
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Bagaa, Miloud; Dutra, Diego Leonel Cadette; Taleb, Tarik; Samdanis, Konstantinos
On SDN-Driven Network Optimization and QoS Aware Routing Using Multiple Paths

Published in:
IEEE Transactions on Wireless Communications

DOI:
10.1109/TWC.2020.2986408

Published: 01/07/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Bagaa, M., Dutra, D. L. C., Taleb, T., & Samdanis, K. (2020). On SDN-Driven Network Optimization and QoS
Aware Routing Using Multiple Paths. IEEE Transactions on Wireless Communications, 19(7), 4700-4714. Article
9067027. https://doi.org/10.1109/TWC.2020.2986408

https://doi.org/10.1109/TWC.2020.2986408
https://doi.org/10.1109/TWC.2020.2986408

On SDN-driven Network Optimization and QoS
aware Routing using Multiple Paths

Miloud Bagaa1, Diego Leonel Cadette Dutra2, Tarik Taleb1,3,4 and Konstantinos Samdanis5
1 Dep. of Communications and Networking School of Electrical Engineering, Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Centre for Wireless Communications (CWC), University of Oulu

4 Department of Computer and Information Security, Sejong University, South Korea
5 Nokia Bell Labs, Munich, Germany

Emails:{firstname.lastname}@aalto.fi; diegodutra@lcp.coppe.ufrj.br; konstantinos.samdanis@nokia-bell-labs.com

Abstract—Software Defined Networking (SDN) is a driving
technology for enabling the 5th Generation of mobile commu-
nication (5G) systems offering enhanced network management
features and softwarization. This paper concentrates on reducing
the operating expenditure (OPEX) costs while i) increasing the
quality of service (QoS) by leveraging the benefits of queuing
and multi-path forwarding in OpenFlow, ii) allowing an op-
erator with an SDN-enabled network to efficiently allocate the
network resources considering mobility, and iii) reducing or even
eliminating the need for over-provisioning. For achieving these
objectives, a QoS aware network configuration and multipath
forwarding approach is introduced that efficiently manages the
operation of SDN enabled open virtual switches (OVSs). This
paper proposes and evaluates three solutions that exploit the
strength of QoS aware routing using multiple paths. While the
two first solutions provide optimal and approximate optimal
configurations, respectively, using linear integer programming
optimization, the third one is a heuristic that uses Dijkstra
short-path algorithm. The obtained results demonstrate the
performance of the proposed solutions in terms of OPEX and
execution time.

Index Terms—SDN, Cloud networks, QoS, Optimization,
Multi-path routing

I. INTRODUCTION

5G is expected to be a revolution to mobile communications
enabling new services with stringent requirements, while

opening the network to multiple tenants driving new busi-
ness opportunities. The 5G system mainly consists of three-
parts, which are: i) The Radio Access Network (RAN) that
introduces new radio technologies, such as millimeter-wave
and massive multiple-input and multiple-output (MIMO), to
increase the bandwidth and reduce the delay; ii) the core
network that relies on softwarization and a cloud-native ar-
chitecture [2]–[6], which decouples the control from the user
plane, introducing new network functions; iii) SDN-enabled
transport network that interconnects the RAN and the core
network, facilitating value added services and applications
hosted in different servers referred to as Data Networks (DNs)
[7].

An abridged version of this paper has been published in the proceedings
of the 2017 edition of the IEEE GLOBECOM [1].

To ensure the stringent requirements of 5G services, the
core network ought to provide an end-to-end path optimization
service that targets the applications’ desired requirements,
e.g., delay and bandwidth, allowing a flexible allocation of
resources. To meet these Key Performance Indicators (KPIs),
mobile network operators typically over-provision network
resources to assure the desired QoS considering the peak
demands. This approach simplifies the network design as the
mobile network operator statically maps the resources on the
underlying transport network links and nodes. However, over-
provisioning becomes costly with the evolution of a plethora
of new applications and services with rigorous performance
demands. It also proves to be inefficient since the mobile
network is not flexible to acquire or modify the allocated
transport network resources, while path assignment takes no
consideration of the user mobility.

In the 5G era, coordination among the mobile and trans-
port networks is also required to facilitate network slicing
and enable multi-tenancy by allocating end-to-end resources
on-demand. To effectively address this, a new Application
Programming Interface (API) is introduced in 3GPP [8] and
IETF [9] as shown in Fig.1. This type of mobile-transport
API relates the 5G network orchestration and management
system, which handles 3rd party requests and the life-cycle
management (LCM) of the mobile network, with the un-
derlying transport network SDN controller that configures
paths with the desired performance capabilities to connect the
RAN and core network. The mobile-transport API allows: i)
transport network resource capabilities exposure towards the
5G orchestration and management system adopting resource
abstraction models [10], [11], and ii) carries out the mapping
of mobile network service requirements towards the transport
network resources and paths, including life-cycle management.

SDN [12], [13] is introduced as a 5G enabler in the transport
network layer allowing programmability and efficient traffic
steering [14]–[16]. SDN leverages white box switches for
ensuring network connectivity by considering different media
including both wired and wireless communications, i.e., via an
Access Point in case of wireless medium or directly plugged to
SDN-enabled switches in case of a wired network. This paper

1

Figure 1: Mobile and transport network system architecture.

explores the QoS queuing feature in OpenFlow that allows a
mobile operator with an SDN-enabled network to efficiently
allocate resources taking advantage of the available multiple
paths [17] of the underlying transport network infrastruc-
ture. This approach enables fine-tuning in resource allocation,
which improves network utilization, while also assuring QoS
provisioning. Nevertheless, its efficiency relies on a frequent
collection of performance statistics and re-computation of the
allocated resources, ideally considering the patterns of arriving
and handover users.

Our interest concentrates on how to compute and update the
set of transport network paths considering an SDN controller
(e.g., ONOS [18], [19]) responsible for managing the data
plane by pushing different network configurations. The data
plane may adopt the queue control available on version 1.3 of
the OpenFlow protocol to facilitate multiple paths towards an
end-host or end-point, e.g., base station, using multiple paths
to forward different flows via distinct routes simultaneously. A
mobile user that streams, for instance, a video on demand via
the proposed SDN paradigm, requires the mobile operator to
allocate and maintain the desired bandwidth once it admits the
streaming request and initiates the streaming upon receiving
such a confirmation. This highlights the importance of admis-
sion control in establishing QoS, which needs to exploit user
context and mobility, alongside the Service Level Agreements
(SLAs).

Besides users’ context and SLAs, assuring network uti-
lization efficiency can significantly influence the maintenance
of the desired QoS. However, the time needed to determine
a new network configuration that reflects such utilization
efficiency plays a significant role in practice. If a new network
configuration needs a long amount of time to be determined,
i.e., far beyond the time it takes a user to connect or change the
attached evolved NodeB (eNodeB), then it may no longer have
a practical value for optimizing the network utilization. This

paper proposes and evaluates three SDN-based resource allo-
cation techniques leveraging the benefits of multipath forward-
ing in network utilization efficiency. The two first solutions
configure path and connectivity resource allocations in the
entire network upon the reception of a new user service request
or upon a user movement. While one of these solutions, named
Full Paths Re-computation (FPR), provides an optimal config-
uration by exploring linear integer programming, the second
solution, named Heuristic Paths Re-computation (HPR), pro-
vides efficient network configuration by exploiting Dijkstra
shortest-path Algorithm. The third solution, referred to as
Partial Paths Re-computation (PPR), provides an approximate
optimization, re-computing and configuring only the network
resources related with newly attached or handover users, by
maintaining a resource availability topology pruning links
and/or the associated link capacity that is already allocated
to static, i.e., non-moving, users.

The contributions of this paper include: i) an SDN-based
network resource utilization strategy exploiting multipath for-
warding in a mobile network environment, ii) the formulation
and analysis of three algorithms for multipath forwarding
considering user mobility context and QoS demands, iii)
an evaluation study based on simulation, demonstrating the
efficiency of each proposed solution in terms of network uti-
lization and OPEX reduction costs, while assuring a reasonable
computational time. Our focus concentrates on the algorithms’
insights assuming that the related scalability issues can be
handled considering: i) domain-specific deployments with a
moderate amount of routers and switches, and ii) algorithm
execution once a significant change occurs in the allocated
network resources.

The remaining of this paper is organized as follows. Sec-
tion II presents the related work. Section III describes the
network model, while Section IV-A describes the two first
solutions that provide full paths re-computation. Section V

2

elaborates on the solution that only partially re-computes
the forwarding graph. Section VI analyzes the performance
evaluation. Finally, Section VII concludes the paper.

II. RELATED WORK

The use of SDN [20] introduces the capability for resource
programmability allowing QoS provisioning across heteroge-
neous equipment and networks. Sonkoly et al. [21] have de-
scribed a preliminary set of QoS capabilities for the European
OpenFlow testbed Ofelia. Their major contribution focuses
on QoS provision, introducing performance measurements
and resource management mechanisms, which facilitate queue
configuration and flow mapping to particular queues.

Egilmez et al. [22] present a solution that uses OpenFlow
to guarantee end-to-end QoS for video streaming, by perform-
ing traffic classification and route allocation with bandwidth
guarantees. The proposed solution demonstrates significant
improvements for video performance, but it is not scalable
since it assumes that a single SDN controller manages the
entire network. To resolve scalability issues, Egilmez and
Tekalp extended their initial work in [23] considering mul-
tiple distributed controllers. Each controller is responsible for
allocating QoS routes within an Autonomous System (AS)
or domain, exploiting an aggregate network view to perform
inter-AS QoS routing.

Similarly, Sharma et al. [24] proposed an SDN QoS frame-
work relying on the Floodlight controller of the Ofelia testbed
to prioritize selected traffic over best-effort. The proposed
framework concentrates on inter-domain aspects considering
a single controller per AS, which communicates via a north-
bound API with a bandwidth broker responsible for providing
the respective policies for assuring SLAs with end customers
or neighboring brokers. Authors, in [25], [26], have addressed
the dynamic control assignment problem. Whilst [25] aims to
minimize the average response time of the control plane based
on the stable matching problem with transfer, [26] applies the
randomized fixed horizon control framework translating the
problem into a series of stable matching ones with transfers.

The aforementioned solutions perform programmable traf-
fic prioritization and load balancing to minimize congestion
considering stationary clients. Tomovic et al. [27] have intro-
duced the notion of fairness in SDN-based QoS provisioning,
which aims to minimize the degradation of best-effort traffic
while guaranteeing the desired QoS for priority flows. This
framework is based on resource reservation, optimum path
selection, and admission control using the POX controller.
So far, none of the SDN-based QoS solutions considered
leverages the benefits of multiple paths. A simple technique,
orthogonal to SDN that distributes incoming flows uniformly
across a set of pre-determined paths is known as Equal
Cost Multipath (ECMP) [28]. Although ECMP is scalable,
it is not considering the load of each path and hence it
can introduce traffic imbalance and potential congestion. In
the context of SDN, Celenlioglu and Mantar [29] proposed
a routing and resource management model leveraging the
benefits of load balancing utilizing multiple pre-established

paths with resource reservation for intra-domain environments.
Such a scheme improves routing scalability and decreases the
admission time assuring QoS guarantees for stationary nodes.

Jinyao et al. [30] proposed HiQoS, a sophisticated SDN-
based multipath solution that uses OpenFlow queuing mech-
anisms to implement multipath forwarding and bandwidth
guarantees. The proposal relies on a modified version of
Dijkstra’s algorithm that considers QoS constraints to compute
such multipaths, which are stored in a hash-map. HiQoS
allocates QoS paths using this map in combination with a real-
time network state, allowing rapid recovery from failures. The
proposed path selection uses a price and distance criteria, and
the authors’ main goal is to distribute traffic over the network
through the allocation of paths with the minimum load. Sahhaf
et al. [31] have proposed a similar approach considering an
adaptive multipath provisioning scheme that selects paths with
maximum bandwidth and availability. Hussain et al. [32] have
evaluated an SDN based multipath solution for data center
networks using Floodlight. Flows are scheduled using a hash
function over a set of pre-computed paths, prioritizing the least
congested paths with the capability of reactively altering the
forwarding rules for flows with longer times.

Cross-layer coordination among ISPs utilizing multi-paths
to achieve optimal resource allocation and increased reliability
is considered by Basit et al. [33]. Huang et al. experimen-
tally evaluated an SDN multipath solution for GridFTP [34],
[35] to address traffic engineering considering a multipath
modification of Dijkstra’s algorithm to increase data transfer
rates. A study on SDN enabled disjoint multipath routing is
performed by Fu and Wu [36] demonstrating the benefits of
load balancing against the conventional shortest path routing,
considering different network graph models. Guillen et al.
[37] proposed a hybrid, i.e. server and path, load balancing
that allows higher throughput by exploiting SDN-based mul-
tipath capabilities for a distributed storage system. An overlay
multipath framework focusing on matching underlay paths
to reduce QoS degradation due to uncertainty is explored in
Guan et al. [38] considering the service type. Our approach
adopts a similar multi-path strategy but focuses on minimizing
the equipment usage as long as the QoS constraints are
satisfied instead of distributing the load equally, considering
an environment with frequent user mobility.

Dwarakanathan et al. [39] have introduced a high availabil-
ity QoS-aware module to ensure the desired bandwidth with
respect to service types. The proposed technique allows an
aggregated resource allocation on the corresponding switches
ensuring scalability while providing regular network ”health”
checks. Yoon and Kamal [40] have proposed a mixed integer
linear programming model and a local optimization heuristic
based on simulated annealing for minimizing the energy
consumption in SDN networks while guarantying the desired
QoS. Our approach would also rely on a regular resource
check policy to assure that the allocated network resources
are optimal with respect to user mobility patterns, but with
the additional objective to minimize OPEX using as fewer
switches as possible. Tariq and Bassiouni [41] have proposed
an SDN enabled QoS-aware Multipath-TCP (MPTCP) solution
based on Dijkstra’s algorithm that selects P paths between

3

two end nodes, while Wang et al. [42] explore multipath
forwarding for scheduling MPCTP flows in a virtualized
environment. However, MPTCP splits a flow into sub-flows
that are forwarded into multiple paths, which may prove to
be impractical for none-TCP flows and complex to handle for
mobile users.

III. NETWORK MODEL AND PROBLEM FORMULATION

Let G(V,E,W) denote a weighted graph, where V repre-
sents a set of nodes and E the set of edges in the network.
V = C∪O∪S , where C, O, and S denote the set of clients, the
set of Open Virtual Switches (OVSs), and the set of servers
in the network, respectively. Each edge is associated with a
weight W , where Wu,v of an edge (u, v) ∈ E denotes the
bandwidth capacity between nodes u and v.

Table I: List of Notations

Notation Description
C The set of clients in the network.
O The set of open virtual switches in the network.
Ö The set of none-activated open virtual switches in the

network.
S The set of servers in the network.
G(V,E,W) The graph that shows the network topology, where V =

C ∪ O ∪ S , E denotes the set of edges, W denotes
the bandwidth communication between different nodes in
V and ωi,j ∈ W denotes the bandwidth capacity
between i, j ∈ V .

G̈(V,E,W) A copy of G that removes the stationary clients and the
resources used by them from the original graph G.

Xi,j A decision boolean variable that shows if a node i selects
j as parent.

Xu,v =

{
1 If u selects v as parent
0 Otherwise

Cs Denote the set of the clients of the server s ∈ S.
|Cs| Denote the cardinality of Cs.
Sc Denote the set of the servers of the client c ∈ C.
Xc,s

i,j A decision boolean variable that shows if a node i selects
j as parent to forward the traffic from c to s.

X c,s
u,v =

1 If u would forward the traffic of client c
to the server s through the OVS v

0 Otherwise

Yo A decision boolean variable that shows if a switch o ∈ O
is selected to forward the traffic or not.

Yo =

{
1 If o is selected to forward user’s traffic
0 Otherwise

Ti,j A real number variable representing the amount of traffic
that would be forwarded from i to j.

T c,s
i,j A real number variable representing the amount of traffic

that client c sent to server s that would be forwarded from
i to j.

η(u) A function that returns the neighbors of node u in graph
G.

Fs
i,j An integer variable that mimics packet flow generated

from different clients towards server s.
F c,s
i,j An integer variable that mimics packet flow generated

from client c towards the server s.

This paper considers two types of communication: i) the
wireless communication between each client c ∈ C and the

access node (eNodeBs) and ii) the wired-line communication
between different SDN-enabled switches (OVSs). For the
communication between a client and a specified server, we
have the following types of communication. The first hop
between the client and the access point is a wireless interface,
while the remaining network links towards the server are
wired. Let η(u) represent the set of neighbors of a node u ∈ V .
Assuming that each client requires a specified service at a time
from a single server with a certain upper bound bandwidth,
we are interested in accommodating efficiently the maximum
amount of different client requests. For seeking to remove
the ambiguity and without loss of generality, if a client is
interested in N services, we simply replicate that client by
N , with each one representing a specified service. We denote
by Ss for s ∈ S , the set of clients that are interested in a
service offered by a particular server, formally represented as⋃
s∈S
Ss = C. Each client c ∈ C requires a specified upper

bound bandwidth Bc related with a different service. Table I
summarizes the notations used in this paper.

IV. EFFICIENT MANAGEMENT OF THE FULL PATHS
RE-COMPUTATION

This section elaborates on the two optimization solutions.
The first solution, dubbed optimal Full Paths Re-computation
(FPR), aims to provide the optimal configuration considering
all users. The second solution, named Heuristic full Paths Re-
computation (HPR), resolves an approximated optimization
problem aiming to keep the computation time of determining
a configuration bounded. Both solutions reduce OPEX costs
while ensuring end-to-end QoS by re-configuring the paths
connecting all clients to corresponding servers. This strategy
optimizes the resource allocation when new clients attach
to the network and/or perform a handover. Both algorithms
should be executed periodically or upon a significant network
load alternation. At each execution, FPR and HPR will com-
pute and configure new routes between different clients and
their respective servers. The input of the FPR and HPR is a
graph G, considering all client(s) that request a path or need
a path modification towards a related server.

A. FPR: Full Paths Re-computation

In what follows, we describe the solution FPR related to the
optimization problem (1a) - (1k). For all u ∈ C ∪ O and v ∈
O∪S , we define the following variables. For each server s ∈
S , we define a matrix Fs of integer variables that represents
the traffic generated and forwarded to that server. Each element
Fsi,j represents the number of flows that shall be forwarded
from i to j, whereby i ∈ C ∪ O and j ∈ O ∪ S .

min
∑
∀i∈O

Yi (1a)

s. t.

4

(a) Network topology showing
bandwidth in use in red and total

bandwidth in black.

(b) UE 1 arrives and requests 20Mpbs
from Server1.

(c) Allocation of 20Mpbs to UE 1. Arrival
of UE 2 requesting 30Mbps from

Server 1.

(d) Allocation of 30Mpbs to UE 2 using
multi-paths routing. Arrival of UE 3
requesting 10Mbps from Server 2.

(e) Allocation of 10Mpbs to UE 3. (f) Reallocation of 30Mbps to UE 2 and
recompute of new configuration disabling

OVS 4

Figure 2: Illustrative example that shows the execution of FPR solution.

∀i ∈ C :
∑

∀j∈η(i)

Xi,j = 1 (1b)

∀i ∈ C, ∀j ∈ η(i) : Ti,j =
∑

∀s∈S∧i∈Cs
λsi ×Xi,j (1c)

∀i ∈ O :
∑

∀j∈η(i)∩(C∪O)

Tj,i =
∑

∀j∈η(i)∩(O∪S)

Ti,j (1d)

∀i ∈ C ∪ O, ∀j ∈ η(i) ∩ (O ∪ S) : Ti,j ≤ Wi,j ×Xi,j (1e)

∀i ∈ O, ∀j ∈ η(i) ∩ (O ∪ S) : Xi,j ≤ Yi (1f)

∀i ∈ O, ∀j ∈ η(i) ∩ (O ∪ C) : Xj,i ≤ Yi (1g)

∀i ∈ S :
∑

∀j∈η(i)

F ij,i = |Ci| (1h)

∀s ∈ S, ∀i ∈ Cs :
∑

∀j∈η(i)

Fsi,j = 1 (1i)

∀i ∈ O, ∀s ∈ S :
∑

∀j∈η(i)∩(C∪O)

Fsj,i =
∑

∀j∈η(i)∩(O∪S)

Fsi,j (1j)

∀s ∈ S, ∀i ∈ C ∪ O, ∀j ∈ O ∪ S : 0 ≤ Fsi,j ≤ |Cs| × Xi,j (1k)

In the objective function (1a), we aim to minimize the
number of OVSs used in configuring all the paths between
clients and servers, fulfilling the following constraints. Con-
straint (1b) ensures that each user should be connected to only
one eNodeB or gNB, which is associated with a corresponding
OVS, whereby it receives and transmits data traffic. Constraint
(1c) represents the traffic aggregated from a client towards all
related servers that transverse the attached gNB. Constraint
(1d) ensures that all traffic received by an OVS from its
neighbors η(i) or clients must be equal to the output traffic
by that said OVS. Constraint (1e) ensures that the traffic
forwarded from a node (i.e., client or OVS) to another node
(i.e., OVS or server) should not exceed the capacity of the
link that interconnects these two nodes. For i ∈ C, the traffic
generated from the client i should not exceed the link capacity
between that client and the serving gNB. Likewise, for i ∈ O,
the aggregated traffic forwarded from an OVS i to its successor
j should not exceed the capacity of that link. Constraints (1f)
and (1g) ensure that only activated OVSs should participate
in forwarding the traffic. None activated OVSs are not meant
to be instantiated, and hence cannot participate in forwarding
data traffic.

Constraints (1h), (1i), (1j) and (1k) ensure that the con-
nectivity between the clients and their respective servers is
established without any routing loops. Constraint (1h) ensures
that the number of flows arriving at a given server equals

5

to the number of clients’ requests. Constraint (1i) ensures
that only one flow should be created between a client and
server, supporting the OpenFlow protocol requirements related
to the routing data traffic between clients and servers. In fact,
OpenFlow can identify a flow by the source and destination
address, while an SDN controller can make decisions only on a
per flow basis. In the proposed solution, when an OVS receives
two packets with different source addresses and the same
destination, it can make distinct decisions in forwarding those
packets to two different OVSs. Constraint (1j) ensures that
the number of incoming flows to an OVS equals exactly to the
number of outcoming flows. This constraint helps for ensuring
the connectivity and preventing the creation of routing loops.
Constraint (1k) forces the generated flow of a client to be
routed only within the configured paths while avoiding loops.

Figure 2 elaborates a detailed example that illustrates the
operation of the FPR solution considering a simple mobile
network that consists of four eNodeBs/gNBs, a set of OVSs
numbered from 1 to 8 and two servers. For clarity, we
suppressed the SDN controller from Figure 2, but only show
the effects of its operation. Figure 2(a) illustrates the network
in its initial configuration, showing the bandwidth resources
partially in use by residing tenants as highlighted in red
numbers. Based on this topology, we derive the reference
graph G by removing all used resources as depicted in Figure
2(b). Our FPR algorithm is executed periodically or upon a
significant load alternation in order to ensure the desired user
QoS.

A mobile user that needs to access a server should attach
to an eNodeB/gNB in its vicinity as shown in Figure 2(b),
where the arriving User Equipment (UE) 1 requires a 20 Mbps
streaming flow from server 1. UE 1 is attached to eNodeB
2 instead of eNodeB 1, as eNodeB 2 can comply with the
corresponding demand allowing load balancing. Figure 2(c)
shows UE 2, which can connect either to eNodeB 1 or eNodeB
2 requesting a 30 Mbps streaming flow from server 1. The
allocation of 30 Mbps to UE 2 through eNodeB 2 is depicted
in Figure 2(d), demonstrating that OVS 1 uses multiple paths
for ensuring QoS since the available capacity of a single
path cannot support the requested UEs 1 and UEs 2 towards
server 1. The same figure depicts the arrival of UE 3 that
requests 10 Mbps from server 2, while figure 2(e) shows the
corresponding resource allocation through eNodeB 1. UE 2
handover to eNodeB 3 is illustrated in Figure 2(f) highlighting
the relocation of 30 Mbps on top of the updated reference
graph that allows OVS 4 to be disabled since the traffic of UE
3 is redirected via a new route elaborating the efficiency of
the FPR solution.

This example demonstrates the success of the FPR solution
for connecting all the UEs with the related servers using
the smallest number of OVSs, i.e. reducing the OPEX cost,
without affecting the desired QoS. Every UE is connected to its
corresponding server using a dedicated path without any loops.
This is ensured thanks to the constraints (1b), (1c), (1h), (1i),
(1j) and (1k). It is also observed that the received traffic equals
the forwarding one at each OVS, which is aligned with the
constraint (1e), while the assigned links between OVSs are not
overloaded conforming constraint (1e). Finally, it is assured

that only the activated OVS (i.e., colored green) participate in
forwarding traffic between clients and servers, which respects
the constraints (1f) and (1g).

Theorem 1. The complexity of FPR is more than
O(2|O|+∆×(|V |+|S|×(|C|+|O|−1))), where ∆ denotes the graph
degree of G.

Proof. We have solved the optimization of FPR using Gurobi
optimizer that uses the branch-and-bound method. Jeroslow
[43] proved that the complexity of branch-and-bound for a
binary linear program is O(2N), where N is the number of
binary variables in the optimization. In the FPR optimization
problem, we have three kinds of binary and integer variables
that require the branch-and-bound method. The first set of
binary variables is Xi,j , for i, j ∈ V , that denotes if a node i
selects j from its neighbors as successor. If we denote by ∆ the
graph degree of G, and based on the observation that servers
do not have successors, we will have a maximum number of X
variables (|V |−|S|)×∆. The second set of binary variables is
Yo for o ∈ O, which means that we have |O| of Y variables
in the system. Finally, we have the set of integer variables
Fsi,j , where s ∈ S , i ∈ C ∪ O and j ∈ S ∪ O. Based on
the observation that node i selects its successor only from its
neighbors, the number of variables of F is |S|× |C ∪O|×∆.
Also, based on the observation that the sets C, O and S are
independent, we have the number of the integer variables of F
is |S|× (|C|+ |O|)×∆. Then, the number N of variables that
we need to use branch-and-bound to solve the optimization
of FPR equals to: (|V | − |S|) × ∆ + |O| + |S| × (|C| +
|O|)×∆. Thus, the run-time complexity of FPR is more than
O(2|O|+∆×(|V |+|S|×(|C|+|O|−1))).

B. HPR: Heuristic Paths Re-computation

As mentioned in Section I, the 5G network management
and orchestrator communicates the resource demands among
the indicated end points, e.g. gNBs and UPFs (as shown
in Fig. 1), considering the user mobility via the mobile-
transport API towards the transport network SDN controller.
The SDN controller in turn, executes the proposed algorithms
to optimize the resource allocation and network utilization.
The proposed algorithms ensure an efficient life cycle man-
agement for network slicing in the mobile network allowing
the transport network to assure the targeted KPIs at a low
cost. The algorithms introduced in this paper are executed
periodically or upon a significant network load alternation.
The suggested algorithms should be executed as background
processes to feed the forwarding mechanisms that operate
using the routes already determined. Hence, they should not
affect the QoS at the data plane. After the convergence of an
algorithm, routing alternations would be enforced using the
SDN transport controller(s). To follow dynamic traffic changes
in the network a periodic or a threshold based approach should
be employed to trigger the corresponding algorithm to re-
compute fast potential routing changes.

The FPR optimization solution, described in the previous
subsection, can provide an optimal configuration by using

6

linear integer programming that leverages the branch and
bound method. Unfortunately, the FPR solution could take a
long time before providing an optimal configuration due to the
use of branch and bound method for solving the mixed linear
integer programming optimization. The proposed optimization
model of FPR cannot be time efficient for providing network
configurations for a big network. However, it could serve
as a baseline approach for evaluating different heuristics as
suggested later.

In this section, we introduce the HPR heuristic, which
provides an efficient configuration at a reasonable time. HPR
explores the Dijkstra shortest-path algorithm for allocating
different paths between UEs and servers. In contrast to FPR
solution, the HPR one can run at the order of 10 MHz or at
least every 100 ms considering a periodic approach. Algorithm
1 illustrates the different steps of the HPR Algorithm. The
HPR Algorithm uses G(V,E,W), C and S as inputs, while
its output consists of the activated OVSs Φ and the generated
paths P . It starts by initializing the selected OVSs Φ with
an empty set (Algorithm 1: Line 1). Then, the HPR algorithm
enters a loop to calculate the routing paths between each client
and server (Algorithm 1: Lines 2 − 50). An access point Ψc

of a client c ∈ C should be able to handle the data traffic
between that client c and its servers Sc. A forwarding node
o ∈ O can be selected as an access point, unless the bandwidth
between the client c and o is less than the expected Sc (i.e.,
Wc,o <

∑
∀s∈Sc

λcs). Hence, the algorithm initially removes the

forwarding nodes that cannot be assigned as access points Ψc

for a client c ∈ C (Algorithm 1: Lines 3− 8). For each client
c ∈ C, a set of nodes V is initialized considering the set V
as input (Algorithm 1: Line 3). Then, each forwarding node
(o ∈ η(c)∩O) that is a neighbor of c ∈ C should be removed
if it cannot be used as an access point (Algorithm 1: Lines
4− 8).

As the next step, paths are calculated, between the client
c and its corresponding servers, one by one (i.e., ∀s ∈ Sc).
For this reason, each server s ∈ Sc associated with a client
c, relates to an inner loop in the HPR algorithm (Algorithm
1: Lines 9 − 49). In the inner loop, two temporary variables
V̂ and Ê are initialized as V and E, respectively, (Algorithm
1: Lines 10 − 11), in order to avoid affecting the values of
V and E when a new path is calculated. Then, in the inner
loop, all links that cannot handle the expected traffic between
the client c and its server s are removed (Algorithm 1: Lines
12 − 16). So none other clients and servers are involved in
forwarding traffic, except c and s (Algorithm 1: Line 17). In
order to reduce the complexity of the algorithm, any other
node that cannot participate in forwarding traffic should also
be removed. Formally, a node o ∈ O ∩ V̂ cannot participate
in traffic forwarding if it is a leaf node (|η(o)| = 1). For this
reason, in the HPR algorithm, an infinite loop is defined to
remove all the leaf nodes in a cascading way (Algorithm 1:
Lines 18− 24).

The HPR algorithm aims to re-use the activated OVSs,
indicated by Φ, as much as possible in order to reduce OPEX,
while ensuring QoS. In the algorithm, a new graph G(V̂, Ê , ω̂)

7

is generated from G(V,E,W) by selecting the OVSs from
Φ to interconnect c with s (Algorithm 1: Lines 25 − 35). To
accomplish this a weight ω̂u,v of an edge (u, v) ∈ Ê is defined
according to the nature of u and v as follows:
• If u, v ∈ Φ, then ω̂u,v = 1;
• If u ∈ Φ ∧ v /∈ Φ, then ω̂u,v = |V̂|+1

2 ;
• If u, v /∈ Φ, then ω̂u,v = |V̂|;
A new variable ĉ is defined to assign the client c if the

access point Ψc is not yet selected. Otherwise, this variable
should assign the access point Ψc (Algorithm 1: Lines 36 −
40). Formally, ĉ is used to compute the Dijkstra shortest-path
algorithm between the access point Ψc or the client c, and the
server s (Algorithm 1: Line 41). Using Dijkstra shortest-path
algorithm with ω̂, it is ensured that the selection of the lowest
number of OVSs does not belong to Φ.

Finally, the algorithm defines the access point of c if it is
not yet defined (Algorithm 1: Lines 42 − 44). Formally, the
access point c is defined as the first hop and should be used to
interconnect c with s (i.e., Ψc = Pc,s[1]). Then, the selected
OVSs, Φ, is updated by considering the additional OVSs used
to interconnect c with s (Algorithm 1: Line 45). Lastly, W is
updated by removing the expected traffic between the client c
and the server s (Algorithm 1: Lines 46−48).W is updated in
order to ensure that the required QoS between all the clients
and servers is not affected.

Theorem 2. The run time complexity of HPR is O(|C|(∆ +
|S|(2|E|+ 3|V |))), where ∆ denotes the graph degree of G.

Proof. HPR has a long loop that starts at line 2 and ends at
line 50 (Algorithm 1: HPR Algorithm). In this loop, we iterate
on the number of clients C, thus its complexity is O(|C|). This
loop has two inner loops. The first loop that starts at line 4
and ends at line 8. In this loop, we iterate on the OVSs that
are neighbors of the client c, and hence the complexity of this
loop is O(∆), such that ∆ is the graph degree. Meanwhile, the
second loop starts at line 9 and ends at line 49. In this loop
iterates on the servers, and hence its complexity is O(|S|).
This loop consists of 5 parts. The first part starts at line 12
and ends at line 16, and its complexity is O(|E|). The second
part starts at line 18 and ends at line 24, and its complexity
O(|V |). The third part starts at line 25 and ends 31, and its
complexity is O(|V |). The fourth part starts at line 33 and
ends at line 35, and its complexity is O(|E|). Finally, the fifth
step is the last one that starts at line 46 and ends at the line 48,
which has run-time complexity of O(|V |). Considering all the
aforementioned steps, the complexity of HPR is O(|C|(∆ +
|S|(2|E|+ 3|V |))).

V. PPR: PARTIAL PATHS RE-COMPUTATION

The FPR and HPR solutions aim to get an optimal configu-
ration by recomputing the paths for all the UEs, both stationary
and mobile. For instance, when the execution period is elapsed,
even when only one UE joins the network or handovers to
another location, both FPR and HPR solutions may recompute
the paths for all the UEs in order to optimally configure the
network. In real network deployments, UEs could be in the

order of hundreds of thousands even in smaller regions, which
may affect the computation time for converging in a new path
configuration. In order to mitigate such a problem, herein, we
suggest a new solution, named Partial Paths Re-computation
(PPR) that aims to lightweight the re-computation of the users’
paths. The basic idea of the PPR solution is to avoid the re-
configuration of paths related to stationary UEs that remain
constant from the previous iteration (i.e., same UE locations
and QoS requests). In fact, the PPR solution considers only
newly attached or handovered UEs. Other UEs that keep a
constant state, including the associated resources, are removed
from the network graph before starting the recomputation.
Conceptually, the PPR solution introduces a filter phase that
removes the stationary UEs and the associated bandwidth
utilization resources from the network graph before executing
the optimization algorithm.

As mentioned before, we denote by G(V,E,W) a weighted
graph that reflects the current state of the network, where
V = C ∪ O ∪ S represents a set of clients C, OVSs O, and
servers S, respectively. Let C = Ċ ∪ C̈, where Ċ denotes the
set of stationary UEs since the last execution of PPR and C̈
stands for the set of newly attached and/or handovered UEs.
Note that each UE i ∈ Ċ has already been allocated predefined
paths towards the corresponding server. We have two sets of
OVSs: i) Activated OVSs Ȯ that participate in forwarding
packets towards and from stationary UEs Ċ and ii) none-
activated OVSs Ö = O−Ȯ that are excluded from the routing
process. We denote by G̈(V, E , ω) an updated version of graph
G that excludes stationary UEs and the associated bandwidth
resource utilization. G̈(V, E , ω) is derived from G as follows.
First, V is generated from V by removing the stationary UEs
Ċ, hence V = C̈ ∪ O ∪ S . Second, E is generated from E
by removing any edge (a, b) ∈ E from E , such that a ∈ Ċ
or b ∈ Ċ. Finally, ω is generated from W by removing the
resources used by Ċ. When generating ω we have taken into
account the resources of the path between a stationary client
and its corresponding server. At each iteration, the aim of PPR
is to use the minimum number of none-activated OVSs Ö for
connecting new and handovered UEs.

The Algorithm 2 describes the main functionality of the
PPR solution. Initially, PPR gets the graph G and the list
of servers S as input and then it has an infinite loop,
whereby it checks if there are any updates in the network
state, i.e. by the arrival of new and/or handover UEs. If
so, G̈(V, E , ω) would be derived from G by removing the
stationary UEs Ċ. Then, the set of none-activated OVS Ö
is specified based on O by removing OVSs already in use
by UEs Ċ. Last but not least, the optimization problem
defined by the function OptimizationPPR(G, G̈, Ċ,S, Ö) is
executed for re-configuring network paths. In what follows, we
define the different variables used in the optimization problem
OptimizationPPR(G, G̈, Ċ,S, Ö). After executing
OptimizationPPR(G, G̈, Ċ,S, Ö), the network reconfigura-
tion decisions enable the SDN controller(s) to perform the
appropriate network state modifications. Finally, the algorithm
waits for a significant change in the network state before
executing the optimization of PPR again.

8

Algorithm 2 PPR Algorithm.
Input:

G: The input original graph.
S: List of servers in the network.

1: while true do
2: if C2 6= ∅ then
3: G̈ = G.copy()
4: Ċ = C − C̈
5: Ö = G̈.remove(Ċ)
6: OptimizationPPR(G, G̈, Ċ,S, Ö)
7: end if
8: wait()
9: end while

For each server s ∈ S and UE c ∈ C, we define an integer
variable F c,s that mimics packet flow generated from client c
towards the server s. Each element F c,si,j represents the number
of flow packets from UE c to server s, which should be for-
warded from i ∈ C∪O to j ∈ O∪S . In what follows, we define
the optimization problem OptimizationPPR(G, G̈, Ċ,S, Ö).

min
∑
∀i∈Ö

Yi (2a)

s. t.

∀s ∈ S, ∀c ∈ Cs ∩ C̈ :
∑
∀j∈η(c)

X c,sc,j = 1 (2b)

∀s1 ∈ S, ∀s2 ∈ S, ∀c ∈ Cs1 ∩ Cs2 ∩ C̈, ∀j ∈ η(c) :

X c,s1c,j = X c,s2c,j

(2c)

∀s ∈ S, ∀c ∈ Cs ∩ C̈, ∀j ∈ η(c) :

T c,sc,j = λsc ×X
c,s
c,j (2d)

∀s ∈ S, ∀c ∈ Cs ∩ C̈, ∀i ∈ O :∑
∀j∈η(i)∩({c}∪O)

T c,sj,i =
∑

∀j∈η(i)∩(O∪S)

T c,si,j (2e)

∀s ∈ S, ∀c ∈ Cs ∩ C̈, ∀i ∈ {c} ∪ O, ∀j ∈ η(i) ∩ (O ∪ S) :

T c,si,j ≤ Wi,j ×X c,si,j
(2f)

∀s ∈ S, ∀c ∈ Cs ∩ C̈ :∑
∀i∈η(c)∩(O∪{s})

T c,sc,i =
∑

∀i∈η(s)∩(O∪{c})

T c,si,s (2g)

∀c ∈ C̈, ∀j ∈ η(c) ∩ (O ∪ S) :∑
∀s∈S

T c,sc,j ≤ Wc,j (2h)

∀i ∈ O, ∀j ∈ η(i) ∩ O :∑
∀s∈S

∑
∀c∈Cs∩C̈

T c,si,j ≤ Wi,j (2i)

∀s ∈ S, ∀i ∈ η(s) :∑
∀c∈Cs∩C̈

T c,si,s ≤ Wi,s (2j)

∀c ∈ C̈, ∀s ∈ S, ∀i ∈ Ö, ∀j ∈ η(i) ∩ (O ∪ {c}) :

X c,sj,i ≤ Yi
(2k)

∀c ∈ C̈, ∀s ∈ S, ∀i ∈ Ö, ∀j ∈ η(i) ∩ (O ∪ S) :

X c,si,j ≤ Yi
(2l)

∀s ∈ S, ∀c ∈ C̈ ∩ Cs, ∀i ∈ O :
∑

∀j∈η(i)∩(O∪{s})

X c,si,j ≤ 1

(2m)

∀s ∈ S, ∀c ∈ C̈∩Cs, ∀i ∈ O :
∑

∀j∈η(i)∩(O∪{c})

X c,sj,i ≤ 1 (2n)

∀s ∈ S, ∀c ∈ Cs ∩ C̈ :
∑
∀j∈η(c)

F c,sc,j = 1 (2o)

∀s ∈ S :
∑

∀c∈Cs∩C̈

∑
∀j∈η(s)

F c,sj,s = |Cs| (2p)

∀c ∈ C̈, ∀s ∈ S, ∀i ∈ O :∑
∀j∈η(i)∩({c}∪O)

F c,sj,i =
∑

∀j∈η(i)∩(O∪{s})

F c,si,j (2q)

∀s ∈ S, ∀c ∈ Cs ∩ C̈, ∀i ∈ {c} ∪ O, ∀j ∈ O ∪ S :

0 ≤ F c,si,j ≤ |Cs| × X
c,s
i,j

(2r)

In the objective function (2a), PPR aims to minimize the
utilization of none-activated OVSs Ö by using the OVSs Ȯ
already in use. This helps in reducing the overall OPEX cost.
In the optimization problem, the network graph is updated by
removing the stationary UEs and updating the capacity of the
associated paths by removing the allocated resources in use.
Constraints (2b) and (2c) ensure that each UE is attached to
only one eNodeB, with the traffic generated towards the related
servers transversing through that same eNodeB. Constraint
(2d) computes the amount of traffic T c,sc,j generated from a UE
c ∈ Cs to the corresponding server s ∈ S through a neighbor
j. T c,sc,j = λsc only if j is selected as the attach point for c,
otherwise T c,sc,j = 0. Constraint (2e) ensures that the received
traffic at each OVS from a specified UE c ∈ Cs ∩ C̈ equals the
forwarded traffic from that OVS towards the corresponding
server s ∈ S . This constraint helps to preserve the traffic in
the network, assuring paths without loops.

9

(a) Network view showing
bandwidth in use in red and total

bandwidth in black.

(b) UE 1 arrives and requests 20Mpbs
from Server1.

(c) Allocation of 20Mbps to UE 1. Arrival
of UE 2 requesting 30Mbps from

Server1.

(d) Allocation of 30Mpbs to UE 2 using
multi-paths routing. Arrival of UE 3
requesting 10Mbps from Server 2.

(e) Allocation of 10Mpbs to UE 3 (f) Reallocation of 30Mbps to UE 2 by
enabling OVSs 3 and 5.

Figure 3: Illustrative example that shows the execution of PPR solution.

Constraint (2f) ensures that each link in the network is
not handling traffic load beyond its capacity. Constraint (2g)
ensures that the dedicated bandwidth from a client to a
specified server remains the same through the entire path.
Constraints (2h), (2i) and (2j) ensure that the aggregated
traffic through a dedicated link should not exceed its capacity.
Constraints (2k) and (2l) ensure that the OVSs in Ö should
participate in routing packets if and only if they are activated.
Constraints (2m), (2n), (2o), (2p), (2q) and (2r) ensure the
connectivity between the clients and their respective servers,
while preventing routing loops. Constraint (2m) ensures that an
OVS i ∈ O can have at most one successor for a specified path
between a client and a server, while constraint (2m) ensures
that the OVS i has only at most one predecessor. These two
constraints help for preventing loops in the paths. Constraint
(2o) ensures that only one flow is established from a UE
towards its respective server satisfying the OpenFlow proto-
col requirements for routing data traffic between clients and
servers. Constraint (2p) ensures the number of flows arriving
to a specified server equals exactly the number of its clients.
Constraint (2q) ensures that the number of incoming flows
to an OVS exactly equals to the number of outcoming flows
from that OVS. This constraint helps ensuring connectivity,
preventing routing loops. Constraint (2r) forces a client flow
to be routed only within the allocated path avoiding loops.

Figure 3 illustrates an example for operating the PPR
solution. We have adopted the same network used for the
description of FPR to show the main differences. Figure 3(a)
illustrates the network in its initial configuration, showing the
bandwidth resources partially in use as highlighted in red
numbers. Figure 3(b) depicts the arrival of UE 1 requesting a
20 Mbps streaming flow from server 1. PPR initially computes
both G̈ and Ö from G and as UE 1 is the first UE attached
to the network, G and G̈ as well as Ö and O are identical.
Using the OptimizationPPR procedure, UE 1 is attached to
eNodeB 2, which can comply with the desired QoS demand,
while OVS 1 and OVS 4 are selected for routing the traffic
between UE 1 and server 1.

The arrival of UE 2 that resides in the vicinity eNodeB 1 or
eNodeB 2 is shown in Figure 3(c). UE 2 requests a 30 Mbps
flow from server 1. Before starting the OptimizationPPR
procedure, PPR updates G̈ by removing UE 1 and the cor-
responding allocated bandwidth from G, while Ö is updated
by removing OVSs 1 and OVSs 4. Then the PPR executes
the OptimizationPPR procedure as shown in Figure 3(d)
allocating 30 Mbps to UE 2 through eNodeB 2, and using
OVS 1 and OVS 7. This figure demonstrates that OVS 1
uses diverse paths to forward flows ensuring the desired QoS
between UE 1 and UE 2 from one side, and server 1 from
another. The arrival of UE 3 that requests a 10 Mbps flow
from server 2 is also shown in Figure 3(d). The PPR solution

10

(a) The cost of proposed solutions (b) The run-time of proposed solutions

Figure 4: Impact of number of clients on different solutions with variant mobility patterns

performs the following preparations: i) G̈ by removing UE 2
and the corresponding allocated bandwidth and ii) removing
OVS 7 from Ö, before re-computing the network resources,
allocating 10 Mbps to UE 3 as illustrated in Figure 3(e). Figure
3(f) depicts the handover of UE 2 towards eNodeB 3 and
demonstrates the relocation of a 30 Mbps flow on top of the
updated reference graph by activating OVSs 3 and OVSs 5. In
contrast to the FPR solution that disabled OVS 4, PPR does
not disable this OVS as it is still in use by UE 3, and only
partial path re-computation is adopted instead.

From this example, the PPR solution succeeded in con-
necting all UEs with their corresponding servers using a near
optimal solution with dedicated paths avoiding loops, while
reducing the execution time. This is ensured thanks to the
constraints (2b), (2c), (2o), (2p), (2q) and (2r). It is observed
that the incoming traffic equals the outgoing one at each OVS,
which respects the constraint (2e) and (2g). The assigned links
between OVSs are not overloaded according to constraints
(2h), (2i) and (2j). Finally, it is noted that only the activated
OVS (i.e., in green color) participated in forwarding traffic
between clients and servers based on the constraints (2k) and
(2l).

Theorem 3. The complexity of PPR is more than
O(2|O|+2∆×|C|×|S|×(|C|+|O|)), where ∆ denotes the graph
degree of G.

Proof. A Gurobi optimizer is also used for solving the linear
integer programming model of PPR solution. We have also
used the branch-and-bound method for getting the final config-
uration. According to Jeroslow [43] the complexity of branch-
and-bound for a binary linear program is O(2N), where N
is the number of binary variables. In the PPR optimization
problem, we have three kinds of binary and integer variables
that require the branch-and-bound method. The first set of
binary variables is Xc,s

i,j , for i, j ∈ V , c ∈ C and s ∈ S . This
variable denotes if a node i selects j from its neighbors as
successor for handling the traffic between the client c and the

server s. If we denote by ∆ the graph degree of G, and based
on the observation that servers do not have successors, the
maximum number of X variables is |C|× |S|× (|C ∪O|)×∆.
As the sets C and O are independent, the maximum number
of X variables is |C|×|S|×(|C|+ |O|)×∆. The second set of
binary variables is Yo for o ∈ O, which means that we have
|O| of Y variables in the system. Finally, we have the set of
integer variables Fc,si,j , where c ∈ C, s ∈ S , i ∈ C ∪ O and
j ∈ S ∪ O. Based on the observation that node i selects its
successor only from its neighbors, the number of variables of
F is ||C|×S|×|C∪O|×∆. Also, based on the observation that
the sets C, O and S are independent, we have the number of
the integer variables of F is |C|× |S|× (|C|+ |O|)×∆. Then,
the number N of variables that need to use branch-and-bound
to solve the optimization of PPR equals to: |O| + 2 × |C| ×
|S| × (|C|+ |O|)×∆. Thus, the run-time complexity of PPR
is more than O(2|O|+2∆×|C|×|S|×(|C|+|O|)).

VI. SIMULATION SET-UP AND RESULT ANALYSIS

This section introduces the simulation set-up and provides
an analysis of the obtained results for each proposed solution.
We have implemented and evaluated the FPR, PPR, and
HPR solutions using Python, an extended package for graph
theory called Networkx and Gurobi Optimizer software. All
the execution time measurements are based on an Intel Core
i5 3570 CPU system clocked at 3.4 GHz, with 16 GB of
RAM, and running Ubuntu 16.04. Our proposed solutions were
evaluated by varying the number of clients, servers, and OVSs
on the network while using random graph topologies to change
their respective connectivity. We ran 100 repetitions, changing
the clients’ positions and computed the number of OVSs used
and the execution time. Hereafter, we present the mean and
95% confidence interval of the number of OVSs used and
the execution time in seconds. In each evaluation repetition,
the positions of clients and servers were uniformly distributed,

11

(a) The cost of proposed solution (b) The run-time of proposed solutions

Figure 5: Impact of the number of servers on solutions with variant mobility patterns

with a client connected to a single OVS as described in Section
III. In all of the results presented, the following simulation
parameters were introduced as can be seen in the legends of
Figures 4 to 6: i) the solution name, i.e., FPR, PPR, and HPR,
ii) the type of results including OVS for the number of SDN-
enabled switches or TIME is for the execution time, and iii)
the percentage of user mobility, i.e., 5%, 30%. For the FPR
and HPR labels, we do not include the percentage of mobility
since this parameter is orthogonal to the solutions.

Figure 4 shows how the variability of the number of clients
from 5 to 100 impacts the performance of our FPR, PPR,
and HPR solutions. We have considered 5% and 30% of UEs
mobility, while maintaining the number of OVSs and servers
to 25 and 10, respectively. In Fig. 4(a) the Y-axis shows the
number of OVSs used, while in Fig. 4(b) the Y-axis shows the
execution time in seconds for computing the aforementioned
solutions. The results obtained in Fig. 4(a) show that for FPR
and PPR, the number of activated OVSs increases from 5
to 10 when we vary the number of clients from 5 to 100,
mainly stabilizing after 40 clients with FPR outperforming
PPR, as expected, while HPR at steady state using 64.2%
more OVSs then FPR. The mean number of activated OVSs for
FPR is 8.618 with a standard deviation of 1.083. Concerning
the PPR solution, the mean number of used OVSs is 8.794
with a standard deviation of 1.084 when having 5% user
mobility and 9.024 with a standard deviation of 1.149 for
30% user mobility. Looking only at the steady state part of
our simulation, the mean number of OVSs activated for HPR
is 14.151 with a standard deviation of 1.689.

Furthermore, the results for the computational time summa-
rized in Fig. 4(b), show that as the number of clients increases,
the computational cost increases linearly for our solutions.
The linear regression parameters for the mean computational
time of the FPR solution were 0.01 and 1.48, as α and β,
respectively. For PPR, when evaluating a scenario with 5%
of mobility α and β equal to 0.022 and −0.484, respectively,
while α and β increase to be 0.842 and 0.63 for mobility

of 30%. Moreover, our results also show that HPR is less
impacted by the number of clients than FPR and PPR, with
an α and β equal to 0.010 and −0.30, respectively. We can
also observe that the number of clients has no impact on HPR
in terms of execution time when the number of clients is lower
than 40.The results, presented in Figure 4, allow to conclude
that FPR provides slightly better performance in terms of the
number of activated OVSs compared to the PPR and HPR
solutions, irrespective of the number of OVSs and the mobility
of clients. Also, we have noticed that the PPR solution perform
better than HPR one considering the activated OVSs. However,
HPR outperforms both FPR and PPR solutions in terms of
execution time.

Figure 5 shows the results of our evaluation for FPR, PPR,
and HPR when we vary the number of servers from 1 to 10
while fixing the number of clients and OVSs to 25. Fig. 5(a)
shows that as we increase the number of servers in our network
the number of activated OVSs increases linearly, albeit at a
very low rate, with the number of servers, which confirms
the previously presented results. It also shows us that as in
the previous results the number of activated OVSs for HPR
is significantly higher than FPR and PPR. Fig. 5(b) shows
that while the mean computational time to find a solution
increases linearly with the number of servers, with the linear
regression of these samples returned 0.132 and 0.362, at α
and β, respectively. The mean computational time for both
PPR and HPR remained almost constant, with PPR showing
its sensibility to user mobility and HPR been almost immune
to it.

Figure 6 presents the performance evaluations of FPR, PPR,
and HPR solutions when varying the number of OVSs while
the number of servers and clients remain fixed at 10 and 25,
respectively. Fig. 6(a) shows that increasing the number of
available OVSs in the network has a positive impact on both
solutions FPR and PPR and negative impact on HPR one.
This effect can be explained as follows: increasing the number

12

(a) The cost of proposed solution (b) The run-time of proposed solutions

Figure 6: Impact of number of OVSs on different solutions with variant mobility patterns

of OVSs leads to an increase of the possibility for finding
more optimal paths for both FPR and PPR algorithms. This
has a negative impact on the HPR solution as it increases
the number of hops between users and their corresponding
servers and likewise the probability for getting in a local
minimum. Moreover, it is shown that FPR has slightly better
performance than PPR for 5% and 30% of users’ mobility.
Fig. 6(b) indicates that PPR and HPR were able to reduce the
rate of exponential cost to find a viable configuration for our
network as we increase its density. The results for PPR-30%
and PPR-5% show that the mobility patterns have a lower
impact on the computational time than the density of OVSs in
the network. This behavior is caused by the reuse of existing
paths instead of re-computing (with a mean time of 1.686s
for PPR-30% and 1.622s for PPR-5%). Meanwhile, the mean
computational cost for HPR was 0.064s.

Table II shows the mean computational cost and its standard
deviation to update the mobile network graph based on our
filter procedure and the user mobility patterns for our PPR
solution. For the three scenarios, the computational cost be-
havior was close to a constant for both percentiles of mobility
evaluated. This shows that the cost has a strong correlation
with the number of clients and OVSs than the number of
servers. This behavior is the result of the number of flows
that is directly proportional only to the number of clients in
the network.

Table II: Filter Algorithm Times

Figure Mobility (%) Mean (s) St. Deviation (ms)

Figure 4(a) 5% of client mobility 0.843 0.629
30% of client mobility 1.018 0.744

Figure 5(a) 5% of client mbility 0.252 0.015
30% of client mbility 0.307 0.012

Figure 6(a) 5% of client mbility 1.622 1.675
30% of client mbility 1.686 1.629

Furthermore, the solutions presented in this paper and

theretofore evaluated in this section were designed to be
periodically executed or upon a significant network load
alternation. We execute the proposed solutions in the back-
ground without affecting routing protocols or impacting the
data plane’s QoS, which remains consistent. The experimental
evaluation shows that under these assumptions, our proposed
solutions, compute valid routing configurations where the
computational cost increases with the number of OVSs in
the network. Analyzing the computational cost results from
figures 4(b) to 6(b), we can observe that both FPR and PPR
have a higher sensitivity to the number of elements in the
network, i.e. OVS for FPR and number of end-hosts for
both PPR and FPR, while HPR is only sensitive to end-
hosts mobility. Meanwhile, as all three solutions presented in
this paper adhere to the optimization model in Section III,
it is ensured that the bandwidth requested by each flow or
user is fulfilled, and hence the desired QoS. Moreover, the
results presented in Figures 4(a) to 6(a) show that both PPR
and HPR have a higher network resource consumption, i.e.
mean number of OVSs, than FPR. Also, from this figure, we
observe that the HPR solution has the worst performance in
terms of network resource consumption. In our model, the
number of OVSs for a given network has a direct relationship
with the amount of bandwidth and path availability. Hence,
any technique that provides network configurations, which use
more OVS than the minimum necessary (i.e., HPR), supports a
smaller number of end hosts traffic than the one that minimizes
the number of OVSs (i.e., FPR and PPR).

VII. CONCLUSION

This paper extends our previous study on multiple path
forwarding introducing two new solutions for an SDN-enabled
network: i) PPR that determines the routing paths only for
newly arrived or handover users while maintaining constant
the remaining routes related to stationary users and ii) HPR
a heuristic that explores Dijkstra shortest-path algorithm for

13

allocating different paths between UEs and servers. Fur-
thermore, we compare these solutions with our previously
published FPR [1] solution that re-establishes the routing
paths for all users towards the desired servers from scratch
obtaining an optimal network configuration. We evaluated the
proposed solutions based on OPEX costs, which is measured
in this paper as the number of activated OVSs in viable
network configuration, and computation time considering QoS
guarantees without over-committing the network resources
to end-users. Our analysis and results showed that the PPR
solution can determine a network configuration that offers
QoS guarantees while keeping the number of activated OVSs
close to the optimum result obtained with FPR. However,
even with a lower computational cost, albeit still too high
for some intransigent use cases. To address these limitations,
we have also developed and evaluated HPR, a solution that
is able to keep the computational cost almost constant albeit
at a cost of a higher number of activated OVSs. Finally, our
evaluations allow us to conclude that FPR, PPR, and HPR are
sensitive to the OVSs density. This increases the computational
time to find a viable configuration for FPR and PPR, while
HPR can find a viable configuration faster than both of them,
albeit using a higher number of activated OVSs. These results
highlight the trade-off between computational cost and the
number of OVSs used to find a feasible configuration in the
proposed model.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program through the
MonB5G Project under Grant No. 871780, by the Academy of
Finland 6Genesis project under Grant No. 318927, and by the
Academy of Finland CSN project under Grant No. 311654.

REFERENCES

[1] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-
to-end qos based on multi-paths routing using SDN technology,” in
IEEE Global Communications Conference (GLOBECOM), Singapore,
Singapore, Dec 2017.

[2] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck, “Network
Slicing & Softwarization: A Survey on Principles, Enabling Technolo-
gies & Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429 – 2453, 2018.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Architecture & Orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, May 2017.

[4] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “EASE: EPC as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, March
2015.

[5] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wireless Communications, vol. 21, no. 3, pp. 80–91, June 2014.

[6] T. Taleb, B. Mada, M. I. Corici, A. Nakao, and H. Flinck, “PERMIT:
Network Slicing for Personalized 5G Mobile Telecommunications,”
IEEE Communications Magazine, vol. 55, no. 5, pp. 88–93, May 2017.

[7] NGMN Alliance, “5G White Paper,” Tech. Rep., February 2015.
[Online]. Available: {https://www.ngmn.org/uploads/media/NGMN\
5G\ White\ Paper\ V1\ 0.pdf}

[8] 3GPP TS 28.530, “Management and Orchestration; Concepts, Use cases
and Requirements,” vol. v16.0.0, Sep. 2019.

[9] R. Rokui, et.al, “5G Transport Slice Connectivity Interface,” IETF
Internet-Draft, Jul. 2019.

[10] Q. Wu, S. Litkowski, L. Tomotaki, K. Ogaki, “YANG Data Model for
L3VPN Service Delivery,” IETF RFC 8299, Jan. 2018.

[11] B. Wen , G. Fioccola, C. Xie, L. Jalil,, “A YANG Data Model for
L2VPN Service Delivery,” IETF RCF 8466, Oct. 2018.

[12] ONF, “https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR-521SDNArchitectureissue1.1.pdfSDNArchitectureIssue1.1,

′′ Tech.Rep., 2016.
[13] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and

T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[14] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using bar-
gaining game for Optimal Placement of SDN controllers,” in 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, May 2016.

[15] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in IEEE Global Communications Con-
ference (GLOBECOM), Washington, DC, USA, Dec 2016.

[16] R. A. Addad, D. L. C. Dutra, T. Taleb, M. Bagaa, and H. Flinck, “mira!:
An sdn-based framework for cross-domain fast migration of ultra-low
latency 5g services,” in 2018 IEEE Global Communications Conference
(GLOBECOM).

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[18] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in ACM HotSDN,
August 22 2014.

[19] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, and
M. Namane, “Benchmarking the ONOS Intent Interfaces to Ease 5G
Service Management,” in 2018 IEEE Global Communications Confer-
ence (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec 2018, pp.
1–6.

[20] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” in IEEE Communications
Surveys & Tutorials, vol. 16, no. 3, 2014, pp. 1617 – 1634.

[21] B. Sonkoly, A. Gulyás, F. Németh, J. Czentye, K. Kurucz, B. Novák, and
G. Vaszkun, “On QoS Support to Ofelia and OpenFlow,” in European
Workshop on Software Defined Networking, Darmstadt, Germany, Oct
2012.

[22] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
Quality of Service over Software-Defined Networks,” in Proceedings of
The 2012 Asia Pacific Signal and Information Processing Association
Annual Summit and Conference, Hollywood, CA, USA, Dec 2012.

[23] H. E. Egilmez and A. M. Tekalp, “Distributed QoS Architectures
for Multimedia Streaming Over Software Defined Networks,” IEEE
Transactions on Multimedia, vol. 16, no. 6, pp. 1597–1609, Oct 2014.

[24] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Gonçalves,
R. Figueiredo, D. Morris, M. Pickavet, and P. Demeester, “Implementing
Quality of Service for the Software Defined Networking Enabled Future
Internet,” in 3rd European Workshop on Software Defined Networks,
London, UK, Sept 2014.

[25] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller assign-
ment in data center networks: Stable matching with transfers,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, San Francisco, CA, USA, April 2016.

[26] T. Wang, F. Liu, and H. Xu, “An Efficient Online Algorithm for Dynamic
SDN Controller Assignment in Data Center Networks,” IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 2788–2801, Oct 2017.

[27] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control frame-
work for QoS provisioning,” in 22nd Telecommunications Forum Telfor
(TELFOR), Belgrade, Serbia, Nov 2014.

[28] C. Hopps, “(analysis of an equal-cost multi-path algorithm,” in IETF
RFC 2992.

[29] M. R. Celenlioglu and H. A. Mantar, “An SDN Based Intra-Domain
Routing and Resource Management Model,” in IEEE International
Conference on Cloud Engineering, March 2015, pp. 347–352.

[30] J. Yan, H. Zhang, Q. Shuai, B. Liu, and X. Guo, “HiQoS: An SDN-
based multipath QoS solution,” China Communications, vol. 12, no. 5,
pp. 123–133, May 2015.

[31] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Adaptive and
reliable multipath provisioning for media transfer in SDN-based overlay
networks,” in Computer Communications, vol. 106, July 2017, pp. 107–
116.

[32] S. A. Hussain, S. Akbar, and I. Raza, “A dynamic multipath scheduling
protocol (DMSP) for full performance isolation of links in software

14

defined networking (SDN),” in 2nd Workshop on Recent Trends in
Telecommunications Research (RTTR), Palmerston North, New Zealand,
Feb 2017.

[33] A. Basit, S. B. Qaisar, H. R. Syed, and M. Ali, “SDN Orchestration for
Next Generation Inter-Networking: A Multipath Forwarding Approach,”
IEEE Access, March 2017.

[34] C. Huang, C. Nakasan, K. Ichikawa, and H. Iida, “A Multipath Con-
troller for Accelerating GridFTP Transfer over SDN,” in IEEE 11th
International Conference on e-Science, Munich, Germany, Aug 2015.

[35] ——, “An SDN-Based Multipath GridFTP for High-Speed Data Trans-
fer,” in IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), Nara, Japan, June 2016.

[36] M-J. Fu and F. Wu, “Investigation of Multipath Routing Algorithms in
Software Defined Networking,” in IEEE International Conference on
Green Informatics (ICGI), August 15-17 2017.

[37] T. A. T. S. L. Guillen, S. Izumi and H. Muraoka, “SDN-based Hybrid
Server and Link Load Balancing in Multipath Distributed Storage Sys-
tems,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS), April 23-27 2018.

[38] Y. Guan, W. Lei, W. Zhang, S. Liu, and H. Li, “Scalable orchestration
of software defined service overlay network for multipath transmission,”
in Computer Networks, vol. 137, June 2018, pp. 132–146.

[39] S. Dwarakanathan, L. Bass, and L. Zhu, “Cloud Application HA Using
SDN to Ensure QoS,” in IEEE 8th International Conference on Cloud
Computing, New York, NY, USA, June 2015.

[40] M. S. Yoon and A. E. Kamal, “Power Minimization in Fat-Tree SDN
Datacenter Operation,” in IEEE Global Communications Conference
(GLOBECOM), San Diego, CA, USA, Dec 2015.

[41] S. Tariq and M. Bassiouni, “QAMO-SDN: QoS aware Multipath TCP
for software defined optical networks,” in 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), Las Vegas, NV,
USA, Jan 2015.

[42] Q. Wang, G. Shoi, Y. Liu, Y. Hu, Z. Guo and W. Chang, “Implementation
of Multipath Network Virtualization With SDN and NFV,” IEEE Access,
vol. 6, pp. 32 460 – 32 470, May 2018.

[43] Jeroslow, R.G, “Trivial integer programs unsolvable by branch-and-
bound,” Springer-Verlag Mathematical Programming, vol. 6, no. 1, pp.
105 – 109, 1974.

Dr. Miloud Bagaa received the Engineer’s, mas-
ter’s,and Ph.D. degrees from the University of
Science and Technology Houari Boumediene, Al-
giers,Algeria, in 2005, 2008, and 2014, respec-
tively.From 2009 to 2015, he was a Researcher
with the Research Center on Scientific and Tech-
nical Information, Algiers. From 2015 to 2016, he
was with the Norwegian University of Science and
Technology, Trondheim, Norway. He is currently a
Senior Researcher with Aalto University. His re-
search interests include wireless sensor networks,

Internet of Things, 5G wireless communication, security, and networking
modeling. From2015 to 2016, he received the Post-Doctoral Fellowship from
the European Research Consortium for Informatics and Mathematics.

Dr. Diego L. C. Dutra is a professor at Federal
University of Rio de Janeiro (UFRJ), Brazil, where
he is also a member of the COMPASS Laboratory.
He received a B.Sc. in Computer Science from
UFF/Brazil, his M.Sc. and D.Sc. degrees in Systems
Engineering and Computer Science Program from
Federal University of Rio de Janeiro, Brazil, in
2007 and 2015, respectively. He has worked as
a postdoctoral researcher in the COMPASS/UFRJ
and MOSA!C Lab/Aalto, from 2015 to 2016 and
2016 to 2017, respectively. His research interests

include computer architecture, high-performance computing, virtualization,
cloud computing, wireless networking, mobile system, and Software-Defined
Systems.

Prof. Tarik Taleb received the B.E. degree (Hons.)
in information engineering and the M.Sc. and Ph.D.
degrees in information sciences from GSIS, To-
hoku University, Sendai, Japan, in 2001, 2003, and
2005, respectively. He is currently a Professor with
the School of Electrical Engineering, Aalto Univer-
sity, Espoo, Finland. He is a member of the IEEE
Communications Society Standardization Program
Development Board. In an attempt to bridgethe gap
between academia and industry, he founded the
IEEE-Workshop on Telecommunications Standards:

From Research to Standards, a successful event that was recognized with
the Best Workshop Award by the IEEE Communication Society (Com-SoC).
Based on the success of this workshop, he has also founded and has been
the Steering Committee Chair of the IEEE Conference on Standards for
Communications and Networking. He is the General Chair of the 2019
edition of the IEEE Wireless Communications and Networking Conference
to beheld in Marrakech, Morocco. He is/was on the Editorial Board of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE
Wireless Communications Magazine, the IEEE JOURNAL ONINTERNET
OFTHINGS,the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
the IEEE COMMUNICATIONS SURVEYS & TUTORIALS, and a number
of Wiley Journals. He is an IEEE Communications Society (ComSoc) Distin-
guished Lecturer.

Dr. Konstantinos Samdanis
(konstantinos.samdanis@nokia-bell-labs.com)
received the M.Sc. and Ph.D. degrees from King’s
College London in 2003 and 2009 respectively. He
worked for NEC Europe, Heidelberg, between 2009
to 2016 as a Senior Researcher and a Broadband
Standardization Specialist, involved in numerous
EU projects, including 5G-NORMA, iJOIN,
BeFemto, and standardization activities in BBF,
focusing on Mobile Backhaul and 3GPP SA5 in
the area of Self-Organized Networks. From 2016 to

2018 he moved to Huawei Technologies, Munich taking the role of Principal
Researcher for 5G carrier networks, where he was involved in strategy
and research for 5G architectures and transport networks. His main actives
involved the specification of the Mobile-Transport API for network slicing
in BBF and 3GPP SA5, while he was also involved as a delegate at IETF in
the Network and Routing Area WG focusing on SR and VPN+. Since 2019
he is a Research Project Manager at Nokia Bell Labs, Munich involved in
standardization activities on 5G core and network management concentrating
on network analytics and AI/ML, while also acting as a delegate in 3GPP
SA5 and SA6. Konstantinos served as an Editor on the Network Slicing
feature topic at the IEEE Communications Magazine in 2017 and as Guest
Editor for the IEEE JSAC Series on Network Softwarization and Enablers.
He has arranged and authored a book in Green Communications with Wiley
and is the author of over 80 academic publications and 30 patent applications.

15

