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Adaptation of Motor Parameters in Sensorless
PMSM Drives

              Antti Piippo, Marko Hinkkanen, Member, IEEE, and Jorma Luomi Member, IEEE

Abstract—The paper proposes an on-line method for the
estimation of the stator resistance and the permanent magnet
flux in sensorless permanent magnet synchronous motor drives.
An adaptive observer augmented with a high-frequency signal
injection technique is used for sensorless control. The observer
contains excess information that is not used for the speed and
position estimation. This information is used for the adaptation
of the motor parameters: at low speeds, the stator resistance is
estimated, whereas at medium and high speeds, the permanent
magnet flux is estimated. Small-signal analysis is carried out
to investigate the proposed method. The convergence of the
parameter estimates is shown by simulations and laboratory
experiments. The stator resistance adaptation works down to
zero speed in sensorless control.

Index Terms—Permanent magnet motors, Parameter adapta-
tion, Sensorless control, Signal injection.

I. INTRODUCTION

Permanent magnet synchronous machines (PMSMs) are
used in many high-performance applications. For vector con-
trol of PMSMs, information on the rotor position is required.
In sensorless control, the methods for estimating the rotor
speed and position can be classified into two categories:
fundamental-excitation methods [1], [2] and signal injection
methods [3], [4]. The methods can also be combined by
changing the estimation method as the rotor speed varies [5],
[6].

The fundamental-excitation methods used for sensorless
control are based on models of the PMSM. Hence, the
electrical parameters are needed for the speed and position
estimation [7]. The errors in the stator resistance estimate
result in an incorrect back-emf estimate and, consequently,
impaired position estimation accuracy. The operation can also
become unstable at low speeds in a loaded condition. The
detuned estimate of the permanent magnet (PM) flux results
in incorrectly estimated electromagnetic torque [8], and also
impairs the position estimation accuracy. Errors in the d-
and q-axis inductances of a salient PMSM also affect the
estimation and the torque production, and can degrade the
current control performance.

The stator resistance and the PM flux depend on the motor
temperature, and thus change rather slowly. On the other
hand, magnetic saturation decreases the inductances, which
thus depend on the load condition. The inductances can be
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modeled as functions of the stator flux or the stator current, but
an estimation scheme is required for the stator resistance and
the PM flux. The back-emf is proportional to the PM flux and
the resistive voltage drop to the stator resistance. At medium
and high speeds, the effect of the PM flux estimation error is
more significant than that of the stator resistance estimation
error. On the other hand, the back-emf is small at low speeds,
and the stator resistance estimate plays an important role in
the estimation.

Several methods have been proposed to improve the per-
formance of a PMSM drive by estimating the electrical
parameters. In [7], an MRAS scheme is used for the on-
line estimation of the stator resistance and the PM flux with
position measurement. Reactive power feedback is used for
estimating the PM flux in [9], and the PM flux is estimated by
taking it as an additional state of an extended Kalman filter in
[10]. The stator current estimation error and a neural network
can be used for estimating both the PM flux and the stator
resistance [11]. The stator inductances and the PM flux are
estimated using the steady-state voltage equations and the flux
harmonics, respectively, in [12]. A dc-current signal is injected
to detect the resistive voltage drop for the resistance estimation
in [13]. It has been proposed that the total resistance and
temperature of an induction motor can be estimated from the
small-signal impedance using high-frequency signal injection
[14].

Some parameter estimation schemes have also been devel-
oped for sensorless control methods. In [7], an MRAS scheme
is applied for the stator resistance estimation. A parameter
estimator is added to two position estimation methods for
estimating the stator resistance and the PM flux in [15]. In
[16], these parameters are estimated using both the steady-
state motor equations and the response to an alternating
current signal. In [15], [16], the convergence of the estimated
parameters to their actual values is not shown. [17] proposes a
method where the resistance and the inductances of a salient
PMSM are extracted from an extended EMF model. Three
electrical parameters are estimated simultaneously, but the
behavior of the stator resistance estimate is not convincing.

The parameters of the PMSM are needed in fundamental-
excitation methods, but signal injection methods are not sen-
sitive to the parameter errors. If a combination of these two
method types is used for speed and position estimation, the
signal injection is usually removed as the speed increases,
and the sensitivity to the parameter errors increases. There-
fore, combined methods need the parameter estimates with
sufficient accuracy although signal injection is used at low
speeds.
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This paper proposes a method for the on-line estimation of
the stator resistance and the PM flux in sensorless control.
The method is based on a speed-adaptive observer that is
augmented with a high-frequency (HF) signal injection tech-
nique at low speeds [18]. The excess information available
in the observer is used for the adaptation of the parameters.
At medium and high speeds, the PM flux is estimated from
the d-axis current estimation error. At low speeds, the stator
resistance is estimated from an error signal produced by the
signal injection method. The stability and the convergence of
the parameter estimators are investigated by means of small-
signal analysis, simulations, and laboratory experiments. The
resistance adaptation is shown to work down to zero speed in
sensorless control.

II. PMSM MODEL

The PMSM is modeled in the d-q reference frame fixed to
the rotor. The d axis is oriented along the PM flux, whose
angle in the stator reference frame is θm in electrical radians.
The stator voltage equation is

us = Rsis + ψ̇s + ωmJψs (1)

where us = [ud uq ]T is the stator voltage, is = [ id iq ]T the
stator current, ψs = [ψd ψq ]T the stator flux, Rs the stator
resistance, ωm = θ̇m the electrical angular speed of the rotor,
and

J =
[

0 −1
1 0

]
The stator flux is

ψs = Lis +ψpm (2)

where ψpm = [ψpm 0 ]T is the PM flux and

L =
[
Ld 0
0 Lq

]
is the inductance matrix, Ld and Lq being the direct- and
quadrature-axis inductances, respectively. The electromagnetic
torque is given by

Te =
3p
2
ψTs JT is (3)

where p is the number of pole pairs.

III. SPEED AND POSITION ESTIMATION

A. Control System

Fig. 1 shows the block diagram of the control system
comprising cascaded speed and current control loops. PI-
type speed control with active damping is used. The adaptive
observer provides the speed and position estimates ω̂m and θ̂m,
respectively. The motor parameters are needed in the adaptive
observer, in the current controller, and in the calculation
of the stator current component references according to the
maximum torque-per-ampere method [19].
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θ̂m
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Speed
contr. Curr.
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Adaptive
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Fig. 1. Block diagram of the control system. Error signal ε is evaluated
based on HF signal injection. Block “Speed contr.” includes both the speed
controller and the minimization of the current amplitude.
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Fig. 2. Block diagram of the adaptive observer without parameter adaptation.
Signals ε and ωε, obtained from the HF signal injection method, are used only
at low speeds.

B. Adaptive Observer

The adaptive observer shown in Fig. 2 is used for the
estimation of the rotor speed and rotor position [18]. The
speed and position estimation is based on the estimation
error between two different models; the actual motor can be
considered as a reference model and the observer—including
the rotor speed estimate ω̂m—as an adjustable model. The
speed adaptation is based on the estimation error of the stator
current. The estimated rotor speed is fed back to the adjustable
model.

The adaptive observer is formulated in the estimated rotor
reference frame. The adjustable model is based on (1) and (2),
and defined by

˙̂
ψs = u′

s − R̂ŝis − ω̂mJψ̂s + λ̃is (4)

where u′
s is the stator voltage in the estimated rotor reference

frame, λ is the observer gain matrix, and estimated quantities
are marked by ˆ. The estimate of the stator current and the
estimation error of the stator current are

îs = L−1(ψ̂s − ψ̂pm) (5)

ĩs = i′s − îs (6)

respectively, where i′s is the measured stator current expressed
in the estimated rotor reference frame and ψ̂pm = [ ψ̂pm 0 ]T .
The observer gain matrix λ depends on the estimated rotor
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speed [18],

λ =

{
2R̂s

[
|ω̂m|
ωB

I + ω̂m
ωB

J
]
, |ω̂m| ≤ ωB

2R̂s [I + sign(ω̂m)J] , |ω̂m| > ωB
(7)

where ωB is the base value of the angular frequency.
The speed adaptation is based on the current estimation error

in the estimated q direction. The estimate of the electrical
angular speed of the rotor is obtained using a PI speed
adaptation mechanism

ω̂m = −kp̃is − ki

∫
ĩsdt (8)

where kp = [0 kp] and ki = [0 ki]. The nonnegative gains
kp and ki are selected as [20]

kp =
2αfo

ψ̂pm/Lq
, ki =

α2
fo

ψ̂pm/Lq
(9)

where αfo is the design parameter. The parameter αfo can
be interpreted as an approximate speed-adaptation bandwidth,
and it determines the tracking errors in transients. The rotor
position estimate is

θ̂m =
∫
ω̂mdt (10)

C. Combined Observer

At low speeds, the adaptive observer described above is
augmented with an HF signal injection method to stabilize
the speed and position estimation [18]. An alternating voltage
was selected for HF signal injection. A carrier excitation
signal varying sinusoidally at angular frequency ωc and having
amplitude ûc, i.e.

uc = ûc cos(ωct) (11)

is superimposed on the d component of the stator voltage in
the estimated rotor reference frame. An alternating HF current
response is detected in the q direction of the estimated rotor
reference frame, amplitude modulated by the rotor position
estimation error. The q component of the measured current is
band-pass filtered (BPF), giving an HF current signal iqc that
varies at the signal injection frequency. The current signal is
then demodulated and low-pass filtered (LPF) to extract an
error signal

ε = LPF{iqc sin(ωct)} (12)

Ideally, this error signal is

ε =
ûc
ωc

Lq − Ld
4LqLd︸ ︷︷ ︸
Kε

sin(2θ̃m) (13)

where Kε can be considered as the signal injection gain and
θ̃m = θm − θ̂m is the estimation error of the rotor position.

For the combined observer, the adjustable model (4) is
modified to

˙̂ψs = u′
s − R̂ŝis − (ω̂m − ωε)Jψ̂s + λ̃is (14)

−1

0

1

f
(ω̂
m

),
g
(ω̂
m

)

ω̂m
−ωψ −ω∆ 0 ω∆ ωψ

Fig. 3. Functions f(ω̂m) (solid) and g(ω̂m) (dashed) as functions of
estimated rotor speed.

where the signal

ωε = γpε+ γi

∫
εdt (15)

corrects the angular speed of the stator flux estimate. The PI
mechanism, having the gains γp and γi, drives the error signal
ε to zero. Other parts of the adaptive observer are not modified,
i.e. (5)–(10) hold for the combined observer. The gains in (15)
are selected as [6]

γp =
αi

2Kε
, γi =

α2
i

6Kε
(16)

where αi is the approximate bandwidth of the PI mechanism
(15), assuming the speed adaptation (8) is much faster than
the PI mechanism (15).

As can be seen in Fig. 2, the signal ωε corrects the position
estimate indirectly through the speed adaptation mechanism
(8). The signal injection method dominates in steady state,
whereas the adaptive observer commands at transients. It is
to be noted that the factor (ω̂m − ωε) in (14) differs from
the estimated speed ω̂m used for the speed control and for
the position estimation. The signal ωε compensates for the
parameter errors in the adjustable model and for errors in the
measurements.

At low speeds, the combined observer relies both on the
signal injection method and on the adaptive observer. The
effect of the signal injection method is reduced linearly as
the rotor speed increases, reaching zero at the transition speed
ω∆. Both the HF excitation voltage ûc and the approximate
bandwidth αi of the PI mechanism in (15) are decreased, i.e.

ûc = f(ω̂m)û′c, αi = f(ω̂m)α′
i (17)

where û′c and α′
i are the zero-speed values of the HF excitation

voltage and the PI mechanism bandwidth, respectively. The
function f(ω̂m) is shown in Fig. 3. At speeds higher than the
transition speed ω∆, the HF signal injection is not used.

IV. PARAMETER ADAPTATION

A. Proposed Adaptation Laws

At most two parameters can be estimated simultaneously
in steady state if only fundamental excitation is used. The
component ĩq of the current estimation error is used for the
speed estimation in this paper, while the PM flux is adjusted
using ĩd according to

ψ̂pm = −kψ

∫
ĩsdt (18)
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Fig. 4. Block diagram of the adaptive observer with parameter adaptation:
(a) PM flux adaptation at medium and high speeds (|ω̂m| ≥ ω∆); (b) stator
resistance adaptation at low speeds (|ω̂m| < ω∆).

where kψ = [kψ 0] and kψ is the nonnegative adaptation gain.
Since the effect of the PM flux error on the current estimation
error ĩs is decreased at low speeds, the adaptation law (18)
is enabled only at medium and high speeds. The observer
including the PM flux adaptation is shown in Fig. 4(a), where
the adjustable model is based on (4) and (5).

At low speeds, the effect of the stator resistance error on
the current estimation error ĩs is much larger than the effect of
the PM flux error. Hence, it would be reasonable to estimate
the stator resistance from ĩs (in addition to the rotor speed).
Designing a simultaneous estimation method for the stator
resistance (or the PM flux) and the rotor speed at low speeds,
using only fundamental excitation, is a very challenging task.1

However, the HF signal injection method provides information
through the signal ωε. If ωε differs from zero in steady state at
low speeds, motor parameter estimates are inaccurate. Hence,
the stator resistance is estimated at low speeds by integration
from ωε as

R̂s = −kR
∫
ωεdt (19)

where kR is the adaptation gain. The observer, including the PI
mechanism (15) of the HF signal injection and the adaptation
mechanism (19), is shown in Fig. 4(b), where the adjustable
model is based on (5) and (14).

In order to analyze the parameter adaptation loops more
thoroughly, a linearized open-loop model for current estima-
tion error dynamics is derived in Section IV-B. The tuning of
the adaptation gains is considered in Section IV-C based on the

1For induction motors, some interesting approaches have been proposed
[21], [22].

linearized model in quasi-steady state. Then, the local stability
of the closed-loop system is analyzed in Section IV-D.

B. Open-Loop Dynamics of Estimation Error

Based on the motor model (1) expressed in the estimated
rotor reference frame and the observer (14), the open-loop
dynamics of the current estimation error are

˙̃
ψs = −(RsI + λ)̃is − ω̂mJψ̃s − R̃ŝis − ωεJψ̂s (20a)

ĩs = eJθ̃mL−1e−Jθ̃m(ψ̃s − ψ̃pm)

+
(
eJθ̃mL−1e−Jθ̃m − L−1

)
(ψ̂s − ψ̂pm)

(20b)

The estimation error of the PM flux vector is

ψ̃pm = ψ′
pm − ψ̂pm =

(
eJθ̃m − I

)
ψpm +

[
ψ̃pm
0

]
(21)

where ψ′
pm = eJθ̃mψpm is the actual PM flux vector in the

estimated coordinates. The system (20) can be linearized about
the steady-state operating point:

˙̃ψs = −(RsI + λ0)̃is − ωm0Jψ̃s − is0R̃s − Jψs0ωε (22a)

ĩs = L−1ψ̃s − L−1(Jψs0−LJis0) θ̃m − L−1

[
ψ̃pm
0

]
(22b)

where operating-point quantities are marked with the subscript
0 and the operating-point estimation errors are assumed to be
zero. The current estimation error ĩs can be considered as the
output of the system while θ̃m, ψ̃pm, R̃s, and ωε are the inputs.
After substituting the output equation (22b) for ĩs in (22a), the
system can be expressed in the standard state-space form, as
shown in (37) in the Appendix.

C. Quasi-Steady-State Analysis

Here, the estimation error dynamics (22) are considered to
be much faster than the parameter adaptation mechanisms.
Because of the different time scales, the system (22) can
be considered from the viewpoint of parameter adaptation in
steady state:

ωm0J
{
L̃is + (Jψs0 − LJis0) θ̃m +

[
ψ̃pm
0

]}
= − (RsI + λ0) ĩs − is0R̃s − Jψs0ωε

(23)

Based on this equation, approximate open-loop amplifications
from the parameter errors to ĩd and ωε are considered, and the
adaptation gains are related to the corresponding bandwidths.

1) PM Flux Adaptation: At medium and high speeds, the
system (23) can be approximated as

ĩs = −L−1 (Jψs0 − LJis0) θ̃m − L−1

[
ψ̃pm
0

]
(24)

or in the component form

ĩd = − (Ld − Lq)iq0
Ld

θ̃m − 1
Ld
ψ̃pm (25a)

ĩq = −ψpm + (Ld − Lq)id0
Lq

θ̃m (25b)
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Since ĩq provides information on θ̃m, it is used for speed
adaptation according to (8).2 On the other hand, ĩd depends
strongly on ψ̃pm (and also depends on θ̃m if Ld �= Lq). After
linearization, the PM flux adaptation law (18) is

˙̃ψpm = kψ0̃is (26)

where the gain may depend on the operating point. Assuming
(25a) and (26), the closed-loop system has a bandwidth

αψ0 = kψ0/Ld (27)

2) Stator Resistance Adaptation: At low speeds, (23) can
be approximated as

Jψs0ωε = −(RsI + λ0)̃is − is0R̃s (28)

It can be seen that the stator resistance error can be detected
only when the motor is loaded. The speed correction term is

ωε =
ψTs0J(RsI + λ0)̃is +ψTs0Jis0R̃s

||ψs0||2
(29)

The error component ĩq is driven to zero in steady state, and
according to (7), the observer gain λ0 is small at low speeds.
Assuming further that ψs0 ≈ ψpm, (29) can be approximated
as

ωε ≈ − iq0
ψpm

R̃s (30)

After linearization, the stator resistance adaptation law (19) is

˙̃Rs = kR0ωε (31)

Assuming (30) and (31), the closed-loop system has a band-
width

αR0 = iq0kR0/ψpm (32)

which should be positive and can be affected by properly
selecting the gain kR0 depending on the operating point.

D. Stability Analysis

The local stability of the simultaneous speed and parameter
adaptation is analyzed using the linearized open-loop model
(22) without the stringent assumptions made in Section IV-C.

1) PM Flux Adaptation: Since the signal injection is not
enabled at medium and high speeds, the signal ωε = 0. The
linearized system (22) is augmented with the linearized speed
adaptation law

˙̃ωm = kp0
˙̃is + ki0̃is (33)

and the linearized PM flux adaptation law (26). Furthermore,
the estimation error of the rotor position is ˙̃

θm = ω̃m
corresponding to (10). The resulting closed-loop system is
given in (38) in the Appendix. The eigenvalues of the closed-
loop system were analyzed numerically in different operating
points. The parameter values given in Table I were used for
the calculations.

As an example, Fig. 5(a) shows eigenvalues obtained with
a constant adaptation gain kψ0 = 0.2ωBLd, where ωB is

2Assuming (25b) with Ld = Lq and (33), the closed-loop poles of speed
and position estimation are placed at −αfo if the gains in (9) are used.

TABLE I
MOTOR DATA

Nominal power 2.2 kW
Nominal voltage UN 370 V
Nominal current IN 4.3 A
Nominal frequency fN 75 Hz
Nominal speed 1 500 r/min
Nominal torque TN 14.0 Nm
Number of pole pairs p 3
Stator resistance Rs 3.59 Ω
Direct-axis inductance Ld 36.0 mH
Quadrature-axis inductance Lq 51.0 mH
PM flux ψpm 0.545 Vs
Total moment of inertia 0.015 kgm2

the base angular speed. The operating-point speed ωm0 varies
from −1 to 1 p.u., and the operating-point stator current equals
the nominal current (corresponding to maximum-torque-per-
ampere operating point). Due to symmetry, only the upper
half-plane is shown in the pole plot. The vicinity of the origin
of Fig. 5(a) is magnified in Fig. 5(b). According to the results,
the system is stable above the speed of ωm0 = 0.05 p.u. The
PM flux and rotor speed adaptation are coupled, but at medium
and high speeds, the coupling does not cause problems and the
damping of the system is sufficient. If the PM flux adaptation
were used at low speeds as well, it would slightly enlarge
the unstable region appearing at lowest speeds in the case of
salient machines [18].

2) Stator Resistance Adaptation: The signal injection is
used at low speeds while the PM flux adaptation is disabled.
The system (22) is augmented with the linearized speed-
adaptation law (33) and the linearized resistance adaptation
law (31). Furthermore, the PI mechanism (15) is linearized as

ω̇ε = 2Kε0(γp0
˙̃θm + γi0θ̃m) (34)

where ε = 2Kε0θ̃m is assumed corresponding to (13). The
resulting closed-loop system is given in (39) in the Appendix.

Fig. 5(c) shows dominating eigenvalues as the operating-
point speed ωm0 varies from −ω∆ to ω∆ and the operating-
point stator current equals the nominal current (corresponding
to maximum-torque-per-ampere operating point). The band-
width αi0 of the signal injection mechanism approaches zero
when |ωm0| approaches ω∆ according to (17). Therefore, the
two eigenvalues in Fig. 5(c) move towards the origin, and the
order of the system decreases from six to four at |ωm0| = ω∆.
All the eigenvalues are located in the left half-plane, and the
system is stable.

E. Gain Scheduling

The adaptation of the stator resistance is in use only at low
speeds where the HF signal injection method is used. The
PM flux adaptation is not used simultaneously with the stator
resistance adaptation, and is enabled when the rotor speed is
higher than ω∆.

The gain kψ for the PM flux adaptation is varied according
to

kψ = k′ψg(ω̂m) (35)
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Fig. 5. Eigenvalues of the closed-loop system as ωm0 is varied: (a) simultaneous speed and PM flux estimation; (b) the vicinity of the origin of (a) is
magnified; (c) simultaneous speed and stator resistance estimation with HF signal injection.

where k′ψ is a positive constant and g(ω̂m) is the speed-
dependent function shown in Fig. 3. At speeds higher than
ωψ, the gain kψ is thus kept constant.

In order to have a nonnegative bandwidth (32) for the stator
resistance adaptation, the gain kR and the current iq must
have the same sign. A constant bandwidth αR is not feasible,
since iq = 0 would imply infinite adaptation gain. A signum
function in the gain kR could cause chattering near zero iq.
Therefore, the gain kR is changed proportionally to iq, i.e.

kR = α′
Rf(ω̂m)ψ̂pmiq/I2

B (36)

The parameter α′
R is a constant corresponding to the adapta-

tion bandwidth at zero speed and at approximately nominal
load, IB is the base value of the current, and f(ω̂m) is the
speed-dependent function shown in Fig. 3.

V. RESULTS

The proposed method was investigated by means of sim-
ulations and laboratory experiments. The MATLAB/Simulink
environment was used for the simulations. The data of the
six-pole interior-magnet PMSM (2.2 kW, 1500 rpm) are given
in Table I. The base values for voltage, current, and angular
speed are defined as UB =

√
2/3UN , IB =

√
2IN , and

ωB = 2πfN , respectively.
Constant d- and q-axis inductances were used for the simu-

lations. The PMSM used in the laboratory experiments has a
laminated rotor with buried permanent magnets. The measured
inductances of this motor type decrease with the frequency,
but the inductance variations are small at frequencies below
1–2 kHz [23]. The influence of magnetic saturation on the
experimental PMSM is negligible even if 150% of the nominal
current is applied to the machine.

The electromagnetic torque is limited to 22 Nm, which
is 1.57 times the nominal torque TN . The nominal dc-link
voltage is 540 V, and the switching frequency and the sam-
pling frequency are both 5 kHz. The high-frequency carrier
excitation signal has a frequency of 833 Hz and a maximum
amplitude of û′c = 40 V, resulting in a maximum HF current

PMSM Servo

Computer with DS1103

Freq.
conv.

Freq.
conv.

Speed for
monitoring

Fig. 6. Experimental setup. Mechanical load is provided by a servo drive.

amplitude of 0.22 A or 0.04 p.u. The HF carrier excitation
signal is synchronized to the sampling, the sampling frequency
being six times the excitation frequency. The transition speeds
are ω∆ = 0.13 p.u. and ωψ = 0.2 p.u., the resistance
adaptation bandwidth α′

R = 0.01 p.u., and the constant
k′ψ = 0.2ωBLd. The current and speed control bandwidths
are 5.33 p.u. and 0.067 p.u., respectively, the speed adaptation
bandwidth αfo = 0.667 p.u., and the bandwidth of the PI
mechanism α′

i = 0.067 p.u.
The experimental setup is illustrated in Fig. 6. The PMSM

is fed by a frequency converter that is controlled by a dSPACE

DS1103 PPC/DSP board. Mechanical load is provided by
a PMSM servo drive. An incremental encoder is used for
monitoring the actual rotor speed and position. The dc-link
voltage of the converter is measured, and a simple current
feedforward compensation for dead times and power device
voltage drops is applied [24].

In the experiments, the estimates of the stator resistance
and the PM flux were compared with their actual values.
The actual stator resistance was identified by measuring the
dc resistances of the winding phases, and the PM flux was
identified by means of an open-loop back-emf measurement.
The temperature of the motor was approximately constant
during the experiments. Because the actual parameters are
not known precisely, simulations were carried out in addition
to the experiments for investigating the convergence of the
parameter adaptation.
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Fig. 7. Simulation results showing PM flux adaptation. First subplot shows
electrical angular speed of the rotor (solid), its estimate (dashed), and its
reference (dotted). Second subplot shows the load torque reference (dotted),
the electromagnetic torque (solid), and its estimate (dashed). Third subplot
shows the estimation error of the rotor position. Last subplot shows the PM
flux (dashed) and its estimate (solid).

A. PM Flux Adaptation

Simulation results showing the behavior of the estimated
PM flux are depicted in Fig. 7. The estimated flux is 15%
larger than its actual value in the beginning of the simulations,
and other parameter estimates are equal to the actual values in
the motor model. The speed reference is changed from zero
to 0.5 p.u. at t = 0.5 s, and a nominal load torque step is
applied at t = 1 s. After the acceleration at t = 0.5 s, the PM
flux error is practically removed, and the load torque does not
affect the PM flux adaptation.

The effect of the PM flux adaptation on the performance
of the drive was investigated experimentally. Fig. 8 shows
results corresponding to the simulation in Fig. 7, and Fig. 9
shows results in constant-speed operation. In Fig. 8(a), the
parameter adaptation is not in use, whereas in Fig. 8(b), the
adaptation is used. Fig. 8(a) shows that the inaccurate PM flux
estimate causes an error in the rotor position estimate both
at no load and when a load torque is applied. In addition,
the electromagnetic torque is lower than the estimated torque.
According to Fig. 8(b), the adaptation practically removes the
PM flux error in less than 0.2 s after the motor is started, and
the errors in the rotor position and the torque are reduced.

In Fig. 9, the rotor speed is 0.5 p.u. and the load torque is at
the positive nominal value. The PM flux estimate is forced to
an erroneous value at t ≈ 0.6 s, and the adaptation is enabled
again at t ≈ 1 s. The inaccurate PM flux estimate causes an
error in the electromagnetic torque estimate, and the position
estimation error also impairs the performance of the drive.
After t ≈ 1 s, the estimated PM flux converges close to its
actual value quickly, leading to a reduced position estimation
error and improved torque estimation accuracy.

B. Stator Resistance Adaptation

Fig. 10 shows simulation results obtained at zero speed
reference. Except the stator resistance, the parameter values
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Fig. 8. Experimental results showing PM flux adaptation: (a) without
parameter adaptation; (b) with parameter adaptation. First subplot shows the
electrical angular speed of the rotor (solid), its estimate (dashed), and its
reference (dotted). Second subplot shows the load torque reference (dashed)
and the electromagnetic torque estimate (solid). Third subplot shows the
estimation error of the rotor position. Last subplot shows the PM flux (dashed)
and its estimate (solid).

used in the controller were equal to those of the motor
model. In the beginning of the simulation, the stator resistance
estimate is 15% smaller than the actual stator resistance.
A nominal load torque step is applied at t = 1 s, and
the signal injection method corrects the resulting position
estimation error through the signal ωε. When ωε increases,
the stator resistance estimate starts converging to the actual
resistance immediately. At t = 2 s, a 1-Ω step increase
(corresponding to 28%) occurs in the stator resistance. The
signal injection again detects the resulting position error, and
the estimated resistance follows the actual stator resistance.
The stator resistance estimate converges close to the actual
resistance in less than 1 s.

Experimental results obtained in low-speed operation are
depicted in Figs. 11 and 12, showing the behavior of the
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Fig. 9. Experimental results showing PM flux adaptation. PM flux estimate
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Fig. 10. Simulation results showing stator resistance adaptation. First subplot
shows electrical angular speed of the rotor (solid), its estimate (dashed), and its
reference (dotted). Second subplot shows the load torque reference (dotted),
the electromagnetic torque (solid), and its estimate (dashed). Third subplot
shows the estimation error of the rotor position (solid) and the error signal
of the signal injection method scaled to the same amplitude with the position
estimation error (dashed). Fourth subplot shows the signal ωε. Last subplot
shows the stator resistance (dashed) and its estimate (solid).

stator resistance adaptation. Additional 1-Ω resistors were
added between the frequency converter and the PMSM as
shown in Fig. 6. The resistance was changed stepwise by
opening or closing a manually-operated three-phase switch
connected in parallel with the resistors. The experiment in
Fig. 11 corresponds to the simulation in Fig. 10. The error in
the stator resistance estimate is decreased after the load torque
step at t = 1 s, and the estimated stator resistance follows the
actual resistance after the stepwise increase at t = 2 s. In
the experiment of Fig. 12, the drive is operating at very low
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Fig. 11. Experimental results showing stator resistance adaptation. First
subplot shows the electrical angular speed of the rotor (solid), its estimate
(dashed), and its reference (dotted). Second subplot shows the load torque
reference (dashed) and the electromagnetic torque estimate (solid). Third
subplot shows the estimation error of the rotor position. Last sublot shows
the stator resistance (dashed) and its estimate (solid).
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Fig. 12. Experimental results showing stator resistance adaptation. Stator
resistance estimate is forced to incorrect value at t ≈ 0.6 s, and adaptation
is activated again at t ≈ 1 s. Explanations of the curves are as in Fig. 11.

speed (ωm = −0.05 p.u.) in the regenerating mode. The load
torque is at the positive nominal value. The stator resistance
estimate is forced to an incorrect value at t ≈ 0.6 s. When
the resistance adaptation is activated again at t ≈ 1 s, the
estimated resistance returns close to the actual resistance in
about 1 second. After the stepwise decrease in the resistance
at t ≈ 2.5 s, the estimated resistance settles close to the new
value.

The effect of the stator resistance adaptation on the overall
performance of the drive was investigated by means of the
experiment of Fig. 13. The stator resistance estimate is initially
15% greater than the actual resistance, and the speed reference
is zero. A nominal load torque step is applied at t = 1 s,
and an acceleration to ωm = 0.15 p.u. occurs at t = 2 s. In
Fig. 13(a), the parameter adaptation is not in use, whereas in
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Fig. 13. Experimental results showing stator resistance adaptation: (a)
without parameter adaptation; (b) with parameter adaptation. Explanations
of the curves are as in Fig. 11.

Fig. 13(b), the adaptation is used. In both cases, the signal
injection corrects the position estimation error at zero speed.
However, when the stator resistance adaptation is not in use,
the removal of the signal ωε as the speed increases above ω∆

leads to a position estimation error. When the stator resistance
adaptation is in use, the stator resistance estimate converges
close to its actual value, and the position estimation error after
the acceleration at t = 2 s is reduced. It was found that with
a 28% error in the resistance, the drive becomes unstable
without the stator resistance adaptation. Hence, the stator
resistance adaptation improves the performance significantly
and even ensures stable operation. It is to be noted that in
the experiments in Figs. 11 to 13, the inverter unidealities
contribute to the resistance seen by the controller. Therefore,
the estimated resistance is not precisely equal to the actual
resistance, but it takes into account the resistive voltage drops
in the power devices.

VI. CONCLUSIONS

This paper proposed a method for the estimation of the
stator resistance and the PM flux in a sensorless PMSM drive.
The adaptive observer augmented with an HF signal injection
technique at low speeds was used for the adaptation of the
parameters in addition to the speed and position estimation.
The tuning of the adaptation gains and the local stability
of the system were investigated by means of small-signal
analysis. The simulation and experimental results show that
the stator resistance adaptation reduces the resistance error
significantly. The high-frequency signal injection removes the
position estimation error in steady state even without any
resistance adaptation, but the good accuracy of the resistance
estimate is essential when the signal injection is not in use.
The PM flux adaptation reduces the position estimation error
at medium and high speeds and improves the electromagnetic
torque estimation accuracy. The parameter estimates converge
rapidly close to the actual parameters, and the sensitivity
to the parameter variations is reduced. Since both the stator
resistance and the PM flux depend on the temperature, it could
be possible to estimate the temperature based on the parameter
being adapted, and the temperature information could be used
for updating the parameter not being adapted. This kind of
simultaneous adaptation of both parameters is a suitable topic
for future research.

APPENDIX

LINEARIZED CLOSED-LOOP SYSTEMS

The system (22) is expressed as a state-space representation
in (37). The linearized closed-loop system corresponding to the
simultaneous speed and PM flux adaptation is given in (38). It
is to be noted that the terms kp0dψ and ki0dψ vanish due to
the speed adaptation gains used in (8). Therefore, those terms
have been omitted in (38). When ψ̃pm = 0 is assumed, the
linearized model (38) reduces to the model presented in [18].
The linearized closed-loop system corresponding to the speed
and stator resistance adaptation is given in (39). The local
stability of the proposed system depends on the eigenvalues
of the state matrices in (38) and (39).
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