a) P> after 10 adaptive refinements with o = 0.0001.
1.0
0.05
0.8
004
0.6 =
2 0.03
)
0.4 =
I 0.02
0.2
0.01
0.0
0.50 075 1.00 125 150 175 0.3 0.4 0.5 0.6 0.7

(b) P, after 10 adaptive refinements with a = 0.01.

—e— Adaptive Py, a = 0.0001, O(N~997)
—=— Adaptive Py, a = 0.001, O(N ~0-99)
—e— Adaptive P, a = 0.01, O(N~091)

102

n+S

1073

| | |
10> 10° 103
N

(c) The convergence rates of the total error estimator n 4+ S as a function of the number of
degrees-of-freedom N.

Fic. 6. Effect of changing the stabilization parameter.
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oy
0.150
1.0 1.0
0.125
0.8 0.8
0.100
0.6 0.6
0.075
0.4 0.4
0.050
0.2 0.2
0.025
0.0 0.0
. j - T e T - 0.000
0.50  0.75 1.00 1.25 1.50 1.75 0.50 0.7 1.00 1.25 1.50
0.351
0.301
0.25

0.10+
0.051
0.00
0.3 0.4 0.5 0.6 0.7
Y

Fic. 7. Example with a contact boundary consisting of two disjoint active sets with von Mises

stress oy plotted in the top right figure.

parameter is small in the asymptotic limit. Finally, in Figure 7, we consider the
loading

(5.6) f1 = (—cos(4r(y — 0.5)),0), f2=(0,0),

which results in an active contact boundary consisting of two disjoint parts and a
perfectly symmetric contact stress.
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