
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Ghavimi, Fayezeh; Jantti, Riku
Energy-Efficient UAV Communications with Interference Management: Deep Learning
Framework

Published in:
2020 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2020 - Proceedings

DOI:
10.1109/WCNCW48565.2020.9124759

Published: 01/04/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Ghavimi, F., & Jantti, R. (2020). Energy-Efficient UAV Communications with Interference Management: Deep
Learning Framework. In 2020 IEEE Wireless Communications and Networking Conference Workshops,
WCNCW 2020 - Proceedings Article 9124759 IEEE. https://doi.org/10.1109/WCNCW48565.2020.9124759

https://doi.org/10.1109/WCNCW48565.2020.9124759
https://doi.org/10.1109/WCNCW48565.2020.9124759


Energy-Efficient UAV Communications with
Interference Management: A Deep Reinforcement

Learning Framework
Fayezeh Ghavimi, Member, IEEE, and Riku Jäntti, Senior Member, IEEE

Aalto University, Finland
Email: {fayezeh.ghavimi, riku.jantti}@aalto.fi

Abstract—In this paper, an interference-aware energy-efficient
scheme for a network of coexisting aerial-terrestrial cellular users
is proposed. In particular, each aerial user aims at achieving
a trade-off between maximizing energy efficiency and spectral
efficiency while minimizing the incurred interference on the
terrestrial users along its path. To provide the solution, we
first formulate the energy efficiency problem for UAVs as an
optimization problem by considering different key performance
indicators (KPIs) for network, coexisting terrestrial users, and
UAVs as aerial users. Then, leveraging tools from deep learning,
we transform this problem into a deep queue learning problem,
and present a learning-powered solution that incorporates the
KPIs of interest in the design of the reward function to solve
energy efficiency maximization for aerial users while minimizing
interference to terrestrial users. A broad set of simulations have
been conducted in order to investigate how the altitude of UAVs,
and the tolerable level of interference, shape the optimal energy-
efficient policy in the network. Simulation results show that the
proposed scheme achieves better energy and spectral efficiency
for UAV and less interference to terrestrial users incurred from
aerial users. The obtained results further provide insights on
the benefits of leveraging intelligent energy efficient scheme.
For example, a significant increase in energy efficiency of aerial
users with respect to increase in their spectral efficiency, while
considerable decrease in incurred interference to the terrestrial
users is achieved in comparison to the non-learning scheme.

Index Terms—Energy efficiency, unmanned aerial networks
(UAV), drone, cellular networks, machine learning, deep rein-
forcement learning, interference management.

I. INTRODUCTION

Unmanned aerial vehicle (UAV) is an emerging technology
which has been effectively applied in different types of use
cases such as military, surveillance, and public safety [1].
Among these applications, the use of UAVs in public safety
(e.g., fire fighting) has been of particular interest in cellular
networks due to its significant flexibility of movement in the
three-dimensional (3D) space and low operational cost.

In such UAV systems, live video stream and high-resolution
images taken from the area surrounded by fire need to be trans-
mitted with limited UAV onboard battery, thereby posing high
uplink data rate and low energy consumption requirements.
Furthermore, due to the mobility of UAVs in a 3D space,
the probability of experiencing line-of-sight (LoS) propagation
to the neighbour base stations (BSs) increases by increasing
the altitude. Thus, UAVs’ communications are expected to

impose significant interference to uplink communications of
terrestrial users. Therefore, in order to enable successful
deployment of UAV communications in cellular networks,
their energy efficiency along with interference management
to the terrestrial users should be carefully taken into account.

Energy-efficient designs for UAV communications are sig-
nificantly different if compared with the terrestrial counterpart
[2]. Energy-efficiency maximization in terrestrial communi-
cations is mainly for reducing energy consumption and cost.
However, that is more critical for UAV communications due
to the limited on-board energy. Given the maximum amount
of energy that can be carried in an UAV, any improvement in
energy efficiency increases the amount of data that can be sent
by the UAV before it needs to be recharged. Furthermore, in
addition to the energy consumed by signal transmission, UAV
systems must provide propulsion power to maintain the UAV
up above and ensure its movement, which is usually much
higher than the transmission power consumption. One should
note that the UAV’s propulsion energy consumption directly
depends on its flying status consisting of location and velocity
which must be considered in an energy-efficient design for
UAV communications. Therefore, the legacy energy-efficient
frameworks designed for terrestrial networks lose their merit
in serving UAV communications due to the 3D space mobility
for UAVs and the inherent characteristics of interference in
such networks.

The aforementioned challenges have been studied in the lit-
erature without a complete consideration of coexisting aerial-
terrestrial users. The downlink and uplink interference for
coexisting aerial-terrestrial users is investigated in [3] based
on empirical observations. In [4], the authors study the coex-
istence of aerial and terrestrial users in cellular networks and
characterize the downlink coverage performance. However,
the existing literature [3] [4] does not provide any concrete
solution for energy efficiency maximization of aerial users
while minimizing the interference challenge for terrestrial
users in the context of cellular networks.

While some literature has recently investigated the energy-
efficient UAVs as mobile BSs/relays [5] [6], the energy effi-
ciency analysis of cellular-connected UAVs remains relatively
scarce in this vein [7] [8]. The energy-efficient trajectory
design for UAV is investigated in [5]. The authors in [6] jointly



optimize the UAV trajectory and transmit power to minimize
the outage probability for the UAV relaying network. The
work in [7] studied the UAV trajectory optimization problem
with some tolerance on the loss of cellular connection, in
which disconnected duration does not exceed a given bound.
The authors in [8] propose a trajectory optimization scheme in
which the time required for a cellular-connected UAV to reach
its destination is minimized. In [9], the authors study joint
aerial-terrestrial resource management in UAV-assisted mobile
networks. To mitigate interference, a learning based approach
is proposed in [10]. However, despite being interested, the
existing literature [5]- [10] does not provide any concrete
solution for optimizing the performance of a cellular network
serving both aerial and terrestrial users so that the energy
efficiency of aerial network is maximized while minimizing
the interference caused on the terrestrial network along UAVs
path. In addition, the contributions in the literature rely on
optimization scheme in an offline manner that cannot adapt
to complexity and dynamicity of a cellular-connected UAV
network coexisted with terrestrial network.

The altitude of the UAV has great impact on the energy
efficiency as each ascending and descending consume on-
board energy of the UAV significantly. Furthermore, as the
altitude of the UAVs increases, the signal-to-interference-plus-
noise ratio (SINR) for the UAV decreases. This is due to the
path-loss which increases as the distance of the UAV from
the serving BS increases. On the other hand, higher UAV’s
altitudes result in a higher average data rate per terrestrial
users as the interference level caused from the UAVs on
neighboring BSs decreases. Hence, each UAV’s altitude must
be dynamically adjusted in order to guarantee a minimum
achievable data rate for the UAV users while minimizing the
severe interference to the terrestrial users.

Hence, each UAV’s altitude must be dynamically adjusted
in order to guarantee a minimum achievable data rate for
the aerial users while minimizing the severe interference to
the terrestrial users. Due to the dynamic mobility of the
aerial users in 3D space and the altitude dependency in
A2G wireless channel, the amount of interference generated
by aerial communications is difficult to be predicted. Thus,
to continuously adjust flying altitude for drastic interference
mitigation becomes too complicated. This brings the need to
evolve towards an artificial intelligence (AI) energy efficiency
maximization to support more fine-grained aerial-terrestrial
user-centric service provision.

The main contribution of this paper is to develop a deep
reinforcement learning (DRL) based energy efficiency maxi-
mization for aerial users and incurred interference minimiza-
tion from aerial to terrestrial users for serving this coexisting
scenario in 5G cellular networks. We first form the energy effi-
ciency formulation for aerial users as an optimization problem
which includes key performance indicators (KPIs) regarding to
aerial users coexisted with terrestrial users. Then, we develop a
DRL framework to satisfy different KPIs for aerial users while
minimizing the interference to the terrestrial users. To the best
of our knowledge, utilizing DRL to extract optimal policy

Fig. 1: System model for uplink communications of cellular
UAVs coexisting with terrestrial network.

for energy efficiency maximization from heterogeneous data
which is the case encountered in coexisting aerial-terrestrial
users has not been investigated in the literature.

The remainder of this paper is outlined as follows. Section
II presents the system model and problem formulation for
H-RRM. Section III formulates an optimization problem for
energy efficiency maximization of aerial users while minimiz-
ing interference to the terrestrial users. Section IV provides
the DRL-powered H-RRM algorithm. Simulation results are
presented in Section V, followed by the conclusion given in
Section VI.

II. SYSTEM MODEL

We consider an uplink of cellular mobile network serving
coexisting aerial-terrestrial users as shown in Fig. 1. The
network consists of a set of base stations (BSs) and the
number of aerial users denoted by M = {1, · · · ,M} and
K = {1, · · · ,K} respectively. A co-channel deployment
is considered, in which BSs operate in a system with a
bandwidth W consisting of N = {1, · · · , N} radio resource
blocks (RRBs). At each decision epoch t, it is of particular
important to design the trajectory of the UAV along which it
moves towards the targeted locations. We denote the location
of the BS by (xm, ym, Hm). Furthermore, in each time slot
t, let lk(t) = (x(t), y(t), z(t)) be the location of UAV k, and
vk(t) = (vx(t), vy(t), vz(t)) be its velocity, with v(t) = l′(t).
For the wireless communication requirements for aerial and
terrestrial users, the UAV has a minimum and maximum flight
altitude hmin and hmax respectively, and a maximum velocity
vmax. At each time slot, we decide on the trajectory of the
UAV, its speed, target BS to be associated and set of resources
for serving each UAV, and the level of transmit power of the
UAV.

The air-to-ground (A2G) channel depends on the presence
of line-of-sight (LoS) propagation characteristics between the
aerial user and BS. The probability of experiencing LoS
propagation in communications between aerial user k, at
altitude hk with speed vk with respect to the lth BS is modeled



as [11]. Thus, the average received power of the BS from the
UAV is given as follows:

PR(t) = PT (t)/10
PLa(t)/10, (1)

where PT (t) is the transmission power of the UAV in time
slot t, and PLa(t) is the average path-loss in dB which is
denoted as

PLa(t) = PrL(t)× PLL(t) + PrN (t)× PLN (t), (2)

in which PLL(t) and PLN (t) are the LoS and non-line-
of-sight (NLoS) path-loss models from the UAV to the BS
as given in [11]. PrL(t) and PrN (t) are the probability
of LoS and NLoS connection respectively where PrN (t) =
1 − PrL(t). The data rate from the UAV to the BS in time
slot t is as follows:

Rk(t) =Ws|nk| log2(1 +
PR(t)

N0 +WsIs,k(t)
), (3)

where Ws is the bandwidth of the subcarrier, nk the allocated
subset of subcarriers for UAV k, N0 the noise power over
each subcarrier, Is the power density of interference over sth
subcarrier, and PR(t) is the received power of the BS from
the UAV.

III. ENERGY-EFFICIENT UAV COMMUNICATIONS WITH
INTERFERENCE MANAGEMENT

In this section, we first introduce the energy consump-
tion of the UAV, and then formulate the energy efficiency
(EE) maximization problem in which the minimum data rate
requirements of aerial users are satisfied while minimizing
interference to the terrestrial users.

A. Energy Consumption

The total energy consumption includes the UAV’s uplink
transmissions and its mechanical movements given as:

ECk(t) = EP,k(t) + EW,k(t) (4)

where EP,k(t) =
1
2mkv

2
k(t) denotes the energy consumption

for movement control, and EW,k(t) = (ηPk(t) + Pc)τ indi-
cates the energy consumption for wireless transmission. The
parameter mk is the mass of the k-th UAV, Pk is the transmit
power, Pc the circuit power, η the inverse of power amplifier
efficiency, and τ is the length of a time slot. Afterward, we
wish to maximize the bits-per-Joule, as a metric for EE as
follows.

EE(t) =
b(t)

EP (t) + EW (t)
, (5)

where b(t) is the amount of information data to be transmitted
by a UAV user.

B. Problem Formulation
Given the status of aerial users at time t, Sk(t), ∀k ∈ K, as

well as the available RRBs at each BS, i.e. Nm(t), ∀m ∈M,
the problem is to find the best serving BS, set of allocated
resource blocks X(m,n, t, k), level of transmit power Pk(t),
∀k, n,m, and UAV’s optimal altitude Hk(t) in order to satisfy
the data rate requirements of aerial users with a minimum
amount of allocated radio resources for aerial users and
minimum interference on terrestrial users. Then, at decision
epoch t, we need to solve the following optimization problem
for the k-th node in order to maximize energy efficiency
for the UAV and maximize their spectral efficiency while
minimizing interference to the terrestrial users:

max[
X(t),P(t),H(t),M(t)

] ξ1b(t)

EP (t)+EW (t)
+

ξ2b(t)

X(m,n, t, k)
+

ξ3
1 + Int(t)

subject to: (6)

C1) Rk(t) ≥ Rmin
k ,

C2) Intk(t) ≤ Intmax
k ,

C3) Hmin ≤ H(t) ≤ Hmax,

C4) v(t) ≤ vmax,

C5)
∑

m∈M

∑
n∈Nl(t)

Pk(t)x(m,n, t, k) ≤ Pmax
k , ∀k,

C6)
∑K

k∈K
x(m,n, t, k)=1, ∀k,

C7)
∑

m∈M

∑
n∈Nm(t)

x(m,n, t, k)=1, ∀m1 6= m2, ∀t, n,

in which, C1 is the minimum data rate requirement for every
individual UAV user, C2 stands for the interference threshold
on the terrestrial user, C3 indicates that the UAV’s altitude
should be bounded, C4 is the threshold for the UAV’s speed,
C5 stands for the maximum allowable transmit power, C6

assures that each RRB in each cell is allocated to at most
one user, and finally C7 assures that each aerial user receives
service from one cell only.

It is obvious that (6) is a highly-complex non-convex opti-
mization problem as it includes several objective parameters
that they should be optimized. Furthermore, due to high
mobility of a UAV network coexisted with terrestrial network,
acquiring the solution for the aforementioned optimization
problem in each time instant would be a challenging task.
In addition, the type of traffic generated varies from one time
instant to another which makes the amount of interference
hard to predict. Thus, due to the strong dynamics in high
mobility aerial networks, making the solution adaptive to
the changes in the environment is favorable. Therefore, we
consider a centralized approach in which BSs are connected
to each other and all of them are connected to a central entity,
named as controller, with designed interfaces. The controller
has full knowledge of the current state of the network and it
can be able to communicate with all BSs at all time. We
propose a centralized approach that learns for each UAV
k its transmission power level, the set of radio resource
blocks, association vector, and altitude along its path in an
autonomous and online manner. Based on these motivations,



we transform the energy efficiency maximization problem to
a deep queue network (DQN) problem.

IV. THE DEEP QUEUE LEARNING-POWERED SOLUTION

In this section, the framework on DQN for energy efficiency
maximization and spectral efficiency maximization in aerial
network while minimizing the interference from aerial to
terrestrial users is introduced. Furthermore, the key parts in
DQN framework are presented in detail and algorithm to train
the DQN is shown as the proposed solution.

The architecture of the proposed DQN used for maximizing
energy efficiency of aerial communications is as follows:

1) Input Layer: In our model, the state of aerial user k at
time t, Sk(t) represents a set of features which characterizes
the action in relation to the network including the Euclidean
distance from UAV k to its serving BS, the path-loss measure-
ments to neighbor BSs, interference measurements, current
serving BS, available radio resource blocks (RRBs), speed,
and buffer queue size of aerial users. This state space is fed
to the DQN.

2) Hidden Layer: We consider a dense network including
five hidden layers. Layer one to layer five consist of 512, 256,
128, 64, and 32 neurons respectively in which their activation
function is the rectified linear unit (ReLU).

3) Output Layer: The output layer includes the number of
neuron equals to the action space size with linear activation
function. The actions specific taken for aerial user k at time
t, Ak(t), are represented by allocated set of RRBs, transmit
power, altitude, and associated BS in a way that to maximize
the reward function. Our reward function takes into account
the KPIs including maximizing energy efficiency and their
spectral efficiency, and also minimize the interference from
aerial users to terrestrial users. In order to reach this objective,
we define a reward function for aerial user k at time t as
follows.

rk(t) =

T∑
t=1

ηeEE(t)+
T∑

t=1

ηsb(t)

X(m,n, t, k)
+

T∑
t=1

ηf
1 + Int(t)

,

(7)

where η1, η2, and η3 are weights determined from the relative
importance of the energy efficiency and spectral efficiency
of aerial users, and the interference incurred from aerial to
terrestrial users in the target application. All the weights have
been normalized, to prevent dealing with a dominant factor.
Furthermore, we note that the coefficients are normalized, to
prevent dealing with a dominant factor.

To cope with the large dimensionality of EE optimization
problem, we develop deep queue network (DQN) framework
in intelligent decision making of EE maximization for aerial
communications. DQN framework directly learns a function
Q(s, a, ω) parameterized by a set of parameters ω that are
optimized through minimizing a mismatch between the current

Algorithm 1: Deep queue learning for energy effi-
ciency maximization of aerial users coexisting with
terrestrial users

1 Initialize: DQN weights, i=1;
2 for the number of training iteration do
3 while aerial user is inside of service area do
4 Input: state of aerial user;
5 Step 1: Action selection;
6 A random action is selected to the aerial user k with

probability ε;
7 Otherwise, an action is selected by maxa∈AQ(s, a;w);
8 Step 2: Location, cell association, transmit power, and

altitude update;
9 Controller updates the location, cell association, transmit

power, and altitude of aerial user k based on the selected
action;

10 Step 3: Reward computation;
11 The controller calculates the reward values for each aerial

user based on (7);
12 if s is not in the action space then

y = rt;

else
y = rt + βmaxa∈AQ(s, a;w);

13 Step 4: train DQN weights, ω;
14 Train DQN weights to minimize the loss function (8);
15 if reward > rewardmax then

The policy is set;

else
Repeat

Q-value Q(s, a) and the target Q-value namely loss function
on state-action space:

Loss(w) =
∑

st∈S,at∈A
(y −Q(st, at;w))

2, (8)

where
y = rt + βmax

a∈A
Q(st, a;w). (9)

where rt and β are the corresponding reward and discount
factor respectively.

The probability of an action selection is random at the
beginning and gradually is improved with the update of the
weights of DQN through the minimizing the loss function.
The output of this layer results in selection of optimal action
for the DQN scheme. A summary of the proposed solution is
given in Algorithm 1.

V. PERFORMANCE EVALUATION

We consider a service area of 500 × 500 m2 including
three macro BSs serving both aerial and terrestrial users. Our
focus is on uplink service to aerial users, flying with speed
v, while they are crossing the service area. The simulator
has been developed in Python, and implements the DQN-
powered EE maximization, as well as a baseline scheme. In
the baseline scheme, RSS is used at each radio subframe equal
to 1msec, according to the amount of data to be transmitted,
the minimum RRBs are determined in the RSS scheme.
Furthermore, at each radio frame, if the received power from
the target BS is 7dB stronger than the serving BS, the aerial



TABLE I: Parameters for performance evaluation.
Parameters Values

Service area 500× 500 m2

BSs’ positions in meter (50, 100); (200, 400); (450, 50)
Available RRBs for aerial user (per
TTI)

Random, up to 4 × 180 KHz

BSs antenna height, carrier frequency 25 m, 2 GHz
Packet arrival rate and size at the
buffer of aerial user

0.3 Hz; 2 Kbits

Handover control packet size 4× 1Kbits
Max transmit power over each carrier 0.2 Watt
Aerial user’s maximum speed 20 m/sec

user is handed over to the target BS. In the DQN, at each radio
subframe, serving BS, the best set of radio resource blocks
(RRBs), the respective transmit power over them, and altitude
are decided by the DQN management entity. The simulation
parameters can be found in Table I.

The KPIs of interest in serving aerial-terrestrial users are the
energy efficiency and spectral efficiency for aerial users and
incurred interference to terrestrial communications from aerial
communications. In the DQL scheme, we consider a weighted
sum of standardized values of maximizing energy efficiency
as well as spectral efficiency, and minimizing interference as
the reward function, where the weight of energy efficiency,
spectral efficiency, and incurred interference are shown by ηe,
ηs, and ηf respectively.

The performance impacts of altitude in energy efficiency
and spectral efficiency for aerial users, and incurred inter-
ference to terrestrial users are demonstrated in the Fig. 2,
Fig. 3, and Fig. 4 respectively. In the Fig. 2, one observes
that by decreasing altitude, the achieved energy efficiency for
aerial users is increased significantly. Furthermore, the Fig.
3 demonstrates that by decreasing the altitude, the spectral
efficiency for aerial users increases. However, the Fig. 4
shows that decreasing the altitude of aerial users incurs more
interference to the terrestrial users. This is mainly due to the
decrease in the distance of the UAVs from their corresponding
serving BSs, which attenuates the path-loss effect. However
this decrease in altitude is coming at the cost of incurring
some interference to the terrestrial users as indicated in Fig.
4. Furthermore, numerical results demonstrate that the DQN
framework outperforms baseline scheme in terms of energy
and spectral efficiency maximization for aerial communica-
tions while minimizing interference to the terrestrial networks.

VI. CONCLUSION

In this paper, we propose an interference-aware energy-
efficient scheme that allows cellular-connected aerial users to
minimize the interference they incur on terrestrial users while
maximizing their energy efficiency as well as spectral effi-
ciency. The major challenges consist of the maximizing energy
efficiency for aerial users while minimizing interference from
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Fig. 2: Reward for maximizing energy efficiency of aerial
users. One further can observe the impact of changing the
altitude of aerial user in the reward function.
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Fig. 3: Reward for maximizing spectral efficiency of aerial
users. One further can observe the impact of changing the
altitude of aerial user in the reward function.

aerial users on uplink communications of coexisting terrestrial
users. We demonstrate that these challenges are coupled in
conflicting ways, in which an improvement in one potentially
deteriorates the other one. Therefore, we first formulate the
energy efficiency problem for aerial users as an optimization
problem by considering KPIs requirements for aerial users
(i.e., energy efficiency, spectral efficiency) and terrestrial users
(i.e., interference). Then, we transform the energy efficiency
problem to a deep queue learning problem and develop a
framework to address those aforementioned challenges. The
framework enables the agent (i.e., controller) to decides on
UAVs next location, cell association, radio resource block
allocation, and transmit power level. Simulation results have
shown that DQN framework achieves better energy efficiency
as well as spectral efficiency for UAVs, and less interference
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Fig. 4: Reward for minimizing interference to terrestrial users
from aerial users. One further can observe the impact of
changing the altitude of aerial user in the reward function.

to the terrestrial users that is comparable to the RSS as
baseline scheme. The results have also shown that a UAV’s
altitude plays a vital role in maximizing the energy efficiency
and spectral efficiency of the UAVs, and minimizing the
interference level on the terrestrial users. In particular, we
have shown that as the altitude of UAVs decreases the energy
efficiency and spectral efficiency of aerial users increases
while the interference incurred from the aerial to the terrestrial
users increases.
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