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Reduced-Order Flux Observers with
Stator-Resistance Adaptation for Speed-Sensorless

Induction Motor Drives
Marko Hinkkanen, Member, IEEE, Lennart Harnefors Senior Member, IEEE, and Jorma Luomi, Member, IEEE

Abstract—This paper deals with reduced-order flux observers
with stator-resistance adaptation for speed-sensorless induction
motor drives. A general analytical solution for the stabilizing
observer gain is given. The gain has two free positive parameters
(which depend on the operating point), whose selection signifi-
cantly affects the damping, convergence rate, robustness, and
other properties of the observer. The general stability conditions
for the stator-resistance adaptation are derived. An observer
design is proposed that yields a robust and well-damped system
and requires a minimal amount of tuning work. The proposed
observer design is experimentally tested using a 45-kW induction
motor drive; stable operation at very low speeds under different
loading conditions is demonstrated.

Index Terms—Flux observer, stability conditions, speed sensor-
less, stator resistance estimation.

I. INTRODUCTION

It is well known that speed-sensorless induction motor (IM)
drives may have an unstable operating region at low speeds,
typically in the regenerating mode [1]–[8]. Recently, general
stability conditions for a full-order flux observer [6] and
for a reduced-order observer [7] have been derived. Under
these conditions, the local stability of the flux estimation is
guaranteed at every operating point except the zero stator
frequency, if the motor parameters are known.

In practice, variations of the stator resistance due to the
temperature may cause stability problems at low speeds [9].
Different stator-resistance adaptation methods have been pro-
posed to tackle this problem [8], [10]–[13]. Unfortunately,
the dynamics of the stator-resistance adaptation are generally
coupled with the flux and speed estimation dynamics. These
couplings may cause unstable regions [13]. An in-depth sta-
bility analysis is usually omitted, since the resulting closed-
loop systems become very complicated. In [11], however,
a numerical stability analysis is presented when using a
speed-adaptive observer based on the back electromotive force
(EMF), whereas in [13], analytical stability conditions are
derived in connection with a full-order flux observer.

The observer gain design is not trivial even if the ana-
lytical stability conditions are known. There are several free
parameters that significantly affect the robustness, damping,
convergence rate, and other properties of the system. For
example, the stability conditions given in [6] for the full-order

The preliminary version of this paper was presented at the IEEE Energy
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Fig. 1. Inverse-Γ model in stator coordinates (where ωk = 0). The back
EMF induced by the rotor flux is es = dψs

R/dt.

observer include three design parameters, which may depend
on the operating point.

The main contributions of this paper are:
1) The stability conditions for a sensorless reduced-order

observer, derived in [7], are formulated as a general
stabilizing gain, which simplifies the tuning procedure.

2) A stator-resistance adaptation law is proposed, and an-
alytical stability conditions are derived for the observer
augmented with stator-resistance adaptation.

3) Based on these stability conditions, an easy-to-tune
observer design is proposed.

The proposed design is comparatively simple, and it results
in a robust and well-damped closed-loop system. The per-
formance of the proposed observer design is evaluated using
laboratory experiments with a 45-kW IM drive.

II. IM MODEL

In the next section, an observer which cannot be described
in complex variables will be designed. Therefore, real space
vectors will be used throughout the paper. For example, the
definitions of the stator-current vector and its magnitude are

is =

[
isx
isy

]
, ‖is‖ =

√
i2sx + i2sy (1)

respectively, where the components isx and isy of the vector
equal the real and imaginary parts of the complex space vector,
respectively. The components and magnitudes of other vectors
are denoted similarly. Vectors will be denoted by boldface
lowercase letters and matrices by boldface uppercase letters.
The matrix transpose will be marked with the superscript T.
The identity matrix, the orthogonal rotation matrix, and the
zero matrix are defined as

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
, O =

[
0 0
0 0

]
(2)
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Fig. 2. Speed-sensorless rotor-flux-oriented controller when the flux observer
is implemented in the estimated rotor-flux coordinates. The magnitude of the
rotor-flux estimate is denoted by ψ̂R = ‖ψ̂R‖. The components of the current
reference is,ref are used for controlling the flux and the torque. The stator
currents and the DC-link voltage udc are measured, and the reference voltage
us,ref obtained from the current controller is used for the flux observer.

respectively. Since J corresponds to the imaginary unit j, the
notation is very similar to that obtained for complex space
vectors.

The inverse-Γ model of an IM, shown in Fig. 1, is consid-
ered [14]. With the stator-current and rotor-flux vectors chosen
as state variables, the electrical dynamics of the IM in general
coordinates rotating at arbitrary angular speed ωk are given by
[15]

Lσ
dis
dt

+ ωkLσJis = us −Rsis − e (3)

dψR

dt
+ ωkJψR = e (4)

where Lσ is the leakage inductance, Rs the stator resis-
tance, us = [usx, usy]T the stator-voltage vector, and ψR =
[ψRx, ψRy]T is the rotor-flux vector. The back EMF induced
by the rotor flux is

e = RRis − (αI− ωmJ)ψR (5)

where ωm is the electrical rotor speed, RR is the rotor
resistance, and α = RR/LM is the inverse rotor time constant.
From (3) it follows that the back EMF can also be expressed
as

e = us −Rsis − Lσ
dis
dt
− ωkLσJis. (6)

III. REDUCED-ORDER FLUX OBSERVERS

The estimate of the rotor-flux vector will be denoted by ψ̂R

and its angle with respect to the stator coordinates by ϑ̂s. A
typical rotor-flux-oriented control system is depicted in Fig. 2,
where the flux observer is implemented in estimated rotor-
flux coordinates. In the following, the flux observer will be
described in general coordinates rotating at arbitrary angular
speed ωk.

To avoid forbiddingly complicated equations, which would
prevent analytical results from being derived, accurate param-
eter estimates are assumed, with the exception of the stator-
resistance estimate R̂s. Hence, an estimate for the back EMF

can be calculated from (6) using the stator voltage1 and the
current as

e′ = us − R̂sis − Lσ
dis
dt
− ωkLσJis. (7)

Alternatively, the back EMF can be estimated based on (5)

ê = RRis − (αI− ω̂mJ) ψ̂R (8)

where it is necessary to use the rotor-flux estimate ψ̂R and
the rotor-speed estimate ω̂m, since the actual values are not
measured.

A. Reduced-Order Observer Structure

Starting from (4), a reduced-order observer combining the
back-EMF estimates in (7) and (8) can be constructed as

dψ̂R

dt
+ ωkJψ̂R = e′ +K(ê− e′) (9)

where K is a 2×2 observer gain matrix. Similar structures
can be found in, e.g., [16], [15]. The structure (9) is selected,
since it leads to simpler formulations of the observer gain in
the case of speed-sensorless drives.

Selecting K = I, the well-known current model

dψ̂R

dt
+ ωkJψ̂R = RRis − (αI− ω̂mJ) ψ̂R (10)

is obtained. The current model cannot be directly used in
speed-sensorless drives, since it depends on the rotor-speed
estimate ω̂m. The pure voltage model

dψ̂R

dt
+ ωkJψ̂R = us − R̂sis − Lσ

dis
dt
− ωkLσJis (11)

is obtained by selecting K = O. The voltage model does not
depend on the rotor-speed estimate, but it cannot be used in
practice due to its well-known stability problems.

The rotor-speed estimate can be computed using the slip
relation

ω̂m = ω̂s −
RRi

T
s Jψ̂R

‖ψ̂R‖2
. (12)

That is, the component of the back-EMF estimate in (8)
perpendicular to the rotor-flux estimate is used for speed
estimation. The angular speed ω̂s = dϑ̂s/dt of the rotor flux
estimate can be generally expressed as

ω̂s = ωk +

(dψ̂R

dt

)T
Jψ̂R

‖ψ̂R‖2
. (13)

The last term vanishes if the observer is implemented in
estimated rotor-flux coordinates, i.e. ω̂s = ωk.

1In the implementation, the stator voltage is not measured but the reference
voltage us,ref obtained from the current controller is used for the flux observer
according to Fig. 2.
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B. General Stabilizing Observer Gain

It is preferable that the flux observer (9) does not include the
rotor-speed estimate ω̂m, i.e. the observer should be inherently
sensorless [16]. The back-EMF estimate ê in (8) depends on
ω̂m, but its component in the direction of ψ̂R is independent
of the rotor speed estimate. That is, in the scalar product

ψ̂
T

Rê = ψ̂
T

R

(
RRis − αψ̂R

)
(14)

the term proportional to ω̂m vanishes, since ψ̂
T

RJψ̂R = 0.
Based on this fact, the observer gain matrix is selected as

K =
Gψ̂Rψ̂

T

R

‖ψ̂R‖2
(15)

where G = g1I + g2J is a gain matrix and ψ̂Rψ̂
T

R/‖ψ̂R‖2
is the orthogonal projection matrix, which takes the vector
projection of the estimation error in the direction of ψ̂R.

The observer gain matrix K does not have a complex
equivalent, because it cannot be expressed as a linear com-
bination of matrices I and J. This is why real space vectors
were chosen rather than complex space vectors. If the ob-
server is implemented in estimated rotor-flux coordinates, i.e.,
ωk = ω̂s = dϑ̂s/dt, then (15) simplifies to

K =

[
g1 0
g2 0

]
(16)

since ψ̂R = [‖ψ̂R‖, 0]T. The gain matrix G is invariant of the
coordinate system selected.

A gain selection in the form (15) makes the observer
independent of the rotor speed estimate, but the gain matrix G
determines the stability (and other properties) of the observer.
As shown in Appendix A, the closed-loop system consisting
of (4), (9), and (15) is locally stable in every operating point
if (and only if) this gain matrix is given by

G =

[
bI +

(
c

ω̂s
− ω̂s

)
J

]
αI + ω̂mJ

α2 + ω̂2
m

(17)

where the coefficients b > 0 and c > 0 may depend on the
operating point.2 The observer gain design problem is reduced
to the selection of the two positive coefficients b and c, which
are actually the coefficients of the characteristic polynomial of
the linearized closed-loop system, cf. Appendix A. An accurate
stator-resistance estimate R̂s was assumed in the derivation of
(17), but this assumption will be lifted, as will be described in
Section V. The stability conditions corresponding to the gain
(17) were originally presented in [7].

IV. OBSERVER DESIGN

A. Conventional Observer Gain Selections

The stage is set for observer gain selection by reviewing a
few previously proposed gain selections. In [1], the angular
speed of the rotor flux was estimated by means of the voltage
model, while the magnitude estimation of the rotor flux was

2For ω̂s = 0, c = 0 has to be selected to avoid division by zero, giving
only marginal stability for zero stator frequency.

ω̂s−ω∆ ω∆

f

0

1

Fig. 3. Function f .

based on the current model. This design corresponds to the
gain selection

G = I. (18)

The corresponding coefficients in (17) are b = α and
c = ω̂sω̂r, where the angular slip frequency estimate is
ω̂r = ω̂s − ω̂m. Coefficient c becomes negative at low speeds
in the regenerating mode, indicating an unstable region as
also reported in [1]. Therefore, gain selection (18) is not
recommended.

In [4], it was shown that the stability problem appearing
with the gain (18) can be remedied using

G = k [I + (ω̂m/α)J] (19)

where k is a positive constant. This gain selection corresponds
to the coefficients b = (k/α)(α2 + ω̂2

m) and c = ω̂2
s , which are

always positive, except for ω̂s = 0 yielding c = 0. Stability
is guaranteed in theory but, unfortunately, sufficient damping
cannot be achieved using this design: selecting a small k
results in an approximate voltage model, while a larger k
results in too high a gain and noise amplification. A gain
similar to (19) was in [17] found to stabilize a so-called
statically compensated voltage model.

B. Proposed Observer Gain Selection

Even if the gain selection (19) results in a stable system, the
effect of parameter errors on the accuracy at low speeds and
the damping at higher speeds can be improved. Furthermore,
the norm of the observer gain should not be too high, so as to
avoid noise amplification. In order to integrate a simple and
understandable design with these goals, the classical approach
of mimicking the current model at low speeds and the voltage
model at high speeds is adopted. This is made in conjunction
with the previously derived stabilizing gain selection (17) by
selecting the coefficients as

b = (1− f)α+ f |ω̂m| (20a)
c = ω̂s {(1− f)|ω̂r| sign(ω̂s) + f [ω̂s + α sign(ω̂s)]} . (20b)

The function f , shown in Fig. 3, is given by

f =

{
|ω̂s|/ω∆, if |ω̂s| < ω∆

1, if |ω̂s| ≥ ω∆

(21)

where ω∆ is a positive constant, with a typical value of
0.1. . . 0.5 p.u. Coefficients b and c in (20) are positive in every
operating point, except that c = 0 for ω̂s = 0 by necessity, as
mentioned previously.



4

Fig. 4. Components of gain G evaluated using (17) and (20) with ω∆ =
0.25 p.u. Parameters of a 45-kW IM were used. The angular slip frequency
ω̂r = 0.015 p.u. equals the rated slip.

At speeds above ω∆, the selection in (20) leads to G =
sign(ω̂s)J, which yields sufficient damping while the effects
of the parameter errors are similar to those of the pure voltage
model. At the lowest speeds, G ≈ I in the motoring mode.
As an example, the resulting gain components g1 and g2 are
shown in Fig. 4 as a function of the stator frequency. The
angular slip frequency estimate ω̂r = ω̂s− ω̂m equals its rated
value. It can be seen that, at low frequencies, the gains differ
significantly in the regenerating mode (where ωrωs < 0) and
in the motoring mode.

V. STATOR-RESISTANCE ADAPTATION

The following stator-resistance adaptation law is proposed:

dR̂s

dt
= kT

R (ê− e′) (22a)

where kR is a gain vector. Similarly to the flux estimation, it
is desirable that the stator-resistance adaptation is inherently
sensorless. Hence, based on (8) and (14), the gain vector
should be of the form

kR =
kRψ̂R

‖ψ̂R‖
(22b)

where kR is the adaptation gain.
As shown in Appendix B, the general stability conditions

for the observer augmented with (22) are

kRω̂sω̂r < 0 (23a)

kR < bLM/‖ψ̂R‖ (23b)

Ak2
R +BkR + C > 0 (23c)

where the coefficients of the quadratic inequality in (23c) are

A =
(
α2 + ω̂mω̂r

)
(‖ψ̂R‖/LM)2

B =
[
α(2ω̂sω̂r − c)− b

(
α2 + ω̂mω̂r

)]
‖ψ̂R‖/LM

C = αbc.

where b and c are the positive design parameters in (17).
The stability conditions will be applied in the following.

Based on the condition (23a), the sign of the gain kR has to
depend on the operating mode. Furthermore, the magnitude of

Fig. 5. Stator-resistance adaptation gain for a 45-kW IM when k′R = 0.02
p.u., r = 0.2, and ω∆ = 0.25 p.u. The angular slip frequency ω̂r = 0.015
p.u. equals the rated slip.

kR has to be limited according to (23c), while the condition
(23b) is automatically fulfilled via (23a) and (23c).

It can be shown that the conditions in (23) are fulfilled by
choosing

kR =


min{k′R, L1}, if D > 0 and ω̂sω̂r ≤ 0

max{−k′R, L2}, if D > 0 and ω̂sω̂r > 0

and L2 < 0

−k′R sign(ω̂sω̂r), otherwise

(24)

where k′R is a positive design parameter and D = B2− 4AC.
The limiting values are

L1 = r
−B −

√
D

2A
, L2 = r

−B +
√
D

2A
(25)

where the parameter 0 < r < 1 affects the stability margin of
the system; choosing r = 1 would lead to a marginally stable
system (in the operating points where kR is determined by L1

or L2). An example of the stator-resistance adaptation gain,
corresponding to (20) and (24), is depicted in Fig. 5.

VI. IMPLEMENTATION

A. Estimated Rotor-Flux Coordinates

Observer (9) can be implemented in arbitrary coordinates. In
the case of speed-sensorless drives and the gain matrix (15),
the simplest equations are achieved in the estimated rotor-
flux coordinates, where ωk = ω̂s and ψ̂R = [‖ψ̂R‖, 0]T. The
estimated rotor-flux coordinates are favorable from the point
of view of the discrete-time implementation as well.

The vector components in the estimated rotor-flux co-
ordinates will be marked by the subscripts d and q, and
the magnitude of the rotor-flux estimate will be denoted by
ψ̂R = ‖ψ̂R‖. When the gain matrix (15) is used, the equations
of the reduced-order observer (9) are

dψ̂R

dt
= e′d + g1(êd − e′d) (26a)

dϑ̂s

dt
=
e′q + g2(êd − e′d)

ψ̂R

= ω̂s. (26b)
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The components of the back EMF given in (7) become

e′d = usd − R̂sisd − Lσ
disd
dt

+ ω̂sLσisq (27a)

e′q = usq − R̂sisq − Lσ
disq
dt
− ω̂sLσisd (27b)

and the d component of the back-EMF estimate in (8) is

êd = RR(isd − ψ̂R/LM). (28)

The components of the observer gain in (17) can be expressed
as

g1 =
bα− (c/ω̂s − ω̂s)ω̂m

α2 + ω̂2
m

(29a)

g2 =
bω̂m + (c/ω̂s − ω̂s)α

α2 + ω̂2
m

(29b)

The rotor-speed estimate is preferably computed by embedding
(12) in a low-pass filter [16]

dω̂m

dt
= αo

(
ω̂s −

RRisq

ψ̂R

− ω̂m

)
(30)

where αo is the filter bandwidth.
The stator-resistance adaptation law (22) in the estimated

rotor-flux coordinates is

dR̂s

dt
= kR (êd − e′d) . (31)

The adaptation should be disabled in the vicinity of no-load
operation and at higher stator frequencies due to poor signal-
to-noise ratio (which is a well-known fundamental property
common to all speed-sensorless stator-resistance adaptation
methods based only on the fundamental-wave excitation).
Hence, parameter k′R in (24) can be selected as

k′R =

{
k′′R(1− f)|isq|, if |isq| ≥ i∆
0, if |isq| < i∆

(32)

where k′′R is a positive constant. As seen from Fig. 3, the factor
1− f decreases linearly with the increasing absolute value of
the stator frequency, being zero if |ω̂s| ≥ ω∆.

B. Modeling of Magnetic Saturation

In speed-sensorless drives, the accuracy of the rotor-speed
estimate depends on the rotor-resistance estimate, but the rotor-
resistance estimate does not affect the field orientation in
steady state [18], [19]. The stator-resistance adaptation (22)
is also independent of the rotor-resistance estimate in steady
state. Hence, the stator-resistance adaptation makes the field
orientation almost immune to temperature variations.

However, the system is sensitive to the inductances Lσ and
LM, which vary due to the magnetic saturation (but do not
depend on the temperature). If the magnetic saturation is not
properly modeled, the field orientation becomes inaccurate
and the stator-resistance estimate becomes dependent on the
operating point.

With constant rotor-flux magnitude, the stator-flux magni-
tude

ψs =
√

(ψR + Lσisd)2 + (Lσisq)2 (33)

increases with increasing load (since ψR + Lσisd is constant
while isq depends on the load). Since the state of saturation
in the stator core mainly depends on the stator-flux magnitude
[14], the magnetizing inductance LM of the inverse-Γ model
depends on the load (in addition to the main flux). Further-
more, if the machine is equipped with closed or skewed rotor
slots, the dependency of the magnetizing inductance on the
load is more pronounced [20].

In connection with reduced-order observers, the state vari-
able ψ̂R and the measured stator-current magnitude is are
convenient inputs of the saturation model. With this selection,
algebraic loops and auxiliary variables can be avoided in the
implementation. In the experiments, the saturation of Lσ and
LM was modeled as

L̂σ(ψ̂R) =
Lσu

1 + γLσuψ̂2
R

(34a)

L̂M(ψ̂R, is) =
LMu

1 + βψ̂SR + γLMu(L̂σis)2
(34b)

where Lσu and LMu are the unsaturated values of the induc-
tances and β, γ, and S are positive constants. If γ = 0 were
chosen, the model of L̂M would correspond to that proposed
in [21]. With positive γ, the magnetizing-inductance estimate
decreases with increasing load.

C. Compensation for Inverter Nonlinearities

The stator voltage is not measured, but the reference voltage
obtained from the current controller is used for the flux ob-
server according to Fig. 2. The effect of inverter nonlinearities
on the stator voltage is substantial at low speeds. Therefore,
the most significant inverter nonlinearities, i.e. the dead-time
effect and power device voltage drops, have to be compensated
for [22], [23].

Using phase a as an example, a compensated duty cycle for
the pulse-width modulator was evaluated as

da = da,ref + (2dδ/π) arctan(ia/iδ) (35)

where da,ref is the ideal duty cycle obtained from the current
controller and ia is the phase current. The parameter dδ
takes into account both the dead-time effect and the threshold
voltage of the power devices, while the on-state slope resis-
tance of the power devices is included in the stator-resistance
estimate. The shape of the arctan function is determined by
the parameter iδ . The duty cycles of phases b and c were
evaluated in a similar manner.

The current-feedforward compensation method in (35) cor-
responds to the method in [22], [23], except that the signum
functions were replaced with the arctan functions in order to
improve the performance in the vicinity of current zero cross-
ings. It is worth noticing that the arctan function, multiplied
by 2/π, approaches the signum function as the parameter iδ
approaches zero.

VII. EXPERIMENTAL SETUP AND PARAMETERS

The operation of the proposed observer and stator-resistance
adaptation was investigated experimentally using the setup
shown in Fig. 6. The speed-sensorless control system was
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37-kW servo drive

45-kW IM drive

dSPACE
DS1104

IM

IM

400 V
50 Hz

is

Tm, ωm

S

Fig. 6. Experimental setup. The stator currents and the DC-link voltage
are used as feedback signals. Mechanical load is provided by a servo drive.
The shaft torque Tm and the rotor speed ωm are measured for monitoring
purposes. Three-phase switch S is in the closed position, except in the
experiment shown in Fig. 8.

Fig. 7. Experimental results showing speed reference steps (0 → 750 rpm
→ 0). Rated load torque step is applied at t = 2 s and removed at t = 3 s.

implemented in a dSPACE DS1104 PPC/DSP board. A stan-
dard 45-kW four-pole IM (ABB M3GP225SMC4) is fed by a
frequency converter that is controlled by the DS1104 board.
The IM is equipped with closed and skewed rotor slots, and
its rating is: speed 1477 r/min; frequency 50 Hz; line-to-line
rms voltage 400 V; rms current 81 A; and torque 291 Nm. The
base values for angular speed, voltage, and current are defined
as 2π · 50 rad/s,

√
2/3 · 400 V, and

√
2 · 81 A, respectively.

A 37-kW servo-type IM is used as a loading machine.
The shaft torque Tm and the rotor speed ωm are measured
using a HBM T10F torque flange and an incremental encoder,
respectively, for monitoring purposes. The total moment of
inertia of the experimental setup is 0.81 kgm2 (1.66 times the
inertia of the 45-kW IM rotor).

Fig. 8. Experimental results showing stepwise increase in the actual stator
resistance at t = 5 s. Speed reference is kept at 30 rpm and a rated load
torque is applied at t = 1 s.

Fig. 9. Experimental results showing the effect of 0.02-p.u. DC offset in the
a-phase current measurement channel.

The stator resistance of the 45-kW IM is approximately 55
mΩ at room temperature. Additional 10-mΩ 100-W resistors
were added between the frequency converter and the IM. The
resistance can be changed stepwise by opening or closing a
manually operated three-phase switch (S) connected in parallel
with the resistors. Unless otherwise noted, switch S is in the
closed position.

The block diagram of the speed-sensorless control system
implemented in the DS1104 board is shown in Fig. 2. The
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Fig. 10. Experimental results showing slow torque reversal when the speed
reference is kept at 30 rpm.

Fig. 11. Experimental results showing slow torque reversal when the speed
reference is kept at 0 rpm.

stator currents and the DC-link voltage are measured, and the
reference voltage obtained from the current controller is used
for the flux observer. The sampling is synchronized to the
modulation, and both the switching frequency and the sam-
pling frequency are 4 kHz. The parameters for compensation
of inverter nonlinearities in (35) are dδ = 1.41% and iδ =
0.03 p.u. A proportional-plus-integral (PI) synchronous-frame
current controller is used. The control system shown in Fig. 2
is augmented with a speed controller, whose feedback signal is
the speed estimate ω̂m obtained from the proposed observer.

Fig. 12. Experimental results showing load-torque steps (0 → rated →
negative rated → 0) when the speed reference is kept at 75 rpm.

Fig. 13. Experimental results showing load-torque steps (0 → rated →
negative rated → 0) when the speed reference is kept at 0 rpm.

The bandwidth of this PI speed controller, including active
damping [16], is 0.05 p.u.

The proposed observer was implemented in the estimated
rotor-flux coordinates as described in Section VI. The per-
unit parameters used in the experiments are: RR = 0.01 p.u.,
LMu = 3.02 p.u., Lσu = 0.32 p.u., S = 8, β = 0.135 p.u., and
γ = 1.5 p.u. The coefficients in (20) are determined by the
transition frequency ω∆ = 0.25 p.u. The parameters needed for
the stator-resistance adaptation are: r = 0.2 in (25) and k′′R =
0.02 p.u. and i∆ = 0.2 p.u. in (32). The bandwidth αo = 6
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Fig. 14. Experimental results showing speed-reference steps (0 → 75 rpm
→ −75 rpm → 0) under no-load condition.

Fig. 15. Experimental results showing speed-reference steps (0 → 75 rpm
→ −75 rpm → 0) under rated load torque.

p.u. is used for the low-pass filter in (30). The estimate of the
per-unit electromagnetic torque is evaluated as T̂e = ψ̂Risq.

VIII. EXPERIMENTAL RESULTS

Fig. 7 shows results of medium-speed operation. The speed
reference was stepped from 0 to 750 rpm and back to 0. A
rated load torque step was applied at t = 2 s and removed
at t = 3 s. According to (32), the stator-resistance adaptation
was only active in the beginning of the acceleration and at the

Fig. 16. Experimental results showing slow speed reversals (75 rpm→ −75
rpm → 75 rpm) at no load.

end of the deceleration. It can be seen that the system is well
damped.

Fig. 8 shows the stepwise change in the stator resistance (as
seen by the frequency converter). Initially, three-phase switch
S, cf. Fig. 6, was in the closed position. The speed reference
was kept at 30 rpm. A rated-load torque step was applied at
t = 1 s. Switch S was opened at t = 5 s, causing a 0.004-p.u.
increase (corresponding to 20%) in the actual stator resistance.
It can be seen that the stator-resistance estimate tracks the
change in the actual stator resistance.

Fig. 9 shows the effect of a high DC offset in the current
measurent. A DC offset of 0.02-p.u. (corresponding to 2.3 A)
was intentionally added to the current-measurement channel
of phase a. The speed reference was stepped from 0 to 75
rpm at t = 2 s. A rated load torque step was applied at t = 4
s. Due to the DC offset, some ripple having the frequency of
2.5 Hz (corresponding to 0.05 p.u.) can be seen in the speed
and stator-resistance estimates. However, since the observer is
well damped, the system is stable and no drifting problems
appear despite the DC offset. It is to be noted that no offset
compensators or estimators were used, but the implementation
corresponds to that described in Sections VI and VII.

Results of a slow load-torque reversal are shown in Fig. 10.
The speed reference was kept at 30 rpm. It can be seen that the
torque estimate corresponds very well to the actual measured
torque, indicating proper field orientation in the whole torque
range. Fig. 11 shows results of a slow torque reversal when
the speed reference was kept at 0 rpm. In the vicinity of zero
stator frequency, the torque estimate differs slightly from the
measured torque but the system remains stable.

Figs. 12 and 13 show load-torque steps when the speed
reference was kept at 75 rpm and 0 rpm, respectively. The
load torque was stepped to the rated value at t = 3 s, reversed
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Fig. 17. Experimental results showing slow speed reversals (75 rpm→ −75
rpm → 75 rpm). The rated-load torque step is applied at t = 2 s.

at t = 6 s, and removed at t = 9 s. It can be seen that the
proposed observer behaves well in torque transients even at
zero speed.

Figs. 14 and 15 show speed-reference steps at low speeds in
no-load condition and under the rated load torque, respectively.
At t = 1 s, the speed reference was stepped from 0 to 75 rpm.
The speed reference was reversed at t = 3 s and stepped to 0 at
t = 3 s. It can be seen that the proposed observer behaves well
in speed transients both in no-load and rated-load conditions.

Results of slow speed reversals at low speeds under no-load
condition and under rated-load condition are shown in Figs. 16
and 17, respectively. The speed reference was slowly ramped
from 75 rpm to −75 rpm and then back to 75 rpm. It can be
seen that the system is stable under both loading conditions.

The sequence shown in Fig. 17 is a very challenging
and revealing test for any speed-sensorless observer since
all operating modes (motoring, plugging, and regenerating)
are gone through. The gain components g1 and g2 and the
adaptation gain kR during the sequence are also depicted.
Without the stabilizing observer gain (29), this kind of speed

reversals would not be possible. Furthermore, without the
stator-resistance adaptation, a very accurate stator-resistance
estimate would be needed since the stator frequency remains
in the vicinity of zero for a long time.

IX. CONCLUSIONS

In this paper, analytical stability conditions and design rules
are derived for the reduced-order observer augmented with
the stator-resistance adaptation. A general stabilizing gain
for sensorless reduced-order observers is presented. A stator-
resistance adaptation law is proposed, and stability conditions
are derived for the system augmented with the resistance
adaptation. Based on these stability conditions, an easy-to-
tune observer design is proposed. The proposed design is
comparatively simple, and it results in a robust and well-
damped closed-loop system. Performance of the proposed ob-
server design was evaluated using laboratory experiments with
a 45-kW IM drive. Stable operation at very low speeds under
different loading conditions was demonstrated. Furthermore, it
was experimentally verified that the stator-resistance estimate
can track stepwise changes in the actual resistance.

APPENDIX A
DERIVATION OF A STABILIZING OBSERVER GAIN

From (4) and (9), the nonlinear dynamics of the estimation
error are obtained:

dψ̃R

dt
+ ωkJψ̃R = −K (αI− ωmJ) ψ̃R

+KJψ̂Rω̃m + (K − I) isR̃s

(36)

where ψ̃R = ψ̂R − ψR is the estimation error of the rotor
flux and R̃s = R̂s − Rs is the error in the stator resistance
estimate. The local stability of the system (36) can be studied
via small-signal linearization in the synchronous coordinates.
When R̃s = 0 is assumed and the observer gain (15) is applied
in (36), linearization results in

dψ̃R

dt
=

[
−g10α −g10ωm0 + ωs0

−g20α− ωs0 −g20ωm0

]
ψ̃R = Aψ̃R

(37)
where the operating-point quantities are marked by the sub-
script 0.

Since accurate parameter estimates are assumed, ψ̃R0 =
0 and ω̂m0 = ωm0 hold in the operating point. Therefore,
the linearization is valid even if the gain G is a function of
the rotor speed estimate ω̂m and the angular frequency ω̂s

of the rotor flux estimate. The characteristic polynomial is
det(sI−A) = s2 + b0s+ c0, where

b0 = g10α+ g20ωm0 (38a)
c0 = ωs0(g20α− g10ωm0 + ωs0). (38b)

The nonlinear closed-loop system (36) is locally stable if the
coefficients of the characteristic polynomial are positive: b0 >
0 and c0 > 0. From (38), the general stabilizing gain can be
solved:

G0 =

[
b0I +

(
c0
ωs0
− ωs0

)
J

]
αI + ωm0J

α2 + ω2
m0

. (39)
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The closed-loop poles of the system are

s1,2 =
−b0 ±

√
b20 − 4c0

2
. (40)

APPENDIX B
STABILITY OF STATOR-RESISTANCE ADAPTATION

Assuming constant Rs and the stator-resistance adaptation
law (22), the nonlinear dynamics of the stator resistance
estimation error become

dR̃s

dt
= kT

R (ê− e′) (41)

The closed-loop system consisting of (36) and (41) can be
linearized:

d

dt

[
ψ̃R

R̃s

]
=

[
A (K0−I) is0

−kT
R0 (αI−ωm0J) kT

R0is0

]
︸ ︷︷ ︸

A′

[
ψ̃R

R̃s

]
.

(42)
When the observer gain (15) is applied, the system matrix is

A′ =

 −g10α −g10ωm0+ωs0 (g10−1)isd0

−g20α−ωs0 −g20ωm0 g20isd0−isq0

−kR0α −kR0ωm0 kR0isd0

 (43)

where isd0 = ‖ψR0‖/LM and isq0 = ωr0‖ψR0‖/RR. Using
the Routh–Hurwitz stability criterion, the stability conditions
are

kR0ωs0ωr0 < 0 (44a)
kR0 < b0/isd0 (44b)

A0k
2
R0 +B0kR0 + C0 > 0 (44c)

where b0 and c0 are given in (38). The coefficients of the
quadratic inequality in (44c) are

A0 =
(
α2 + ωm0ωr0

)
i2sd0

B0 =
[
α(2ωs0ωr0 − c0)− b0

(
α2 + ωm0ωr0

)]
isd0

C0 = αb0c0.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Academy of Finland
for the financial support and ABB Oy for the experimental
setup.

REFERENCES
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