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Radiation from magnetic and electric dipole moments is a key subject in the theory of electrodynamics.
Although people treat the problem thoroughly in the context of the frequency domain, the problem is still not well
understood in the context of the time domain especially if dipole moments arbitrarily vary in time under the action
of external forces. Here, we scrutinize the instantaneous power radiated by magnetic and electric dipole moments
and report findings that are different from the conventional understanding of their instantaneous radiation found
in textbooks. In contrast to the traditional far-field approach based on the Poynting vector, our analysis employs
a near-field method based on the induced electromotive force, leading to corrective terms that are found to
be consistent with time-domain numerical simulations, unlike previously reported expressions. Beyond its
theoretical value, this paper may also have significant impact in the field of time-varying metamaterials especially
in the study of radiation from subwavelength meta-atoms, scatterers, and emitters that are temporally modulated.

DOI: 10.1103/PhysRevA.102.013503

I. INTRODUCTION

Electromagnetic radiation is conventionally identified and
studied by looking at the Poynting vector [1] at long dis-
tances from the source. This perspective towards radiation is
supported by the use of the Sommerfeld radiation condition
[2,3] which is applied at those distances. As a consequence,
one can say that the total energy per unit time radiated from
a dipole moment can be obtained by using the following
expression [4]:

P =
∮
S
[E × H] · dS, (1)

in which E and H represent the “far-field” components of
the time-varying electric and magnetic fields, respectively,
generated by the dipole moment. As is known, these far-field
components attenuate as 1/r in which r is the distance from
the origin where the dipole is located. In the literature, the
electric current density inducing the dipole moment is usually
assumed to be a time-harmonic function. Therefore, applying
the method of phasors, the above equation is simplified, and
people are used to write the averaged energy per unit time over
one cycle. We have

Pav =
∮
S

1

2
Re[E × H

∗
] · dS, (2)

in which ∗ denotes the complex conjugate and Re[ ] gives
the real part. Here, E and H are the far-field components of
the complex phasors of the electric and magnetic fields in the
frequency domain. If the background medium is lossless, the
surface S (the spherical surface enclosing the dipole moment)
in Eq. (2) can have a finite radius (e.g., Ref. [5]). In this case,
one may think that the “near-field” components, attenuating
as 1/r3 and 1/r2, must be also taken into account. However,

these components of the complex phasors of the electric and
magnetic fields are out of phase. As a result, the real part of the
corresponding vector product in Eq. (2) for those components
is zero (although this is not true for far-field components since
they are in phase and the real part does not vanish). Conse-
quently, as mentioned above, in the approach based on Eq. (2),
we are conventionally interested in the far-field components.
It is worth noting that, here, the background medium in which
the dipole moment is located is considered to be a vacuum (for
a lossy or dispersive background, the interpretation of Eq. (2)
needs to be revisited, see, e.g., Ref. [6]).

In this paper, we introduce an alternative approach to study
radiation from a general time-varying dipole moment, that
uses the fields at the vicinity of the dipole (note that the fields
have a singularity at the origin r = 0). In the context of the
frequency domain, this is similar to Green’s tensor approach
which uses the fields at the dipole’s origin as well, see e.g.,
Chap. 8 in Ref. [7]. However, our proposed approach provides
us with a possibility to understand radiation also in the time
domain (instantaneous radiation). It appears that this point of
view has not been explicitly explored in the literature, and
it leads to interesting new results and insights. Counterintu-
itively, we demonstrate that the nonsingular component for
the fields at the location of the dipole determines not only
the time-averaged power given by (2), but also additional
instantaneous exchange of power between the dipole and
the fields. This nonsingular component is proportional to
the second and the third derivatives of the electric current
of the electric and magnetic dipole moments, respectively.
Interestingly, this nonsingular component is contributing to
the induced electromotive force which results in radiation. We
compare the time-varying induced electromotive force with
the Lorentz-friction force exerted on one single accelerated
electron and explicitly show the fundamental resemblance
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between these two classical concepts. In the end, we show
some simulated results confirming our theoretical expecta-
tions about the instantaneous radiation. This paper may have
an impact on the study of the transient description of antennas
[8–13], the transient description of the reactive power around
the dipole [14–18], the time-modulated scatterers [19,20], and
the time-modulated metamaterials (see, e.g., Refs. [21–23]).

The paper is organized as follows: In Secs. II and III, we
show the corresponding analytical derivations regarding mag-
netic and electric dipole moments, respectively. In Sec. IV, we
demonstrate the full-wave simulation results confirming the
analytical results achieved in the previous sections. In Sec. V,
we repeat our derivations assuming that the electric and mag-
netic dipole moments have arbitrary temporal variation (not
only time harmonic), and, finally, in Sec. VI, we conclude the
paper.

II. MAGNETIC DIPOLE

Let us consider a radiating loop whose radius a is ex-
tremely small a → 0. We assume that the loop is centered at
the origin on the xy plane and that it carries uniform electric
current I0. Under these assumptions, such an electric-current
loop is equivalent to a point magnetic dipole that is directed
along the z axis and located at the origin of the Cartesian
coordinate system. Therefore, in the frequency domain, the
θ component of the generated complex magnetic field can be
given by [24,25]

H θ = − (ka)2I0
4r

[
1 + 1

jkr
− 1

(kr)2

]
sin θ exp[− jkr], (3)

where k is the free-space wave number. Here, we choose the
electrical engineering convention: exp(+ jωt ) for represent-
ing harmonic time variation (one can simply convert to the
physics convention by replacing the imaginary unit j by −i).
In order to find the electromotive force induced by the fields
into the antenna, we derive the magnetic flux crossing the loop
area and apply the Faraday law. Therefore, we first need to
contemplate the magnetic field at the location of the loop, set
the elevation angle θ to π/2, and calculate the corresponding
magnetic flux density. To do that, in the above equation, we
employ the Taylor expansion for the exponential function,

exp[− jkr] = 1 − jkr − k2r2

2
+ j

k3r3

6
+ · · · . (4)

Later, we will see that, for our purpose, it is enough to keep
the first four members of the series. We substitute the above
expression into Eq. (3) and rewrite the expression for the
magnetic field. Multiplying by the free-space permeability
μ = μ0, the magnetic flux density reduces to

Bθ |θ=(π/2) ≈ jk3
μ0a2I0

6

[
1 + j

3

4kr
− j

3

2(kr)3

]
. (5)

Let us assume that I0 is a real value. Accordingly, Eq. (5)
indicates that the expansion of magnetic flux density has a real
part whose leading term is proportional to 1/r3, decreasing
as the distance grows and singular at the origin. However,
importantly, Eq. (5) also shows that there is an imaginary term
of the complex amplitude which is nonsingular and uniform
over the loop area (within the dipole-moment model, it does

not depend on distance). As a result, this term gives rise to a
finite and imaginary component in the total flux, that is readily
found by multiplication by the area of the loop. Therefore, we
have

φimag = j Im[Bθ |θ=π/2]A = jk3
μ0(πa2)2I0

6π
, (6)

where Im[ ] represents the imaginary part and A = πa2 is the
loop area.

In the frequency domain, the magnetic flux multiplied by
“− jω” gives the electromotive force. Due to the imaginary
unit “ j,” one can say that the real (imaginary) part of the
electromotive force is determined by the imaginary (real) part
of the magnetic flux. On the other hand, it is known that the
active power radiated into space is related to the real part
of the electromotive force, and the reactive power describing
the stored energy near the dipole moment is associated with
the imaginary part of the electromotive force. Consequently,
based on this discussion, we can conclude that the imaginary
term in Eq. (6) is the only contributing term in the total flux
for obtaining the radiated power. Furthermore, since this term
is finite, the radiated power is finite at any moment of time,
although the source can have an arbitrarily small size and the
fields are singular. This issue is well known in the context
of self-field-based radiated power calculation using Green’s
tensor approach [7] [note that, in contrast, the real part of
the flux should be linked to the reactive power because it
corresponds to the imaginary part of the electromotive force,
and it suffers from singularity which is explicitly seen from
the real part of the magnetic flux density in Eq. (5)].

After finding the nonsingular component of the field and,
subsequently, the finite component of the flux, we do not
continue with the frequency analysis and move to the time
domain. Pondering about the above equation, we discern that
the flux is associated with the third derivative of the electric
current. Why? Because we have the wave number in power
three (or the angular frequency in power three since k = ω/c,
where c is the speed of light). Remember that, for an arbitrary
function f (t ) having the Fourier transform F (ω), we write

f (t ) = 1

2π

∫ +∞

−∞
F (ω) exp( jωt )dω. (7)

This relation clearly indicates that the Fourier transform cor-
responding to the third derivative of f (t ) is identical with
− jω3F (ω),

d3 f (t )

dt3
= 1

2π

∫ +∞

−∞
[− jω3F (ω)] exp( jωt )dω. (8)

Thus, according to this explanation and by taking the inverse
Fourier from Eq. (6), the instantaneous flux associated with
the radiated power is given by

φimag(t ) = −μ0(πa2)2

6πc3
d3i(t )

dt3
. (9)

Now, Faraday’s law helps us to derive the electromotive force
v(t ) induced due to the temporal variation of the flux,

v(t ) = −dφimag(t )

dt
. (10)
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It is worth noting that the electromotive force can be calcu-
lated also as the circulation of the nonsingular component of
the electric field around the loop. Naturally, the final result
is the same as explicitly shown in Appendix A of the paper.
Finally, the instantaneous radiated power can be written as

Pm(t ) = v(t )i(t ) = −dφimag(t )

dt
i(t ). (11)

Since the radiated power is proportional to the first derivative
of the flux, the radiated power is, consequently, proportional to
the fourth derivative of the electric current and to the electric
current itself. In terms of the magnetic moment, the same
conclusion is true since the magnetic moment is related to the
electric current as m(t ) = (πa2)i(t ). After performing some
algebraic manipulations, we can write

Pm(t ) = μ0

6πc3
m(t )

d4m(t )

dt4
. (12)

This is a key result, and we now discuss it. In the context
of time-harmonic fields, if the magnetic moment is described
by m(t ) = m0 cos(ωt ), the radiated power is found as Pm(t ) =
(μ0/6πc3)ω4m2

0 cos
2 ωt . If we write the instantaneous power

in terms of the electric current and calculate the time-averaged
radiated power (over one cycle), we see that

Pav
m = μ0

12πc3
ω4(πa2)2I20 . (13)

Based on the terminology of antenna engineering, the aver-
aged radiated power is expressed through the concept of the
radiation resistance. Recalling that μ0c ≈ 120π , this resis-
tance is found as

Rm = 2Pav
m

I20
= 20π2

(
C

λ

)4

, (14)

in which C = 2πa is the circumference of the loop. This
expression is very well known for antenna engineers (see, e.g.,
Ref. [24]).

Let us point out the salient feature of Eq. (12). This
equation is, indeed, more complex. We know that

m
d4m

dt4
= d

dt

[
m
d3m

dt3

]
− dm

dt

d3m

dt3
, (15)

where

dm

dt

d3m

dt3
= d

dt

[
dm

dt

d2m

dt2

]
−

(
d2m

dt2

)2

. (16)

As a consequence, Eq. (15) reduces to

m
d4m

dt4
=

(
d2m

dt2

)2

+ d

dt

[
m
d3m

dt3
− dm

dt

d2m

dt2

]
. (17)

As far as we know, the last term (in the square brackets) is
absent in all textbooks and papers (see, e.g., Refs. [4,26,27])
where the far-field approach is conventionally used to calcu-
late the radiated power. Therefore, this term is a corrective
term which results from contemplating the fields at the loca-
tion of the dipole at the origin, and it means that, in fact, there
is an additional instantaneous exchange of power between the
dipole and the radiated fields. In the time domain, particularly
for the case when the magnetic dipole moment is not a time-
harmonic function, this additional term is important, and it can

have a significant impact. For example, it is actually crucial
for correct satisfaction of the instantaneous power balance. In
Sec. IV, this critical point is explicitly shown for the electric
dipole for which neglecting the corresponding additional term
gives dramatically different and wrong results.

Let us go deeper and investigate the magnetic dipole radia-
tion from one single electron rotating with acceleration. Itoh,
in Ref. [28], wrote the corresponding electric field generated
by such an electron (via the expansion method, the fourth-
order term) as

E = μ0

12πc3
R × d4m

dt4
, (18)

where R is the position vector of the observation point. The
magnetic moment is expressed in terms of the velocity as

m = e

2
R × v. (19)

The force due to the electric field acting on the electron is
F = eE. Therefore, the force finally reduces to

F = −e

[
μ0

6πc3

(
R

2

)2 d4ev
dt4

]
. (20)

Velocity corresponds to the electric current. Hence, from this
point of view, the above expression is, indeed, quite similar
to the electromotive force that was found for the magnetic
dipole,

v(t ) = −dφimag(t )

dt
= μ0

6πc3
(πa2)2

d4i(t )

dt4
. (21)

This similarity becomes more evident if we think about the
radiated power from a single electron, which is given by

Pelectron(t ) = −F · v. (22)

By comparing this equation with Pm(t ) = v(t )i(t ) written
for the magnetic dipole, and remembering that velocity and
electric current are related to each other, one concludes that
the electromotive force v(t ) and the radiation reaction force F
are equivalent.

III. ELECTRIC DIPOLE

Let us consider a radiating Hertzian dipole which has a
dipole moment (in the frequency domain) along the z axis:
p = (I0l/ jω)az in which l is the length of the dipole. The
electric field corresponding to the elevation angle equal to π/2
is also parallel to the z axis and can be expressed as (e.g.,
Ref. [24])

E = − jη
kI0l

4πr

[
1 + 1

jkr
− 1

(kr)2

]
exp(− jkr)az, (23)

where η is the free-space intrinsic impedance. Similar to what
we did for the magnetic dipole, we look at the field at the
vicinity of the Hertzian dipole and expand the exponential
function up to the fourth term, see Eq. (4). Hence, the electric
field is simplified and expressed as

E ≈ ( jk)2
ηI0l

6π

[
1 + j

3

4kr
− j

3

2(kr)3

]
az. (24)
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Akin to the electric-current loop, the field has real and
imaginary parts. However, here, the real part of the field
is nonsingular and in the vicinity of the dipole does not
depend on the distance. This component gives the real part
of the electromotive force which is finite and determines the
radiated power (electromotive force is simply the electric field
multiplied by the length of the dipole). On the other hand,
the imaginary part of the field suffering from the singularity
results in an imaginary term in the electromotive force that is
associated with the reactive power.

Let us continue and see what the instantaneous radiated
power is for the electric dipole. Based on Eq. (24), the
nonsingular component of the field is given by

Ens = ( jk)2
ηI0l

6π
az. (25)

What does the second power of the wave number mean? It
shows that the electric field is proportional to the second
derivative of the electric current in time. Note that the wave
number is the angular frequency divided by the speed of light.
Ergo, the inverse Fourier transform gives

Ens(t ) = μ0

6πc
l
d2i(t )

dt2
az. (26)

Here, we have used the equality η = μ0c. Now, since we have
found the electric field, we can readily derive the induced
electromotive force through

vED(t ) = −
∫

E · dl = − μ0

6πc
l2
d2i(t )

dt2
. (27)

There are two explicit differences between the electromotive
force for the electric dipole and for the magnetic dipole.
First, v(t ) was inversely proportional to the third power of
the speed of light whereas vED(t ) is inversely proportional
to the first power of c. Furthermore, v(t ) is related to the
fourth derivative of the electric current, but vED(t ) is related
to the second derivative of the current. Comparing Eqs. (21)
and (27) is intriguing and informative. Area is substituted by
length, 1/c3 by 1/c, and the fourth derivative by the second
derivative. Knowing the electromotive force, we readily derive
the instantaneous radiated power using

Pe(t ) = vED(t )i(t ). (28)

Our purpose is to write the radiated power based on the
electric dipole moment. We use the fact that the electric
current multiplied by the length of the dipole is the time
derivative of the electric dipole moment: i(t )l = d p(t )/dt .
Accordingly, we eventually express the radiated power as

Pe(t ) = − μ0

6πc

d p(t )

dt

d3p(t )

dt3
. (29)

For a time-harmonic moment p(t ) = p0 sin(ωt ), the radiated
power is identical with Pe(t ) = [μ0/6πc]ω4p20 cos

2 ωt . Con-
sequently, the averaged radiated power is half of the ampli-
tude, and we can write the radiation resistance of the radiator
(in the frequency domain) as

Re = 2Pav
e

I20
= μ0

6πc
(ωl )2 = 80π2

(
l

λ

)2

, (30)

which is the known expression in all antenna books, e.g.,
Ref. [24] (recalling that η ≈ 120π ).

The radiation reaction force acting on the accelerated elec-
tron which has a velocity v is [29]

Fe = −e

(
− μ0

6πc

d2ev
dt2

)
. (31)

Again, similar to the radiating magnetic moment, the elec-
tromotive force found above shows a strong link to the force
exerted on one electron. The radiated power from an acceler-
ated electron is given by Pelectron = −Fe · v, which is similar to
Eq. (28) used for the Hertzian dipole. The total power radiated
by the dipole is the product of the electromotive force and the
electric current (that is related to the charge velocity).

IV. NUMERICAL RESULTS

To validate the theoretical results, we did full-wave simu-
lations employing the frequency domain solver in the radio-
frequency module in COMSOL MULTIPHYSICS software. As
shown in Fig. 1(a), we excite an electrically small loop,
made of a perfect conductor, with two symmetrically placed
sources. The reason for that is to cancel the extra higher
modes, mainly including the electric dipole moment (see
Appendix B for more information). Therefore, only the mag-
netic dipole moment is predominantly excited. We employ the
instantaneous power balance,

�P(t ) = 0, (32)

in which �P(t ) includes the supplied power, the reactive
power (the electric and magnetic energy per unit time), and
the radiated power. One can see Appendix C for the definition
of the reactive and supplied power terms. Figure 1(b) shows
the reactive and supplied power. Based on the above equation,
we must have

−[Psupplied(t ) + Preactive(t )] = Pradiative(t ). (33)

The left side is extracted from the simulator and com-
pared with the right side calculated theoretically according to
Eq. (12). Note that, in our calculations, the magnetic dipole
moment is extracted from the simulations using the current
flowing through the ports, and the electric dipole moment
is achieved using either the surface current or the charge
density (see Appendix D for more information). Figure 1(c)
demonstrates that the simulated and theoretical results are
in agreement. We have also simulated different loops with
different radii. Until the radius is electrically small enough,
we have found that the error between simulations and theory is
negligible (see Appendix B for more information). However,
increasing the radius causes that higher-order modes become
significant and they must be taken into account in the power
balance, which is not straightforward.

For the electric dipole moment, we have simulated an
electrically small wire, shown in Fig. 1(d), that is excited by
one source located at the center. The supplied and the reactive
powers are shown in Fig. 1(e), and the comparison between
the summation of those powers with the radiated power is
indicated by Fig. 1(f). As is seen, if we use the theoretical
expression given by Eq. (29), the theory and the simulated
results are in agreement.
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FIG. 1. (a)–(c) The instantaneous powers for the radiating magnetic dipole. (d)–(f) The instantaneous powers for the radiating electric
dipole. The orange solid curve and the green dotted curve represent the electric and magnetic energies per unit time, respectively. Also, the
purple dashed curve indicates the supplied energy per unit time. Finally, the red solid curve corresponds to the instantaneous radiated power,
and the blue dot-dashed curve determines the sum of the electric, magnetic, and supplied energies per unit time taken with a negative sign. The
radius of the loop is 3 mm, and the length of the cylindrical wire is 15 mm. Both the loop and the wire are made of perfect conductors and are
much smaller than the operating wavelength that is 200 mm. The wire is fed in the center, and the loop is fed by two differential sources such
that the electric dipole mode vanishes. The sources are determined by the red arrows.

Thus, we conclude that the correct form of the power
radiated from the electric dipole is presented by Eq. (29).
Here, it is worth mentioning another different point of view:
One may say that Eq. (29) can be modified based on the
expression,

d p

dt

d3p

dt3
= d

dt

[
d p

dt

d2p

dt2

]
−

(
d2p

dt2

)2

, (34)

and interpret the first term on the right-hand side as not
relevant to the radiated power. As a result, by considering
only the second term (d2p/dt2)2, he/she obtains the con-
ventional expression: Pe(t ) = (μ0/6πc)(d2p/dt2)2 found in
many textbooks and papers (see, e.g., Ref. [4]). However, our
simulated results explicitly confirm the fact that completely
neglecting the additional term d/dt[(d p/dt )(d2p/dt2)] in
Eq. (34) and using the conventional expression for the radiated
power give rise to the violation of the instantaneous power
balance Eq. (32). In other words, �P(t ) is zero only if we
take into account the additional term.

Let us now demonstrate the generality of the power balance
approach. In order to do so, instead of a time-harmonic
excitation, a Gaussian pulse will be used. By placing a discrete
port in the gap of a short wire antenna and applying a
pulse excitation signal, we can again write the power balance

equation. Note that, in this case, simulations are performed by
the transient solver in the CST Studio Suite and the reactive
power is calculated by using the effective lumped elements
(for more information, see Appendix C). Figure 2 explicitly

FIG. 2. Instantaneous power balance for electric dipole fed by a
Gaussian pulse. Here, the radiated power is calculated by: (a) using
Eq. (29) and (b) using the conventional formula which does not
include the additional (corrective) term. The red solid curve corre-
sponds to the instantaneous radiated power, and the blue dot-dashed
curve shows the sum of electric, magnetic, and supplied energies per
unit time taken with the negative sign.
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indicates that the simulated results have good agreement with
the theory. Importantly, this figure also shows the instanta-
neous power balance when the radiated power is obtained
with and “without” the additional term in Eq. (34). Now, the
importance of this additional term becomes obvious since, in
the latter case, the power balance is not fulfilled.

V. TIME-VARYING ELECTRIC AND MAGNETIC DIPOLES

Although the derivations in previous sections are valid for
instantaneous radiation, we basically focused on the fields
which resulted from time-harmonic oscillations. However, we
can arrive at general conclusions by carefully looking at the
general expressions given for the time-varying electric and
magnetic fields of arbitrary dynamic electric and magnetic
dipoles. In Refs. [4,30,31], the time-varying electric field was
derived and written for the electric dipole moment taking into
account the retardation effect. According to those references,
we have

E(r, t ) = − μ0

4π

[
p̈ − ar (ar · p̈)

r

+ c2
[p + (r/c)ṗ] − 3ar{ar · [p + (r/c)ṗ]}

r3

]

− 1

3ε0
pδ3(r), (35)

where δ3(r) denotes the three-dimensional Dirac δ function
and ε0 represents the free-space permittivity. In Eq. (35), the
electric field at time t is due to the dipole moment at tr =
t − r/c (retardation effect). In other words,

p(tr ) = p
(
t − r

c

)
. (36)

Applying the expansion technique, the dipole moment in the
above is readily simplified to

p
(
t − r

c

)
= p(t ) − r

c
ṗ(t ) + 1

2

( r
c

)2
p̈(t )

− 1

6

( r
c

)3...
p (t ) + · · · . (37)

Let us consider the limit as r approaches zero (r → 0). Taking
this limit in Eq. (35), we can neglect the ar component of
the electric field and only consider the component which is
parallel to the electric dipole moment,

Ep(r, t ) = − μ0

4π

[
p̈
r

+ c2
[p + (r/c)ṗ]

r3

]
− 1

3ε0
pδ3(r), (38)

and if we replace Eq. (37), after some algebraic manipula-
tions, we deduce the nonsingular component of the electric
field at the dipole location as

Ens(r, t ) = μ0

6πc

d3p(t )
dt3

. (39)

This expression is exactly identical with the expression given
by Eq. (26) (recalling that the electric current multiplied by
the electric dipole length is equal to the first time derivative of
the electric dipole moment). Thus, the temporal electromotive
force and the radiated power are, subsequently, the same as
what we derived before.

Regarding magnetic dipole moments, the magnetic flux
density is expressed as [4,30,31]

B(r, t ) = − μ0

4π

[
m̈ − ar (ar · m̈)

c2r

+ [m + (r/c)ṁ] − 3ar{ar · [m + (r/c)ṁ]}
r3

]

+2μ0

3
mδ3(r), (40)

that is in duality with the electric dipole moment as expected.
Repeating the same procedure that we performed for electric
dipoles, we obtain the following nonsingular component of
the magnetic flux density that is parallel to the magnetic
moment:

Bns(r, t ) = μ0

6πc3
d3m(t )

dt3
. (41)

Comparing the above equation and Eq. (5), we see that the
corresponding nonsingular components are quite similar [in
Eq. (5), we wrote the magnetic flux density based on the elec-
tric current, and the expression is before the inverse Fourier
transform].

Consequently, from the above two equations giving the
nonsingular components of the electric and magnetic fields
corresponding to the electric and magnetic moments, re-
spectively, we understand that they are proportional to the
third derivative of the dipole moment. However, since, for
the magnetic dipole, the electromotive force is associated
with the time derivative of the magnetic flux, the radiated
power is proportional to the fourth derivative of the dipole
moment contrary to the electric dipole whose radiated power
is proportional to third time derivative of the dipole moment.

VI. CONCLUSIONS

Using the concept of electromotive force and contemplat-
ing the electromagnetic fields at the vicinity of the dipole
moments, we obtained the instantaneous radiated power. We
observed that the power is proportional to the magnetic
moment and its fourth time derivative. However, regarding
the electric moment, the power is proportional to the first
and the third derivatives of the moment. These theoretical
expressions were confirmed by several simulations of a loop
and a cylindrical wire excited by time-harmonic or pulse
sources. Also, we compared the electromotive force with the
Lorentz-friction force and showed the similarity of these two
concepts. Furthermore, based on the expansion technique,
we analytically showed that our theoretical conclusions are
not only valid for time-harmonic oscillation, but also valid
for any nonstatic moments having arbitrary temporal vari-
ation. This paper may have a strong potential to influence
engineers interested in antenna engineering and scattering
from subwavelength particles both in the microwave and in
the optical regimes. A possible future direction would be to
consider an arbitrary volume current distribution and derive
the instantaneous radiation including higher modes as well.
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APPENDIX A: ELECTROMOTIVE FORCE CALCULATION
BASED ON CIRCULATION OF THE ELECTRIC FIELD

The electric field generated by an electric-current loop is
expressed as

E = η
(ka)2I0
4r

[
1 + 1

jkr

]
sin θ exp[− jkr]aφ. (A1)

By using the Taylor series for the exponential function and
considering θ = π/2, we find the real part of the electric field
at the origin as

E ≈ −η
πa2I0
12π

k4raφ, (A2)

in which r = a around the loop. Remembering that k = ω/c,
in the time domain, this component of the electric field can be
written as

E(t ) = −η
πa2

12πc4
d4i(t )

dt4
raφ

∣∣∣∣
r=a

. (A3)

The electromotive force, contributing in the radiated power, is
found as

v(t ) = −
∮

E · dl = η
(πa2)2

6πc4
d4i(t )

dt4
. (A4)

Here, we can substitute η by μ0c and simplify the electromo-
tive force as

v(t ) = μ0

6πc3
(πa2)2

d4i(t )

dt4
, (A5)

which is the same as derived in the main text by employing
Faraday’s law.

APPENDIX B: CURRENT DISTRIBUTION
IN A LOOP ANTENNA

In this paper, the magnetic dipole is approximately realized
as a small loop made of a thin perfectly conducting wire.
Current distribution in a transmitting loop antenna fed by a
single port is given by the formula [32],

I (φ) = − jV0
ηπ

(
1

a0
+ 2

∞∑
1

cos nφ

an

)
, (B1)

in which φ varies from 0 to 2π indicating the position on the
loop, and V0 is the amplitude of the voltage source placed at
position φ = 0. Coefficients an can be calculated by using

an = kb

2
(Kn+1 + Kn−1) − n2

kb
Kn, (B2)

where k is the wave number and b is the larger radius of the
loop. Here, the coefficients Kn are given by the integrals,

Kn = 1

4π2

∫ π

−π

d�

∫ π

−π

e jnθe− jkbR(θ ) dθ

R(θ )
, (B3)

in which R(θ ) = [4 sin2(θ/2) + A2/b2]1/2 and A =
2r0 sin(�/2), where r0 is the radius of the wire. Calculation
of the coefficients an is quite complex, however, in the case
of small loops all high-order terms can be neglected. In this
case, the current distribution in Eq. (B1) reduces to

I (φ) = I0 + I1(φ), (B4)

where

I0 = − jV0
ηπa0

, I1(φ) = −2 jV0
ηπa1

cos(φ). (B5)

Angular dependency can be canceled by employing two ports
as shown in Fig. 1(a). Based on this scenario, only uniform
current is excited which is responsible for the magnetic dipole
moment. Figure 3 shows how discrepancy in the instantaneous
power balance grows with the radius of the loop. When the
radius of the loop approaches 13 mm, the total length of the
loop becomes 82 mm which is almost half of the wavelength.
In this case, the loop cannot be considered electrically small,
and angle-dependent terms in Eq. (B1) are more complex and
are not canceled by using symmetric excitation by the two
ports.

APPENDIX C: REACTIVE AND SUPPLIED POWERS

Reactive power is the sum of electric and magnetic powers
which can be calculated using the effective lumped elements,
such as capacitanceCeff and inductance Leff . Assuming that all
the electric energy is stored in the effective capacitance and
all the magnetic energy is stored in the effective inductance
enables us to express the corresponding powers via the current
flowing in the antennas,

Pel(t ) = 1

Ceff
i(t )

∫
i(t )dt,

(C1)

Pm(t ) = Leff
di(t )

dt
i(t ).

Considering, first, the time-harmonic case, the effective ca-
pacitance can be calculated as

Ceff = |I0|2
ω2

1

4W el
. (C2)

Analogously, the expression for the effective inductance reads

Leff = 4Wm

|I0|2 . (C3)

Alternatively, the effective lumped parameters can be cal-
culated using the input impedance of the antenna in a range
of frequencies. In the case of an electrically small antenna,
the input impedance can be modeled as a series connection of
the effective inductance and capacitance. Therefore, the input
reactance of the antenna reads

Xin = 1

jωCeff
+ jωLeff . (C4)

Extracting the value of reactance at two different frequencies
gives a set of two equations. These equations can be solved
assuming constant and nondispersive effective parameters.
This is a valid assumption provided that a relatively narrow
frequency range is used.
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FIG. 3. Instantaneous power for magnetic dipoles of different radii: (a) 3 mm, (b) 5 mm, (c) 7 mm, (d) 9 mm, (e) 11 mm, and (f) 13 mm.
The red solid curves in all the graphs correspond to the instantaneous radiated power, and the blue dot-dashed curves determine the sum of
electric, magnetic, and supplied energies per unit time taken with the negative sign. The relative error, indicating the discrepancy, is shown in
percentages on the graphs.

The supplied power to the antenna is simply the power
supplied by the port, which is calculated as the current through
the port i(t ) multiplied by the voltage on it vp(t ),

Psupplied(t ) = vp(t )i(t ), (C5)

where the voltage and current are extracted from the simula-
tors. In the case of the magnetic dipole, two ports are used,
therefore, the supplied power is the sum of powers supplied
by each port.

APPENDIX D: ELECTRIC AND MAGNETIC
DIPOLE MOMENTS

Radiated power in the time domain is calculated using
Eq. (12) in the case of the magnetic dipole and Eq. (29) in
the case of the electric dipole. The general definition of the
electric dipole moment reads

p =
∫
V
r′ρ(r′, t )dr′, (D1)

where ρ(r, t ) is the charge density. In the case of the electric
dipole, in the frequency domain, it is very convenient to
calculate it using this notation. However, in the transient
analysis of the electric dipole, it is more convenient to use the
definition of the dipole moment in terms of the surface current
J(r, t ),

p =
∫

dt
∫

J(r′, t )dr′. (D2)

The value of the magnetic dipole moment is calculated
through the current i(t ) flowing in the loop as

m(t ) = πa2i(t ), (D3)

where a is the loop radius.
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