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Positional errors of a multi-probe roundness measurement frame will result in the probe angles deviating
from the nominal angles. The actual probe angles can be accurately determined after placing the mea-
surement frame using cross correlation or other methods. However, since multi-probe methods suffer
from harmonic suppression, determining the angles is not enough for accurate reconstruction of the
roundness profile, if the actual angles are situated in an area with poor harmonic characteristics. To find
suitable areas for the probe angles to allow for deviations from the nominal angles, this paper presents a
robust optimization for probe angles to avoid harmonic suppression regardless of errors in the probe
angles. Suggestions for optimal probe angles are presented for the three-point and the four-point redun-

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Roundness is an important concept in many fields of engineer-
ing. Relevant roundness parameters are defined in ISO 12181-1 [1]
and standard filters in ISO 12181-2 [2]. When determining round-
ness profiles of cross sections of large flexible rotors such as paper
machine rolls, there are several conditions which restrict the avail-
able roundness measurement methods. Rotors can be too large to
be placed onto precision spindles, and under rotation the cross sec-
tion center point movement can be unpredictable and unrepeat-
able. Under these conditions, multi-probe methods can be used
to accurately determine the roundness profile of a cross section.
From at least three probe signals obtained from a rotating work-
piece (Fig. 1), the methods aim to separate the center point move-
ment (also called spindle error motion [3]) and the roundness
profile, which both contribute to the probe signals. Several
multi-probe roundness measurement methods have been
published [4-9].

Multi-probe methods are based on forming a system of equa-
tions from the probe signals as a function of the rotational angle,
center point movement and the roundness error and then solving
the roundness profile. Several roundness measurement methods
rely on the Fourier transform in solving the related equations
[3,4], but the equations have also been solved in time domain
[9]. A roundness profile can be presented as a Fourier series, with
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the first component representing small eccentric center point
movement, the second component two undulations per revolution
(UPR) etc.

If more than three probes are used, a least squares estimate can
be made to determine the coefficients using all probe signals [3].
An alternative to a least squares estimate are redundant methods,
which combine multiple probe signals by calculating the harmonic
components from different combinations of the probes, the combi-
nation selected for each harmonic component based on smallest
error propagation [10]. Furthermore, if two probes are placed on
the same line, even harmonic components can be calculated from
the diameter variation profile [7,11] and then merged in frequency
domain with odd components calculated from the three point
measurement. Using angle probes instead of displacement probes
is also possible and has been demonstrated [3,12]. Angle probes
will have an effect on the transfer function and harmonic sensitiv-
ity of the probing arrangement.

When a fixed measurement frame is used and there is any error
in the positioning of the frame, the actual probe angles will deviate
from the nominal probe angles (Fig. 3). Except for the angular
errors, the slight misalignment errors of the probes caused by
the incorrect positioning are assumed not to affect the probe read-
ings except for a negligible cosine error.

First, this paper shows measurements to accurately determine
the probe angles in a multi-probe roundness measurement frame
using cross correlation, after positioning the probes. The effects
of correcting the probe angles on the produced roundness profile
are presented using a simulated and a measured workpiece data.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Sk Matrix of with Fourier coefficients of probe signals

Iy Matrix of k™ Fourier coefficient of center point move-
ment and roudness profile

H, Matrix for k™ harmonic component describing probe
arrangement

k Harmonic component k of the roundness profile

Ky Condition number of the matrix for the k™ harmonic
component

0 The angle of rotation of the workpiece

n Displacement probe n

On The angle of the nt" displacement

T Function for the weighted sum of condition numbers
hy The weighing factor for the k™ harmonic component

Determining the probe angle with cross correlation has been pre-
sented before by Shi [13] for a multi-step method, where one probe
was used to obtain multiple signals by changing the probe position
between measurements. Determining the probe angles with other
techniques is also possible.

The determination of the probe angles leads to the second part
of the research problem of this paper. Multi-probe methods suffer
from a phenomenon called harmonic suppression, where some
probe angle combinations are insensitive to certain harmonic com-
ponents of the roundness profile [6]. Complete harmonic suppres-
sion occurs when the harmonic component wavelength is equal to
the spacing of the probes.

Robust optimization is a subset of optimization problems,
which tries to account for uncertainties in the variables of an opti-
mization. In robust optimization, the variables are assumed to
reside inside a known uncertainty set [14]. The goal is to obtain
a robust (allowing for deviation), but conservative estimate for
the variables to be optimized. In this article, the principles of
robust optimization were applied by selecting a window of uncer-
tainty for the probe angles and finding the optimal angles to min-
imize the maximum value inside that window.

Several suggestions of optimal probe angles based on optimiz-
ing a performance index have been published [3,15-17]. Cappa
[17] optimized the angles considering the first 150 harmonics
and stated the transfer function shows a self-similar pattern. As
is shown in this paper, the pattern is not self-similar, but each har-
monic component adds a layer of suppressed areas. Hale [16] con-
sidered a tolerance in the angles in the optimization, but also
considered an overly wide range of harmonics for practical round-
ness measurement in most engineering purposes.

This research addresses two connected sources of error in
multi-probe roundness measurement. When probes are positioned
around a workpiece, in reality there will be an uncertainty associ-
ated with their actual positions. It is shown with measurements
how probe angles can be determined with cross correlation to
avoid using the incorrect nominal angles in the calculation of the
roundness profile. Because multi-probe methods suffer from har-
monic suppression, it may happen that the determined angles
are situated in an area which results in harmonic suppression. To
avoid suppression, an optimization is performed to find suitable
probe angles tolerant to deviations in the probe angles. Probe
angles are optimized for the three-point method and for a redun-
dant method where even harmonic components are calculated
from the diameter variation profile.

2. Methods

A paper machine roll with a diameter of 320 mm was used for
the measurements of the probe angles, with the middle cross sec-
tion used for the measurements. The measurement setup consisted
of four triangulation reflective laser sensors (Matsushita NAIS LM
300) placed around the rotor (Fig. 2). The nominal probe angles

in the measurement frame are 0°, 38°, 67° and 180° and are based
on an optimization by Kato [15].

2.1. Determining probe angles with cross correlation

To determine the probe angles, a marker was attached to the
roll. The roll was rotated at a slow speed to eliminate any dynamic
behaviour and measurement signals were obtained from the laser
probes. Each probe measurement was triggered by rotary pulse
encoder with 1024 steps in a round. 100 rounds of displacement
data were acquired with the laser sensors.

After acquiring data, cross correlation was used to calculate the
phase differences between the signals to obtain the actual probe
angles. By definition, “cross correlation is a measure of similarity
between two signals” [18]. It can be used to determine the phase
difference between two similar signals signals. For a discrete sig-
nal, the phase difference can be determined by offsetting one of
the signals with a lag value and calculating the cross correlation.
The lag which produces the highest value of cross correlation will
correspond, in this case, to the correct probe angle.

Several similar measurements were also performed with a rotor
shaft of an electrical drive. The angular errors observed in these
measurements were larger than with the paper machine roll,
which can be explained with the lower diameter of the electrical
machine rotor shaft. These measured error values were used to
select an error tolerance window for optimization of the probe
angles.

2.2. Roundness profile calculation

The obtained angles and the probe data were then used to com-
pare the roundness profile produced by the assumed (erroneous)
angles to the roundness profile produced by the determined (cor-
rect) angles. The effect of the angle error is demonstrated both
on the real data and simulated workpiece data. The simulated
workpiece contained harmonic components 2...100 with 10 pm
amplitude, the phases selected so to minimize the total roundness
error. In this paper, the roundness profiles were calculated as
follows.

Marker

Fig. 1. Schematic picture of the measurement setup.
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For a system with displacement probes (Fig. 1), when assuming
that there is only small center point movement, when the work-
pieces is rotated by the angle 0, the expected probe signal S,(0)
for the n:th probe can be formulated (refer to Fig. 1):

Sn(0) =1(0+ ¢,) +x(0) - cos ¢, +y(0) - sin ¢, (1)

As shown by Jansen [3], after a Fourier transform of the probe
signals, the complex Fourier coefficients of the measured probe
signals S, and the complex coefficients of the roundness profile
r. and center point movement x, and y, can be presented as a
matrix in the form:

Sk = Hk - Ty (2)
Sik cos¢; sing, eiké) X
Sk | = | cos¢p, sing, e ik | .|y, (3)
S3k COS¢p; sing, e ikes) Ik

The solution is calculated separately for each harmonic:

Iy = H,f -S¢. The inverse Fourier transform of these calculated
complex Fourier coefficients can then be used to obtain the round-
ness profile r(#) and center point movement coordinates x(6) and

y(0).
2.3. Performance index for probe angle optimization

A metric for the harmonic suppression of single harmonic com-
ponents is defined via a matrix condition number. A higher condi-
tion number indicates higher sensitivity to errors. Complete
harmonic suppression for a component occurs when the condition
number rises to infinity. The condition numbers.

The characteristics of this function are analyzed and harmonic
suppression as a function of the probe angles is also investigated
also on the level of single harmonic components. The results of
measurements of the probe angle errors are used as basis for the
optimization criteria of the probe angles to obtain probe angles
which are in a harmonically sensitive region regardless of small
positioning errors of the probes.

The condition number of the matrix Hy can be used as a metric
for the harmonic sensitivity [3]. When the matrix is close to singu-
lar, k; will get a higher value and small errors in the probe signals
will lead to large errors in the end result.

K= [ Hll - |H | (4)

A performance index to be used in the optimization can be
defined:

T(¢sb3) = > hi- 1y (5)
k=2

hy is a transfer function that can be used to give weights for selected
harmonics. Kato [15] used a low pass filter with a cutoff frequency

Fig. 2. Measurement setup with rotor, marker and four laser sensors.

Fig. 3. Schematic picture of positioning error showing how a placement error of a
fixed measurement frame results in altered probe angles.

at the 15th harmonic as the transfer function, but in this research a
linearly decreasing function for harmonics from 2 to 20 is used
(hy =1 for k=1 and hy = 0 for k = 21).

The final goal of the optimization is to minimize the worst case
cost, in other words the maximum value inside a region
(¢ + bron, ¢3 + dro3) TEpresenting selected angle deviation toler-
ance. The optimization problem can be formulated as follows:

minmax T (¢, + drons P3 + Pro)

$2.¢3
subject to —2 < ¢yop < 2 (6)
-2< ¢’tol3 <2

To find the optimal probe angles, with ¢, = 0, this performance
index is numerically evaluated over the 2D parameter space of ¢,
and ¢; (evaluated for 0° < ¢, < 180° and ¢, > ¢5). For practical
reasons, the optimization was restricted to angles under 180°; for
example it is advantageous to design a fixed tactile probing head
for angles not exceeding 180° in total. Based on the cross correla-
tion measurements of the probe angle errors, the selected angle
deviation tolerance in this research was +2°.

3. Results
3.1. Probe angle determination and effect on roundness profile

One round of the measured data (1024 samples) is shown in
Fig. 5 and the cross correlation of the signals with each other with
different lag values in Fig. 6. Signal means were removed from the
signals and cross correlation was used to determine the lag value,
that is the maximum argument of the cross correlation, with the
highest correlation with respect to S1. In Fig. 6 the black dotted line
corresponds to zero lag, vertical red lines are the maximum values
of the cross correlation. The determined lag values for this round of
data were 105 samples for S2, 189 samples for S3 and 510 samples
for S4 which correspond to angles {0°, 36.91°, 66.45° and 179.30°}.
Lag values were calculated in the same way for 100 rounds of data.
The measured mean angles, their standard deviations and the
mean deviations from the nominal angles are shown in Table 1.
The results in this table served as input for the later research:
the mean deviations dive an indication of the minimum tolerance
zone for the probe placement. The standard deviations in the
determined angles describe the uncertainty in the probe angles.

The effect of using incorrect angles in the calculation of round-
ness profiles is presented in Fig. 7 for a simulated profile and Fig. 8
for a measured roundness profile of the roll after removing the
marker. Both of the plots display the roundness profile are filtered
to contain only the first 100 harmonic components. The deter-
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Fig. 4. K, calculated separately for single harmonics k = 2,...,7, showing how each added harmonic results in added areas of suppression with the distance between the
suppressed areas decreasing as the harmonic number increases. It can also be seen that odd harmonics are suppressed when at least one of the angles is equal to 180°. The
final performance index T is a weighted sum of the single harmonics’ indexes (Eq. (5).
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Fig. 5. One round (1024 samples) of measured displacement signals. The notches in
the signals are caused by the marker.
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Fig. 6. One round (1024 samples) of measured signals cross correlated with each
other. The red line shows the maximum, which is the probe position.

Table 1
Measured mean angles for the probes, their standard deviations and the mean
deviations from the nominal angles. The values have been calculated from 100 rounds
of data.

Sensor (nominal angle)  Mean measured angle o Mean deviation

S1(0°) 0.00° 0.00°  0.00°

2 (38°) 36.91° 045° —1.09°
S3 (67°) 66.45° 126°  —0.55°
54 (180°) 179.30° 075° —0.70°

—— Actual profile
—— Nominal angles
—— Determined angles

Fig. 7. Roundness profile calculated from simulated signals with incorrect angles
and determined corrected angles. The nominal and incorrect angles used in the
calculation are shown in Table 1.

—— Nominal angles

—— Determined angles

Fig. 8. Effect of correcting the angles on roundness profile calculated from
measured data from the roll. The nominal and incorrect angles used in the
calculation are shown in Table 1.
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mined (correct) angles in the figures are the mean measured
angles; the angles with errors are the nominal probe angles.

The results show that using the incorrect angles in the calcula-
tion of the roundness profile leads an error in the produced profile,
which is demonstrated in Fig. 7 for a simulated case and in Fig. 8
the measurement of the actual profile. The actual profile of the real
workpiece is not known, so for the measured data, only the differ-
ence between the two cases can be shown. In the simulation, the
actual profile is known, and the figure shows how using the correct
angles produces a better estimate of the roundness profile.

3.2. Robust optimization of the probe angles

An optimization of the probe angles was performed for two
roundness measurement methods: the three-point method and
the redundant diameter four-point method. In the probe angle
optimization for the redundant diameter four-point method, it
was assumed that the fourth probe is located exactly opposite to
the first probe. In practice, this can be achieved for example by
placing the frame to a location where the difference between the
diameter probe reading is the greatest, or by using vertical line
contact probes allowing for vertical positioning error. Thus, the
optimization of the redundant diameter four-point method
becomes a problem of optimizing the three-point method consid-
ering only odd harmonic components.

A performance index as described in Eq. (5) was calculated for
the sensor angles over a 2-dimensional parameter space with ¢,
and ¢; between 0° and 180°. A robust optimization was then per-
formed with the goal to minimize the worst case conditions inside
an angle tolerance of +2° (Eq. (6)).

The condition numbers were also investigated on the level of
single harmonic components. Fig. 4 shows k calculated for har-
monic components from 2 to 7. It can be seen that each added har-
monic results in added zones of harmonic suppression.
Mathematical formulation for harmonics with complete suppres-
sion occurring at periodic intervals has been presented in literature
[13]. Also, it can be seen from Fig. 4 that for the odd harmonic com-
ponents there is a suppressed area when the probes are located at
180 degrees.

The probe angles suggested by Kato [15] {0°, 37°, 68°}, and Hale
[16] {0, 90°, 133.8°} are presented in Figs. 10 and 9 for reference.
Marsh [19] {0°, 99.84°, and 202.5°} and Cappa [17] have also men-
tioned suitable angles, which were not included in the figures due
to the maximum difference between the angles exceeding 180°.

The optimization was performed for all harmonics for the three-
probe method (9) and for odd harmonics only (Fig. 10) for the

180
x Kato
x Hale
1501 x  Global minimum
x  Robust minimum
120
)
L
S 90
s
60
30
0 . - - - .
0 30 60 90 120 150 180
2 [deg]

¢3 [deg]

redundant diameter sampling, where even harmonics are calcu-
lated from the diameter variation profile.

When considering all harmonics in the range 2,. . .,20, the global
minimum 52.83 was encountered at {0°, 60.5°, 105.5°} and the
robust minimum 55.47 at {0°, 49°, 115°}. When considering only
odd harmonics in the range 3,...20, the global minimum 24.23
was encountered at {0°, 45°, 105°} and the robust minimum
25.56 at {0°, 59.5°, 135°}.

4. Discussion

The problem addressed in this paper was twofold. One source of
error can be using the nominal angles in calculating roundness
profiles, when actually during the measurement, the angles are
not the nominal angles. These errors can be caused by engineering
imperfections of the measurement setup. Cross correlation or other
techniques can be used to determine the actual probe angles, but if
the probe angles have not been correctly selected, the actual angles
can reside in an area with poor harmonic transmission
characteristics.

If the probe angles are measured accurately after positioning
the probes and these determined angles are used when calculating
the roundness profile, tolerances of the probe alignment do not
need to be as tight during manufacturing and positioning of the
measuring equipment.

Possible sources of error in determining the probe angles are
discrete sampling and center point movement of the workpiece.
These were assumed not to contribute significantly to the angle
determination. It must also be noted that cross correlation is not
the only possibility to determine phase differences between the
signals. Any method which can be used to calculate the phase dif-
ference between similar signals could have been used, and the
probe angles could be calibrated with an electrical contact marker,
which could be used to detect at which encoder position the
probes make contact with the marker.

The results of such optimization as performed in this research
will largely depend on the selected optimization criteria, which
include the range of harmonics, selected weighting function hy
and selected angle deviation tolerances ¢, and ¢,,;. Performing
a robust optimization over a large angular tolerance or selecting
a wide range of harmonics will obviously worsen the total perfor-
mance index.

Kato [15] used a low pass filter on the performance index to
give emphasis on the lower order harmonic components, but in
this case a linearly decreasing function was used. An alternative
could have been to use the low pass filters defined for roundness

180 > 160
x Kato 150
| = Hale 140
150 % Global minimum =] 130
x  Robust minimum = 120
120 4 -y gn —
l‘ ' [ ] 100
90 7.% L1 -' 90
-‘.. :f '..- 80
60 il .IE 70
o, 60
£ B
ulm -.'- ! 50
30 - -. [y ) 40
g Rl P m 50
0 - - - T T 20
0 30 60 90 120 150 180
> [deg]

Fig. 9. On the left, performance index T (Eq. (5)) as a function of the probe angles with harmonics 2,...,20 with linearly decreasing weighting h,. The robust optimization (Eq.

(6)) is shown on the right.
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120 110
E\ 100
S 92 90
s 80
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30
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180 > 160
x Kato 150
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100
90 4 90
80
60 10
60
50
301 40
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Fig. 10. On the left, performance index T (Eq. (5)) as a function of the probe angles with only odd harmonics in the range 2,...,20 with linearly decreasing weighting hy. The
robust optimization (Eq. (6)) is shown on the right. The results of this optimization are intended for a redundant roundness measurement method, where even harmonics are

calculated from a diameter variation profile.

profiles in ISO 12181-2 [1], but the authors consider these filters
not to have been designed for weighing performance indexes. Nev-
ertheless, the optimization of the probe angles largely depends on
which harmonics are of interest. Selecting a large range of harmon-
ics will lead to worse results when considering the whole range.

Parameters selected for the optimization largely depend on the
application. A similar absolute positioning error will lead to differ-
ent angular errors with workpieces of different diameters. The
same applies both for the mean angle deviation and the standard
deviation. Whatever the selected parameters for the optimization,
assessing the quality of the recommended probe angles is difficult,
and will be limited by the application and also characteristics of
the workpiece being measured. Previous work by the author shows
that there is a connection between the error propagation rate and
the error that different kinds of positional errors and center point
movement cause in a harmonic component [20].

5. Conclusion

Deviations from the nominal probe angles can result in an
incorrect roundness profile in two ways: using incorrect angles
in the calculation of the roundness profile, or using the correct
angles with poor harmonic characteristics. The results of this
research address both of these problems. It was first shown how
probe angles can be determined accurately after the probes have
been positioned for measurement. To avoid errors, these deter-
mined actual angles can be used in the calculation of the roundness
profile. However, because multi-probe methods suffer from har-
monic suppression, it may be that the determined angles are in
an area where a harmonic is suppressed. A robust optimization
was performed to find areas for the angles where deviations will
not result in suppression.

To conclude, determining and using the correct angles for
roundness profile calculation will lead to reduced error in calcu-
lated roundness profiles. However, the prerequisite for the correc-
tion is that the actual angles are not in an area with harmonic
suppression. When choosing the nominal probe angles, a robust
optimization can be performed with criteria to allow deviations
in the nominal angles without suppression.
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