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Abstract

Motivation: Annotating human proteins by abnormal phenotypes has become an important topic. Human
Phenotype Ontology (HPO) is a standardized vocabulary of phenotypic abnormalities encountered in
human diseases. As of Nov. 2019, only less than 4,000 proteins have been annotated with HPO. Thus
a computational approach for accurately predicting protein-HPO associations would be important, while
no methods have outperformed a simple Naive approach in the CAFA2 (second Critical Assessment of
Functional Annotation, 2013-14).
Results: We present HPOLabeler, which is able to use a wide variety of evidence, such as protein-protein
interaction networks (PPI), Gene Ontology (GO), InterPro, trigram frequency and HPO term frequency,
in the framework of learning to rank (LTR). LTR has been proved to be powerful for solving large-scale,
multi-label ranking problems in bioinformatics. Given an input protein, LTR outputs the ranked list of HPO
terms from a series of input scores given to the candidate HPO terms by component learning models
(logistic regression, nearest neighbor and a Naive method), which are trained from given multiple evidence.
We empirically evaluate HPOLabeler extensively through mainly two experiments of cross-validation and
temporal validation, for which HPOLabeler significantly outperformed all component models and competing
methods including the current state-of-the-art method. We further found that 1) PPI is most informative for
prediction among diverse data sources, and 2) low prediction performance of temporal validation might be
caused by incomplete annotation of new proteins.
Availability: http://issubmission.sjtu.edu.cn/hpolabeler/
Contact: zhusf@fudan.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the completion of Human Genome Project, modern geneticists
focus on understanding how proteins influence phenotypes by leveraging
information hidden in proteomics data (Legrain et al., 2011). For
promoting studies on phenomics, researchers develop a standardized
vocabulary that describes human abnormal phenotypes and semantic
relationships, called Human Phenotype Ontology (HPO) (Köhler et al.,
2019). HPO contains over 14,000 terms organized hierarchically in a

directed acyclic graph (DAG) (Fig. 1). Each HPO term (a node in the
graph) denotes a symptom or a phenotypic abnormality that characterizes
a disease. The directed edge between two terms represents an “is-a”
relationship, implying that the term for a node is more specific to those
for ancestors. That is, a given term of a protein can be propagated to all
ancestors of the node, which is called “true-path-rule”. As of 2018, HPO
has five sub-ontologies (CC, CM, MI, PA and Freq) with the common root
named All.

Currently, around 50% of rare diseases (about 7,000) have been
elucidated on the genetic cause, while a large number of genetic disorders
have yet to be recognized (Boycott et al., 2013; Chong et al., 2015).

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



i
i

“output” — 2020/8/19 — 1:51 — page 2 — #2 i
i

i
i

i
i

2 L. Liu et al.

Fig. 1. A fraction of the Human Phenotype Ontology released after Dec. 2017, where each
oval denotes an internal node and each rectangle denotes a leaf node.

Also, complex genetic mechanisms of these disorders are unknown (Lowe
and Reddy, 2015). The HPO derives its disease↔gene links from NCBI
MedGen1, which in turn derives the links from OMIM 2. At present, the
vast majority of known disease↔gene links for monogenic (Mendelian)
diseases are included in the HPO resource. The genetics community widely
expects that several thousand additional Mendelian disease genes remain
to be discovered. On the other hand, as of Sep. 2019, only less than 4,000
proteins have been associated with HPO terms. That is, currently known
disease↔gene links in HPO are just only a tip of true links, while manual
curation is very time-consuming. Nonetheless, exploring the relationship
between human proteins and abnormal phenotypes is of great importance
in the prevention, diagnosis, and treatment of diseases (Groza et al., 2015).
Hence, an accurate and efficient computational tool for annotating human
proteins with HPO terms is imperative for biomedical research and clinical
practice.

Computational HPO annotation of human proteins is a large-scale,
multi-label learning problem, in which each human protein (instance) is
associated with multiple HPO terms (labels). Solving this problem is very
challenging: 1) instance imbalances: For all 14,586 HPO terms by Sep.
2019, more than 1,600 HPO terms are annotated with only one protein,
and about 40% of HPO terms are associated with over ten proteins (see
Fig. S1). 2) label imbalances: For example, Prelamin-A/C (UniProt ID:
P02545) is associated with 955 HPO terms, while Ephrin type-A receptor
2 (P29317) is annotated with only 20 HPO terms. 3) hardness in temporal
prediction: CAFA2 had a special track on automatic HPO annotation for
no-knowledge proteins, which are not associated with any HPO terms
before the submission date (Jan. 2014) but received HPO annotations by
Sep. 2014 (Jiang et al., 2016). In this track, the best performance in Fmax

was achieved by a Naive method (Jiang et al., 2016), which just counted
the number of appearances of each HPO term in the database. This result
implies the hardness of temporal annotation of HPO terms.

For tacking this problem, we propose HPOLabeler, which integrates
diverse types of evidence into a Learning to Rank (LTR) framework (see
more descriptions on LTR in the Supplementary Materials). LTR was
originally developed for ranking documents with respect to an input query,
and has been successfully applied to large-scale, multi-label learning
problems in bioinformatics, such as biomedical document indexing (Liu
et al., 2015), protein function prediction (You et al., 2018), and drug

1 https://www.ncbi.nlm.nih.gov/medgen/
2 https://www.omim.org/

discovery (Yuan et al., 2016). In particular, our previous work on large-
scale protein function prediction, GOLabeler, based on LTR (You et al.,
2018) won first place in the CAFA3 challenge (Zhou et al., 2019). In this
paper, we present a similar method to predict the HPO annotations of
human proteins. Now an instance (query) is a human protein, a document
is an HPO term (label), and our HPO annotation problem is ranking
HPO terms with respect to a protein. As the biggest advantage, LTR
allows to integrate multiple types of “evidence”, i.e. models trained by
different, diverse data sources. Specifically, evidence for each protein can
be divided into three types: 1) global evidence: HPO term classifiers
trained by protein-protein interaction networks (PPI), Gene Ontology
(GO) annotations, InterPro signatures, and amino acid trigrams; 2) local
evidence: nearest neighbor (NN) to assign HPO terms of most similar
(nearest neighbor) proteins in PPI; 3) prior evidence: HPO frequencies
(equivalent to the Naive method in CAFA2).

We extensively evaluated the performance of HPOLabeler through
cross-validation and temporal validation (such as CAFA2) over large-
scale datasets from the HPO database. We focused on PA, the largest
sub-ontology covering over 98% of the total HPO terms. From our
experiments, HPOLabeler outperformed all component methods as well as
six competing methods. We further empirically found: 1) NN performed
well, highlighting the importance of PPI; 2) only HPOLabeler among
the competing methods outperformed the Naive method in temporal
validation; 3) closer examination revealed that low performance in
temporal evaluation might be attributed to the incomplete annotation of
new proteins. Finally, we present several typical examples of real protein
annotations.

2 Related work

Predicting protein-HPO associations has two categories: 1) filling missing
associations (Petegrosso et al., 2016), and 2) predicting HPO annotations
of new proteins. We focus on the second category, since only a small
fraction of known human proteins have been annotated with HPO terms.
Existing methods can be considered from two aspects: 1) data types and/or
2) the way of integrating such data. An early method merged only PPI
and ontology with weights after normalization (Wang et al., 2013), which
they call PhenoPPIOrth. A supervised learning-based method (specifically
with structured support vector machine (SSVM)) used features from PPI,
GO and literature by a joint kernel (Kahanda et al., 2015), an extension
of GOstruct (Sokolov and Ben-Hur, 2010; Sokolov et al., 2013) into the
HPO prediction (PHENOstruct). Also, SSVM was further used for indirect
prediction of SSVM→disease→HPO (S→D→H) in (Kahanda et al.,
2015). A recent approach of HPO2GO used only one information source,
i.e. GO, focusing on reliable co-occurring HPO-GO mappings (Doğan,
2018). According to the hierarchical structure (DAG), the flat classification
results can be refined to keep the biological consistency. In this way, two
methods called HTD-DAG and TPR-DAG (Notaro et al., 2017a,b) are
developed. In contrast to existing methods, HPOLabeler makes use of
LTR to integrate multiple types of evidence, which are generated from
heterogeneous data sources and different basic models.

3 Methods

3.1 Notations

Table 1 shows the notations used in this paper.

3.2 Problem formulation

Let Dl = {(pi, Ti)}mi=1 be a given dataset, where human protein pi
has a set of experimentally validated annotations Ti ⊆ O, where O is
the Human Phenotype Ontology and “⊆” is a consistent subgraph of the
ontology (Radivojac, 2013). This means that all ancestors of vertexv ∈ Ti
are in Ti. We denote Dadd as data additionally applied in prediction.
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Table 1. Table of notations.

Notation Meaning

O Human Phenotype Ontology
p Protein
t HPO term
P = {p1, p2, · · · , pm} Set of proteins, where pi is the i-th

protein and m is the cardinality
PS , PL, PT Training sets for component models

and LTR, and test set, respectively
mS , mL, mT Cardinality of PS , PL, and PT ,

respectively

x
(f)
i =

(
x
(f)
i,1 , x

(f)
i,2 , · · · , x

(f)

i,n(f)

)T
Feature vector of protein pi using
data source f , where x

(f)
i,j denotes

the j-th feature andn(f) denotes the
number of features

yt = (y1,t, y2,t, · · · , ym,t)
T Label vector of t, if pi is annotated

with t then yi,t = 1, otherwise 0
S(f)(p, t) Likelihood score between p and t

x
(LTR)
t Feature vector of term t for LTR

Fig. 2. HPO prediction problem: The left-hand side is just a protein (schematic amino acid
sequence). On the other hand, on the right-hand side, the dark nodes are predicted terms,
for which four leaf nodes (highlighted by dashed lines) are originally predicted.

We now formulate the problem of HPO prediction: Given Dl and
unseen protein p in Dadd, the problem is to infer a consistent subgraph
T̂ ⊆ O that maximizes the probability of correct annotationT of p. More
formally, we have

T̂ = argmax
T⊆O

P (T |p)

where P (T |p) is the probability of T being correct as annotations of
protein p. Fig. 2 is a schematic picture of this problem.

It is particularly noteworthy that the problem we attempt to tackle in
this work is to predict the HPO annotation for a given protein, rather than
to predict which protein is most likely related to a given HPO term. The
formulations of these two problems are quite different in practice.

3.3 Feature generation for component models

3.3.1 Protein-protein interaction networks (PPI)

PPI refers to specific contacts between two or more protein molecules
(Nooren and Thornton, 2003). We generate PPI features from three
databases: STRING, GeneMANIA, and BioGRID.

STRING (Szklarczyk et al., 2014): For protein pi, we can write a
real-valued vector x(STR)

i from STRING:

x
(STR)
i =

(
x
(STR)
i,1 , x

(STR)
i,2 , · · · , x(STR)

i,n(STR)

)T
, (1)

where x(STR)
i,j is the score of protein pj interacting with pi.

GeneMANIA (Warde-Farley et al., 2010): For protein pi, feature vector

x
(GM)
i from GeneMANIA can be written as:

x
(GM)
i =

(
x
(GM)
i,1 , x

(GM)
i,2 , · · · , x(GM)

i,n(GM)

)T
, (2)

where x(GM)
i,j is the score of pi associated with protein pj .

BioGRID (Chatr-aryamontri et al., 2017): For protein pi, a feature vector
x
(BGD)
i is a binary vector:

x
(BGD)
i =

(
x
(BGD)
i,1 , x

(BGD)
i,2 , · · · , x(BGD)

i,n(BGD)

)T
, (3)

where x(BGD)
i,j = 1 if pi interacts with protein pj ; otherwise 0.

3.3.2 Gene Ontology (GO) annotations

Similar to HPO, GO provides gene functions and uses DAG to represent
relationships among gene functions. GO covers three different domains:
Biological Process (BP), Cellular Component (CC) and Molecular
Function (MF). We extract GO annotations from Gene Ontology
Consortium (The Gene Ontology Consortium, 2017) and UniProt-GOA
(Huntley et al., 2015), removing records without evidence codes of EXP,
IDA, IPI, IMP, IGI, IEP, TAS, and IC. All remaining annotations are
used without any redundancy, and “true-path-rule” is also applied for
propagating annotations. For protein pi, we have three binary vectors:

x
(GOXX)
i =

(
x
(GOXX)
i,1 , x

(GOXX)
i,2 , · · · , x(GOXX)

i,n(GOXX)

)T
, (4)

where XX denotes BP, CC or MF, and x(GOXX)
i,j is 1 if pi is annotated by

GO term j in subontology XX; otherwise zero.

3.3.3 InterPro (Finn et al., 2017)

We use InterProScan (Jones et al., 2014), which predicts domains and
functional sites of the input protein (sequence) by predictive models, as
signatures. For protein pi, binary feature vector x(IPR)

i is given as:

x
(IPR)
i =

(
x
(IPR)
i,1 , x

(IPR)
i,2 , · · · , x(IPR)

i,n(IPR)

)T
, (5)

where x(IPR)
i,j = 1 if pi has signature j in InterPro; otherwise zero.

3.3.4 Trigrams

Regarding a protein as a string with 20 letters (amino acids), we count
the frequencies of all possible trigrams (3-mer) in the string, resulting in a
feature vector with the size of 8,000 = 203. For protein pi, feature vector
x
(TRI)
i is given as follows:

x
(TRI)
i =

(
x
(TRI)
i,1 , x

(TRI)
i,2 , · · · , x(TRI)

i,n(TRI)

)T
, (6)

where each entry is the frequency of the corresponding trigram.

3.4 Component models

LTR uses learning (component) models, which can be trained from the
above feature vectors. We used the following three components.

3.4.1 Logistic regression (LR)

For protein pi and HPO term t, from feature vector x(f)
i of data source

f , the predicted score S(f)(pi, t) can be written as:

S(f)(pi, t) = L(f)
t (x

(f)
i ) = P

(
yi,t = 1|x(f)

i

)
, (7)

where L(f)
t is LR for HPO term t and data source f .

LR is used for each of the total eight generated feature sets: STRING,
GeneMANIA and BioGRID from PPI, BP, CC and MF from GO, InterPro
and Trigrams. This means that eight scores for each protein – HPO term
pair.
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3.4.2 Nearest neighbor (NN)

Two proteins with strong interactions are likely to be associated with the
same phenotype (Goh et al., 2007). For protein pi and HPO term t, the
associated score is given as:

S(NBR-G)(pi, t) =

∑
pj∈NG(pi)

d(pi, pj) · yj,t∑
pj∈NG(pi)

d(pi, pj)
, (8)

whereNG(pi) is the set of nodes (proteins) adjacent to pi in PPIG, and
d(pi, pj) is the interaction score between pi and pj .

We used STRING, GeneMANIA, and BioGRID for PPI: STRING
and GeneMANIA provide interaction score d(pi, pj), while this score is
unavailable in BioGRID. For BioGRID, we then compute the interaction
score, due to (Chua et al., 2007), as follows:

d(pi, pj) =
2|NG[pi]

⋂
NG[pj ]|

|NG[pi]−NG[pj ]|+ 2|NG[pi]
⋂
NG[pj ]|+ 1

×

2|NG[pi]
⋂
NG[pj ]|

|NG[pj ]−NG[pi]|+ 2|NG[pi]
⋂
NG[pj ]|+ 1

,

where NG[pi] is the set of adjacent proteins (including pi) to pi in PPI
G, and |Q| indicates the cardinally of set Q.

A well-known and partially proved assumption is that proteins with
strong interaction in a protein-protein interaction network are likely
involved in the same cellular process, and tend to be related to similar
disease phenotypes (Xu and Li, 2006; Oti et al., 2006; Gandhi et al., 2006;
Köhler et al., 2008). Based on this assumption, we run the NN method on
the three networks of STRING, GeneMANIA, and BioGRID. However, it
is slow to run NN on other types of datasets with no network information
(such as domain, Trigram and GO). In order to compromise the efficiency
and effectiveness of our method, we thus use LR for all eight models, but
use NN only for PPI .

3.4.3 Naive method (Naive)

We use the number of appearances of HPO term t as the score of all proteins
for HPO term t (note that this score is always the same for any protein):

S(Naive)(pi, t) =
|{pj ∈ PS |yj,t = 1}|

mS

(9)

3.5 HPOLabeler

HPOLabeler consists of three steps. Fig. 3 and Algorithm 1 show
a schematic flow and pseudocode of the algorithm, respectively.The
procedure is as follows. Given a query protein, HPOLabeler generates
multiple types of features from nine sources for this particular protein such
as PPI, GO,Trigrams, and InterPro. Different types of twelve component
methods are then trained by using different features. For example, NN uses
each of the three PPI, while LR uses all the eight types of features. The
output of each component method is a list of an HPO term-score pair for the
query protein. HPOLabeler then selects the top-kont candidate HPO terms
from each of twelve lists, and combines them as the final HPO candidates.
At the same time, the predicted scores by the component methods for each
HPO term in the final candidates are concatenated as a feature vector. LTR
accepts this vector as its input to compute the score for this term again, and
ranks all terms in the final candidates. The top-ranked HPO candidates are
produced as the final output of HPOLabeler.

3.5.1 Candidate generation

By using the scores from component models, we first sort HPO terms of
each protein in descending order of the scores and select top-kont of HPO
terms as candidates. We have twelve models (8 LR, 3 NN and 1 Naive)
for each pair of protein – HPO term. In other words, for each protein,
the top-kont candidate HPO terms are chosen from each of the prediction
results of twelve models, and then we union them as the final candidates.

Fig. 3. Overview of HPOLabeler. Given a query protein, eight features are first generated,
with three on PPI, i.e. STRING, GeneMANIA and BIOGRID, three from GO, i.e. BP, CC
and MF, Trigrams and InterPro. Then three types of component models are trained: NN
from each of the three PPI, LR from each of all eight features, and Naive (directly from the
input), resulting in 12 models producing 12 scores, which are concatenated into a feature
vector by string-of-scores. Finally, LTR (LambdaMART) re-ranks HPO terms by using the
feature vector as input.

Algorithm 1 HPOLabeler
Input: Query protein p, HPOO;
Output: A ranked list;

Construct eight feature vectors, by using (1)-(6) ;
Compute S(M)(p, t) for method M and term t ∈ O, by using (7)-(9);
for each sub-ontology ont ofO do
C = ∅;
for each component method M do

Sort S(M)(p, t) in the descending order where t in ont;
Select top-kont terms t from ranked list S(M)(p, t) as C(M);
C = C

⋃
C(M);

Construct x(LTR)

t
for each term t ∈ C according to (10);

Compute S(LTR)(p, t) for each term t ∈ C by LambdaMART;

Sort S(LTR)(p, t) in the descending order as the final ranked list;

3.5.2 Feature generation for LTR

For each candidate HPO term, we concatenate the predicted scores from
12 models to generate a feature vector to be input to LTR (we call this
concatenation (representation) string-of-scores). Specifically, for protein
p and HPO term t, the generated feature vector can be written as follows:

x
(LTR)
t =

(
—— S(M)(p, t) ——

)T
, (10)

where M indicates one of the twelve scores. Note that we normalize the
range of each score into [0, 1].

3.5.3 Ranking

As a state-of-the-art LTR algorithm, LambdaMART (Burges, 2010) casts
the ranking problem as a pairwise regression one. By ranking, the
algorithm can tell which HPO term is better in a given pair of HPO terms
with respect to a query protein. In fact, LambdaMART combines MART
(Multiple Additive Regression Trees) (Friedman, 2001) and LambdaRank
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(Burges et al., 2007). Specifically, MART is a boosted tree model with
its final output as a linear combination of the outputs of a collection of
regression trees. For solving the ranking task, LambdaMART modifies
gradient boosted decision trees that are originally used for prediction,
specifying the gradients derived from LambdaRank. The details of
LambdaMART are provided in the Supplementary Material 1.

We use LambdaMART to re-rank the candidate HPO terms, with score
feature vector x(LTR)

t as the input of LambdaMART and then receive a
ranked HPO term list with predicted scores, S(LTR)(p, t).

3.5.4 A toy example

To better illustrate the procedure of HPOLabeler, we provide a pictorial toy
example in Supplementary Material 2. For details, please refer to Figure
S5.

4 Experiments

4.1 Data

We briefly describe the data used below (details are in the supplement).

4.1.1 Cross-validation

We conduct cross-validation on gene-HPO annotations released on 2018-
07-273. All other data sources we used, such as GO and InterPro
annotations, are up to this date. The version of each data source is reported
in Tables S1, and the data split strategy is described in Figure S6 of
supplementary material 2. We first map genes in annotations into proteins
by using the UniProt ID mapping tool. To ensure the quality of data, the
proteins that are not stored in Swiss-Prot are filtered out. The true-path-
rule is then applied here to propagate annotations. It is worth noting that
we ignore the roots of the whole HPO and the sub-ontologies. Finally, we
divide the entire dataset into five equal parts, taking four of them as PS ,
and the remaining one in half, with one half as PL, and another half as
PT . In this way, we carry out five-fold cross-validation of two rounds per
fold by swapping PL and PT . This strategy enables each sample to be
assigned to the test set once. The results we report below are the average of
results of ten rounds. For all ten results, we use the Wilcoxon signed-rank
test to check the statistic significance of performance differences of the
different methods, where p-value less than 0.05 is deemed as statistically
significant.

We further divided all HPO terms into six groups, according to
the number of appearances (in brackets): Very rare (1-3), Rare (4-10),
Uncommon (11-30), Common (31-100), Very common (100-300), and
Extremely common (>300), to examine the properties of HPOLabeler
further. Fig. 4 shows the statistics of these six groups. The left pie chart
indicates that HPO terms with low appearances, i.e. Very rare, Rare and
Uncommon, occupy 37.8%, 20.9% and 17.3%, respectively, of all HPO
terms, while the right one shows that these HPO terms are only small
parts of all protein-HPO term pairs, i.e. Very rare, Rare and Uncommon,
occupying only 1.1%, 2.4% and 5.8%, respectively, of all pairs.

4.1.2 Temporal validation

For the temporal validation, we extract the genes that already have HPO
annotations before 2017-02-244, as PS . The genes added from 2017-02-
24 to 2018-03-095 formPL, while newly annotated genes added between
2018-03-09 and 2018-12-216 consist of PT . Since some HPO terms are
obsolete and redirected to new terms, these new HPO terms are mapped
to the old ones released on 2017-02-24 by using their corresponding
positions. Moreover, the newly created HPO terms are discarded. As a

3 http://compbio.charite.de/jenkins/job/hpo.annotations/1259/
4 http://compbio.charite.de/jenkins/job/hpo.annotations/1236/
5 http://compbio.charite.de/jenkins/job/hpo.annotations/1252/
6 http://compbio.charite.de/jenkins/job/hpo.annotations/1263/

Fig. 4. Statistics on groups of HPO terms in a cross-validation scenario. (A) The proportion
of HPO terms in each group. (B) The proportion of HPO annotations related to the terms
in each group.

Table 2. Statistics of dataset used for temporal validation.

PS (train) PL (LTR) PT (test)

∼2017-02 2017-02∼ 2018-03 2018-03∼ 2018-12
#Proteins 3,334 304 226
#HPO terms 7,394 2,836 2,091
#Annotations per protein 107.1 83.9 61.5

result, we unify the three datasets into the February 2017 HPO release. To
avoid information leakage, all data sources utilized were released before
March 2018. The version of each data source is reported in Tables S5, and
the data split strategy is described in Figure S7 of supplementary material
2. Table 2 summarizes the statistics of these data.

4.2 Evaluation metrics

We used the following three metrics for performance evaluation.
Protein-centric (Fmax): For cut-off τ ∈ [0, 1], precisionPr(τ) and

recall Rc(τ) can be defined as follows:

Pr(τ) =
1

m(τ)

m(τ)∑
i=1

∑
t∈O I (t ∈ Ppi

(τ)
∧
t ∈ Tpi

)∑
t∈O I (t ∈ Ppi

(τ))
,

Rc(τ) =
1

N

N∑
i=1

∑
t∈O I (t ∈ Ppi

(τ)
∧
t ∈ Tpi

)∑
t∈O I (t ∈ Tpi

)
,

where for pi, Ppi
(τ) is a set of terms with predicted scores no less than

τ and Tpi
is a set of annotated terms (true labels), m(τ) is the number

of proteins with HPO annotation with predicted scores no less than τ , and
N is the total number of proteins. I(·) is the indicator function. Then
maximum F -Measure, Fmax, can be computed as follows:

Fmax = max
τ

{
2 · Pr(τ) ·Rc(τ)
Pr(τ) +Rc(τ)

}
.

Note that Fmax is an official evaluation metric in CAFA.
Term-centric (AUC): For cut-off τ and HPO term t, sensitivity Sn

and specificity Sp can be computed as follows:

Sn(τ) =

∑N
i=1 I (t ∈ Ppi

(τ)
∧
t ∈ Tpi

)∑N
i=1 I (t ∈ Tpi

)
,

Sp(τ) =

∑N
i=1 I (t /∈ Ppi

(τ)
∧
t /∈ Tpi

)∑N
i=1 I (t /∈ Tpi

)
.

We then computed AUCt (area under ROC curve) of term t by using the
ROC curve, obtained by plotting (1− Sp(τ), Sn(τ)) changing τ , and
obtained the final AUC by averaging AUCt over all terms.
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Pairwise (AUPR): The Area Under Precision-Recall curve (AUPR) is
computed by regarding a pair of protein-HPO term as an instance. AUPR
provides a comprehensive evaluation of the performance of the algorithm.

4.3 Competing methods and implementation details

We compare our model with several baseline methods. The descriptions of
the baselines and their parameter settings in the experiments are as follows.

PHENOstruct and S→D→H (Kahanda et al., 2015): We use the
same features as ours for training and predicting. The parameters follow
its default setting: C = 1.0.

SVM & LR: The traditional SVM and LR are implemented by Python
3.7 and scikit-learn 0.19.2 with their default parameters. Each classifier
is trained and tested on a single HPO term using the concatenation of the
feature vectors from STRING, GeneMANIA, BioGRID, InterPro, GO and
Trigram.

HTD-DAG & TPR-DAG (Notaro et al., 2017a,b): We adopt SVM as
the flat learner. Without parameters for HTD-DAG, we set t = 0.5 and
w = 0.5 for TPR-DAG.

HPO2GO (Doğan, 2018): The version of the GO annotations
used in the approach is the same as ours. The specific values of the
parameters are selected by the algorithm itself from the ranges of S ∈
{0, 0.1, 0.2, · · · , 0.6} and n ∈ {1, 2, 3, 4, 5}.

PhenoPPIOrth (Wang et al., 2013): We downloaded prediction results
from their website7 with λ = 0.8.

Naive: The computation method is the same as the one described in
Section 3.4.3.

Note that for the fair comparisons, we used PS
⋃
PL as the training

set, and still PT as the test set for all the competing methods.
For our method, the component LR is implemented by scikit-learn with

its default settings. To distinguish the Naive method as a component from
that as a competing method, the training dataset isPS . XGBoost (Chen and
Guestrin, 2016) is then adopted to implement LambdaMART by setting
the booster to gbtree and the objective to rank:pairwise.
To avoid over-fitting, the maximum depth of the tree max_depth is set
to 4. Candidate generation is a critical step in HPOLabeler. A small kont
may result in missing some HPO terms, while a large kont could reduce
efficiency and bring noise into the ranking process. As such, we carried
out some prior experiments with cross validation over training dataPS by
varyingkont ∈ {60, 80, 100, 120, 140, 160, 180, 200}. We found the
performance of HPOLabeler usually achieves the best with kont = 120,
and decreases slightly with a higher kont. By considering this, kont is set
to 120 in our experiments (see Fig. S2 in the supplement for the results of
different kont).

4.4 Experimental results of cross-validation

Table S2 in supplement shows the statistics of data with 3,722 proteins,
8,067 HPO terms, and 119.4 annotations per protein on average.

4.4.1 Component model performance

Table 3 shows the performance of component models. This table indicates
that the nearest neighbor with STRING (NN-STRING) achieved the
best performance, followed by NN-GeneMANIA. Also, LR with PPI
outperformed LR with other data sources, implying that PPI is most
informative, which is consistent with the result in Kahanda et al. (2015).
Besides, NN performed better than LR. In particular, NN-STRING and
NN-GeneMANIA achieved AUPR of more than 0.35, which was around
10% better than those of LR-STRING and LR-GeneMANIA. This sizable
difference indicates that NN made more effective use of PPI than LR.

7 http://jjwanglab.org/PhenoPPIOrth/

Table 3. Component model performance of cross-validation.

Component Fmax AUC AUPR

LR-STRING 0.4174 0.6390 0.2697
LR-GeneMANIA 0.3506 0.7282 0.2605
LR-BioGRID 0.3441 0.5941 0.2677
LR-GO BP 0.3777 0.6741 0.2926
LR-GO CC 0.3643 0.6544 0.2916
LR-GO MF 0.3343 0.6081 0.2403
LR-InterPro 0.3588 0.6041 0.2699
LR-Trigrams 0.2941 0.5136 0.1564
NN-STRING 0.4213 0.7892 0.3635
NN-GeneMANIA 0.4110 0.7274 0.3550
NN-BioGRID 0.3529 0.6407 0.2822
Naive 0.3517 0.5 0.2590

Table 4. Competing method performance. Asterisks for HPOLabeler indicate
the performance improvements with p < 0.001 by Wilcoxon signed-rank test.

Method Fmax AUC AUPR

PHENOstruct 0.4228 0.7760 0.3596
S→D→H 0.3476 0.7606 0.2580

SVM 0.4055 0.6831 0.2900
LR 0.4242 0.6690 0.2972

HTD-DAG 0.4134 0.6832 0.2951
TPR-DAG 0.4253 0.6840 0.3170

PhenoPPIOrth 0.1430 0.5731 0.0558
HPO2GO 0.2751 0.5395 0.0936

Naive 0.3517 0.5 0.2591
HPOLabeler 0.4688∗ 0.7956 0.4293∗

4.4.2 Leave-one-source-out performance check

We examined the effectiveness of each model by the cross-validation
result obtained by eliminating each model. We call this “leave-one-source-
out”, in which a model with the most reduced performance is more
informative. The result (see Fig. S3) shows that the performance of the
model eliminating PPI was most reduced.

4.4.3 Competing method performance

Table 4 summarizes the performance of competing methods. This table
clearly shows HPOLabeler outperformed all competing methods. In
particular, in Fmax and AUPR, the performance difference between
HPOLabeler and all other methods were all significant (p < 0.001) by
Wilcoxon signed-rank test. In fact, HPOLabeler improved Fmax and
AUPR of PHENOstruct, the recent state-of-the-art method, by 10.9% and
19.4%, respectively. From Tables 3 and 4, interestingly, even NN-STRING
already outperformed most of the competing methods, indicating again that
both PPI is most informative and NN is useful for prediction. However,
NN-STRING was significantly beaten by HPOLabeler. In addition, by
comparing HPOLabeler with SVM and LR, which were trained by the
same set of features, the performance of LTR was impressive. Entire
results proved that the ensemble framework of LTR with heterogeneous
information is highly powerful for the HPO prediction problem.

To more specifically analyze the performance under the term-centric
evaluation, we divide the HPO terms into six groups according to their
frequency. As can be seen from Fig. 4, the HPO terms annotating only
a few proteins account for the majority of the entire HPO. As such, the
experiment results on low-frequency groups have little value. Due to the
space limitation, we only list the AUCs of four out of the six groups in
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Table 5. AUC for four datasets. Asterisks again show statistical significance
(p < 0.001) by Wilcoxon signed-rank test. Com. means “Common”.

Method Uncommon Com. Very Com. Extremely Com.

PHENOstruct 0.8161 0.7888 0.7748 0.7501
S→D→H 0.7925 0.7619 0.7324 0.6895
SVM 0.6690 0.6851 0.6989 0.6937
LR 0.6429 0.6704 0.6974 0.7023
HTD-DAG 0.6716 0.6842 0.6971 0.6928
TPR-DAG 0.6689 0.6849 0.7005 0.7009
PhenoPPIOrth 0.5961 0.5745 0.5562 0.5231
HPO2GO 0.5521 0.5347 0.5267 0.5306
Naive 0.5 0.5 0.5 0.5
HPOLabeler 0.7922 0.8046∗ 0.8082∗ 0.7778∗

Table 6. Competing method performance of temporal validation.

Method Fmax AUC AUPR

PHENOstruct 0.3054 0.6362 0.1424
S→D→H 0.1461 0.5473 0.0603

SVM 0.2791 0.5929 0.1077
LR 0.2956 0.5950 0.1119

HTD-DAG 0.2933 0.5956 0.1138
TPR-DAG 0.3002 0.5962 0.1235

PhenoPPIOrth 0.0678 0.5219 0.0121
HPO2GO 0.2075 0.5083 0.0277

Naive 0.3097 0.5 0.2147
HPOLabeler 0.3415 0.6398 0.2342

Table 5, indicating that HPOLabeler outperformed all other methods again.
The full results can be found in Tables S3 and S4 in the Supplementary
Material. The groups with statistically significant results are Common,
Very Common, and Extremely Common, i.e. HPO terms assigned for many
proteins. This implies that the performance of HPOLabeler is superior for
more common HPO terms.

4.5 Experimental results of temporal validation

4.5.1 Performance of component models

Table S6 in supplement shows the performance of component models.
It indicates that NN-STRING was the best in all three metrics, which is
consistent with the result of cross-validation.

4.5.2 Performance of competing methods

Table 6 shows the performance results, indicating HPOLabeler
outperformed all others, followed by Naive. In other words, HPOLabeler
was the only method that beat Naive. This result demonstrates the
advantage of HPOLabeler in annotating HPO terms of new proteins. For
temporal validation, again we generated six groups, according to the
number of appearances of HPO terms. The statistics are provided in Fig.
S4. Due to the space limitation, the results are provided in Tables S7 and
S8 in the supplement, with consistent cross-validation results.

4.5.3 Discussions

Table 6 shows that except HPOLabeler, Naive was best, with the consistent
results of CAFA2 Challenge (Jiang et al., 2016). Naive uses only the
distribution of HPO terms in the given data. The advantage of Naive was
exploited by the fact that a large number of HPO terms are associated
with most of proteins, resulting in a similar HPO term distribution for any
protein (Jiang et al., 2016). Additionally, the relatively good performance
of Naive implies another reason. Table 2 shows the average number of

Fig. 5. A. #HPO terms associated with a protein inPS ,PL andPT . B. Four competing
methods by AUPR in temporal validation, using annotations released at different times.

annotations per protein on PS , PL, and PT were 107.1, 83.9, and
61.5, respectively, which are changing heavily, implying three different
distributions of HPO terms. Fig. 5A shows box plots on the distribution of
the number of HPO terms annotated per protein, where the box becomes
lower from left to right. Obviously, newly annotated proteins have a smaller
number of HPO annotations than old proteins. Thus we can imagine
that HPO terms annotated wrongly might be currently false positives
by incomplete annotations and become positives by biological research
development in the future. Fig. 5B shows the performance (AUPR) of the
competing methods by updating our datasets using recent releases. This
figure indicates the increase of AUPR as time goes by, for all four methods
shown. Thus again the low performance of temporal validation might be
caused by incomplete annotations for relatively new proteins.

4.5.4 HPO term examples becoming from negatives to positives

We checked some annotations that were highly ranked in the predicted list
of HPO terms but regarded as negatives (not in the Dec 2018 release of
HPO), and examined these annotations by using a more recent database,
i.e., Feb. 2019 release. As examples, Table 7 shows three proteins, each
with three HPO terms, highly ranked but negatives. Surprisingly, all these
nine annotations could be found in the newer release. This means that all
HPO terms in Table 7 are eventually positives (see Table S9 for detail).
This is not rare cases but more regular. For example, seven out of the top
10 predictions of Q96F07 (second protein in Table 7) were evaluated as
negatives but now found as positives. This finding implies incompleteness
of HPO annotations on new proteins. Also, this demonstrates that the real
accuracy of HPOLabeler in temporal validation would be much higher
than those in Table 6.

5 Conclusion

For the HPO annotation problem, we have proposed HPOLabeler, which
is able to integrate diverse types of evidence, such as PPI, GO, InterPro,
and trigrams, in the framework of LTR. We empirically validated
the performance of HPOLabeler, which significantly outperformed all
component models, as well as six competing methods, particularly on
HPO terms with a higher number of appearances. Further examinations
of the experimental results indicates that: 1) PPI is the most informative
data source, and 2) lower predictive performance in temporal validation
might be caused by incomplete annotations of new proteins. The possible
future work on improving the predictive performance further would be to
integrate our framework with new machine learning approaches, such as
deep learning.
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Table 7. Three example proteins, each with three example HPO terms, which were all highly ranked and evaluated as negatives, but appeared in the latest release in
February 2019, meaning that all nine HPO terms are eventually positives.

UniProt ID Protein name Gene symbol Disease ID HPO term ID HPO term name Rank

Q08209
Serine/threonine-protein phosphatase
2B catalytic subunit alpha isoform

PPP3CA
ORPHA:442835
OMIM:617711

HP:0000924 Abnormality of the skeletal system 3
HP:0011842 Abnormality of skeletal morphology 9
HP:0025031 Abnormality of the digestive system 18

Q96F07 Cytoplasmic FMR1-interacting protein 2 CYFIP2
ORPHA:442835
OMIM:618008

HP:0000152 Abnormality of head or neck 1
HP:0000234 Abnormality of the head 1
HP:0000924 Abnormality of the skeletal system 3

P61981 14-3-3 protein gamma YWHAG
ORPHA:442835
OMIM:617665

HP:0000478 Abnormality of the eye 3
HP:0000152 Abnormality of head or neck 8
HP:0000234 Abnormality of the head 9

“Disease ID" refers to the diseases related to the corresponding protein. “HPO term ID" refers to the HPO terms annotated to the corresponding protein.
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