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Abstract

With the recent rising application of mathematical models in the field of computational systems biology, the
interest in sensitivity analysis methods had increased. The stochastic approach, based on chemical master
equations (CMEs), and the deterministic approach, based on ordinary differential equations (ODEs),
are the two main approaches for analysing mathematical models of biochemical systems. In this work,
the performance of these approaches to compute sensitivity coefficients is explored in situations where
stochastic and deterministic simulation can potentially provide different results (systems with unstable
steady states, oscillators with population extinction and bistable systems). We consider two methods in the
deterministic approach, namely the direct differential method and the finite difference (FD) method, and five
methods in the stochastic approach, namely the Girsanov transformation (GT), the independent random
number (IRN) method, the common random number (CRN) method, the coupled finite difference (CFD)
method and the rejection-based finite difference (RFD) method. The reviewed methods are compared in
terms of sensitivity values and computational time to identify differences in outcome that can highlight
conditions in which one approach performs better than the other.
Contact: marchetti@cosbi.eu
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
Keywords: sensitivity analysis; deterministic simulation; stochastic simulation; mathematical modeling;
computational biology; systems biology.

1 Introduction
Computational systems biology is emerging as a fundamental tool for life-
science research, which aims at developing models representing biological
phenomena and reliable computational techniques for their simulation
and analysis [1; 2; 3; 4; 5]. Sensitivity analysis is the study of how the
uncertainty in the output of a mathematical model can be apportioned to
different sources of uncertainty in its inputs. When the mathematical model
represents a biological system, the results of sensitivity analysis can be used
to (i) test the robustness of model results in presence of experimental data
uncertainty; (ii) increase our understanding of the relationships between

input and output variables by identifying molecules playing a leading role
in the development of a modeled phenotype or disease (e.g. biomarkers,
drug targets, etc.); (iii) simplify the model by fixing inputs that have
no effect on the output or by omitting reaction subnetworks that are
not sensitive to the data used to calibrate the model (model reduction).
The rising importance of sensitivity analysis is also demonstrated by the
increasing publication rate of papers dealing with this topic. Starting from
about 200 papers published before 1990, the number of papers available
in PubMed are exponentially increasing: 1,064 in the decade 1990–1999,
4,071 in the decade 2000-2009 and more than 10,000 papers published in
the period 2010–2018.

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



i
i

“Paper” — 2018/11/28 — 11:29 — page 2 — #2 i
i

i
i

i
i

2 Simoni et al.

Since sensitivity analysis is often computed by repeated model
simulations, a well known issue is the high computational effort required
to complete the analysis. The computational overhead increases when
an accurate stochastic simulation strategy is considered with respect to
classical deterministic techniques. The increase of computational power
should be compensated by the increased result accuracy. However, it
is often hard to understand in advance which is the best approach to
apply, since deterministic sensitivity analysis can be adequate to assess the
reliability of model results and very often is much faster than any stochastic
approach. After about one decade from the publication in this journal of a
review comparing stochastic versus deterministic simulation approaches
[4], this contribution moves one step further by comparing stochastic
and deterministic algorithms for sensitivity analysis. Among the different
methodologies for sensitivity analysis, we herein consider local sensitivity
analysis where one-factor-at-a-time (OFAT or OAT) is perturbed. We
do this, because these methodologies are the ones mostly used in the
modeling literature since the computation of sensitivity coefficients due to
the simultaneous perturbation of many parameter rates requires, especially
in the stochastic approach, an exponentially increase of the computational
effort. The reviewed methodologies are tested by considering models
described both as stochastic biochemical reactions and as set of mass action
ODEs to identify differences in outcome that can highlight challenging
conditions in which one approach performs better than the other, including
systems with unstable steady states, oscillators with population extinction,
bistable systems. In the following, three ad hoc models have been chosen
as case studies for each of these conditions.

1.1 Mathematical framework

Hereafter we will consider well-stirred biochemical reaction systems
consisting of n chemical species S1, ..., Sn interacting through m

reactions R1, ..., Rm in a well-mixed environment, where position and
speed of molecular species are randomized and therefore they do not affect
reaction executions. A particular reaction Rj has the general scheme

v−j1S1 + ...+ v−jnSn
cj−→ v+j1S1 + ...+ v+jnSn, (1)

where the species on the left of the arrow are called reactants, while the
ones on the right are products. The non-negative integers v−ji and v+ji are
the stoichiometric coefficients indicating how many molecules of reactant
and product are involved. The overall change in species population byRj
is represented by the state change vector vj , where its ith component is
equal to v+ji − v

−
ji. The label cj on the arrow is the stochastic reaction

constant as introduced by Gillespie [6]. The state of the system at time t
is represented by a vector X(t) = (X1(t), ..., Xn(t)), where Xi(t) is
the number of molecules of species Si in the system at time t.

The probability that reaction Rj fires in the next infinitesimal time
t+dt, given the state X(t) at time t, is aj(X(t))dt, where the propensity
function aj can be computed as a function of the reaction constant cj and
the state X(t). In case of mass action kinetics [6; 7], the propensity is
defined as

aj(X(t)) = cjhj(X(t)), (2)

where hj(X(t)) counts the number of distinct combinations of reactants
through the following formula

hj(X(t)) =
∏
i

(Xi(t)
v−ji

)
. (3)

An exact realization of X(t) can be obtained by applying the stochastic
simulation algorithm (SSA), which is based on an event-driven simulation
approach where reactions are randomly selected to fire according to
their propensity. Several implementations of SSA have been proposed,

including the direct method (DM) [6; 7], the next reaction method (NRM)
[8] and the rejection-based SSA (RSSA) [9]. We refer to [5; 4] for a
comprehensive review of stochastic simulation algorithms.

When the number of molecules of each modeled species is large enough
for being safely approximated by concentrations that vary continuously
(continuum hypothesis [5]), then the reaction system can be translated
into a set of ODEs by relying on the law of mass action. This allows
moving from a stochastic to a deterministic approach, where the intrinsic
randomness of the system is not anymore considered. In the deterministic
framework, the state of the system at time t is represented by the vector
of concentrations [X](t) = ([X1](t), ..., [Xn](t)), where [Xi](t) is the
concentration of speciesSi in the system at time t. The molar concentration
[Xi](t) of species Si is defined as

[Xi](t) =
Xi(t)

NAV
(4)

where V is the reaction volume and NA is the Avogadro’s number.
Consider Eq.(1), the corresponding ODE representing the evolution of
species Si is

d[Xi](t)

dt
=

m∑
j=1

(djvji

n∏
l=1

[Xl]
v−
jl (t)) i = 1, ..., n, (5)

where dj is the deterministic rate of reaction Rj , which can be easily
obtained by converting the stochastic rate cj [5]. A system of ODEs can
be represented in a compact matrix form as:

d[X](t)

dt
= F([X],d, t), (6)

where F : Rn × Rm × R → Rn is the vector of n functions
Fi providing the time derivatives of the species concentrations. The
simulation of a system of ODEs is addressed by solving the initial-value
problem, which corresponds to solve Eq.(6) given the initial concentration
of modeled species. Since the number and complexity of the ODEs
is often too high to allow an analytical solution, several numerical
methods have been introduced to approximate the behaviour in time of the
model. A comprehensive collection of numerical methods for deterministic
simulation is presented in [10; 5].

2 Computational methods for sensitivity analysis
Sensitivity analysis is herein defined as the first-order partial derivatives
of the system output with respect to the reaction rates. In the context
of stochastic chemical kinetics, let Xc(t) be the state of the system at
time t computed by considering the vector c = (c1, ..., cm) of stochastic
reaction rates. The quantity Q(c) providing the dependence of the state
on c is:

Q(c) = E[Xc(t)], (7)

whereE[−] denotes the expectation operator. We note that in Eq.(7),Q(c)

measures the direct dependence of the state on the rate vector c, but it is
easy to generalize the sensitivity measurement by applying a function f of
interest on the state such thatQ(c) = E[f(Xc(t))]. Let θ be the reaction
index for which we want to measure the sensitivity, the aim of stochastic
sensitivity analysis is to efficiently compute the sensitivity coefficient

Sθ(t) =
∂Q(c)

∂cθ
=
∂E[Xc(t)]

∂cθ
(8)

using stochastic simulation. The corresponding sensitivity coefficient in
the deterministic approach is defined as:

Sθ(t) =
∂[X]d(t)

∂dθ
, (9)



i
i

“Paper” — 2018/11/28 — 11:29 — page 3 — #3 i
i

i
i

i
i

A comparison of sensitivity analysis approaches 3

where [X]d(t) is the state of the system at time t computed by considering
the vector d = (d1, ..., dm) of reaction deterministic rates.

2.1 Stochastic sensitivity analysis

In this section, we present different methods to construct an estimator
for the sensitivity coefficient Sθ(t) defined in Eq.(8). These approaches
are different in their bias and variance and can be classified into two
categories: infinitesimal perturbation estimators and finite perturbation
estimators [11]. An infinitesimal perturbation estimator derives the
sensitivity coefficients by using information from the simulation of the
system with nominal rates c. Instead, a finite perturbation estimator
perturbs the nominal rates of the system by a small amount, hence
introducing bias into the estimation, depending on the finite discretization
scheme. In the following, we will consider the Girsanov transformation
(GT) method [12], which provides an efficient implementation of the
infinitesimal perturbation estimator, while for the finite perturbation
methods we will consider the independent random number (IRN) method,
the common random number (CRN) method [13], the coupled finite
difference (CFD) method [14] and the rejection-based finite difference
(RFD) method [15]. For the sake of simplicity, we provide here only
a general explanation of the considered algorithms. A more detailed
explanation and the complete pseudocode implementations are provided
in Supplementary Material. Further improvements of the considered
strategies are also discussed in [16; 17; 18; 19; 20; 21; 22].

The principle of the GT method is to rewrite the derivative of the
expectation in such a way that it can be directly computed from the
simulation. Specifically, the sensitivity coefficient Sθ in Eq.(8) can be
rewritten by means of probability measure transformation [23] as

Sθ(t) = E
[
Xc(t)wθ(X

c(t))
]
, (10)

where wθ(Xc(t)) is the weight function defined as

wθ(X
c(t)) =

L∑
l=1

wθ,l(X
c(tl)). (11)

In the previous equation, L gives the number of reaction events occurring
at time 0 < t1 < · · · < tL = t, where the lth event is denoted by a pair
(µl, τl) such that µl is the reaction firing index and τl = tl+1 − tl is the
waiting time to the firing. Each term of the sum in Eq.(11) is computed as

wθ,l(X
c(tl)) =

∂ ln aθ(X
c(tl))

∂cθ

(
Iθ(µl)− aθ(Xc(tl))τl

)
(12)

with

Iθ(µl) =

{
1, if µl = θ

0, otherwise.
(13)

Eq.(10) gives the mathematical basis of the GT method for computing
an unbiased estimator of the sensitivity coefficient Sθ . It shows that Sθ
can be realized by simulating the process Xc(t) until time t and then
weighting the output bywθ(Xc(t)). Specifically, letK be the number of
simulation runs and let Xc

[k]
(t) be a realization of the state Xc(t) in the

kth simulation run with k = 1, . . . ,K. The sensitivity coefficient Sθ in
Eq.(10) can be estimated as

Sθ(t) ≈
1

K

K∑
k=1

Xc
[k](t)wθ(X

c
[k](t)). (14)

The finite difference (FD) approach constitutes an alternative for
computing the sensitivity coefficient Sθ . It directly estimates Sθ by
applying a small, but finite, perturbation amount to the nominal rate values.

Specifically, let eθ be a unitm-vector in which the θth element is 1, while
other elements are zeros. Let ε be a small scalar value and εθ = εcθ . The
sensitivity coefficient Sθ with respect to a reaction rate cθ in Eq.(8) can
be approximated by the centered finite difference:

Sθ(t) =
∂Q(c)

∂cθ
≈
Q(c+ εθeθ)−Q(c− εθeθ)

2εθ

≈
E[Xc+εθeθ (t)]− E[Xc−εθeθ (t)]

2εθ
, (15)

where c are the nominal rates and c± εθeθ are the perturbed ones. It can
be shown by the Taylor series expansion that the bias due to truncation
error of the centered difference isO(ε2θ). The sensitivity coefficient Sθ in
Eq.(15) can be constructed as

Sθ(t) =
1

K

K∑
k=1

X
c+εθeθ
[k]

(t)−X
c−εθeθ
[k]

(t)

2εθ
, (16)

where K is the number of simulation runs, and X
c−εθeθ
[k]

and X
c+εθeθ
[k]

are the realizations of states with perturbed rates in the kth run, with
k = 1, . . .K, respectively.

The simplest method for implementing the FD estimator Sθ in Eq.(15)
is the IRN where two independent simulation runs are used to realize
the states Xc−εθeθ and Xc+εθeθ . The estimation by the IRN method,
however, often has a large variance. The CRN [13] tries to reduce the
variance of the estimator by using the same stream of random numbers for
the realizations of these states. The idea behind this strategy is to induce a
(positive) correlation between Xc−εθeθ (t) and Xc+εθeθ (t) so that the
variance of the sensitivity coefficient Sθ can be reduced by also increasing
its efficiency. Although CRN can reduce the variance of Sθ , the induced
correlation will be lost for long simulation time.

The CFD [14] and the RFD [15] have been recently introduced
for further reducing the variance of the FD estimator Sθ in Eq.(15).
The foundation of these approaches is the decomposition of the
Poisson processes, which represent the number of firings of reactions
in the random time-change (RTC) representation, such that common
Poisson processes are shared during the simulations of Xc−εθeθ and
Xc+εθeθ . To be more concrete, letPoj,1

( ∫ t
0 aj(X

c−εθeθ (s))ds
)

and

Poj,2

( ∫ t
0 aj(X

c+εθeθ (s))ds
)

, with j = 1, . . . ,m, be the Poisson
processes representing the number of firings of reaction Rj in simulating
Xc−εθeθ (t) and Xc+εθeθ (t), respectively. CFD decomposes these
processes as

Poj,1

(∫ t

0
aj(X

c−εθeθ (s))ds
)
= Poj

(∫ t

0
bj(s)ds

)
+ Poj,3

(∫ t

0
(aj(X

c−εθeθ (s))− bj(s))ds
)

(17)

and

Poj,2

(∫ t

0
aj(X

c+εθeθ (s))ds
)
= Poj

(∫ t

0
bj(s)ds

)
+ Poj,4

(∫ t

0
(aj(X

c+εθeθ (s))− bj(s))ds
)
, (18)

where bj(s) = min(aj(X
c−εθeθ (s)), aj(Xc+εθeθ (s)) for all s ∈

[0, t]. Thus, by sharing the common Poisson processes Poj(
∫ t
0 bj(s)ds),

with j = 1, . . . ,m during the simulation, the variance of CFD
estimator is reduced to be proportional to the variance of the
residual Poisson processesPoj,3(

∫ t
0 (aj(X

c+εθeθ (s))−bj(s))ds) and
Poj,4(

∫ t
0 (aj(X

c+εθeθ (s))− bj(s))ds).
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RFD further reduces the variance of the estimator by decomposing the
Poisson processes employing the idea of propensity upper bounds. Let aj
be an arbitrary propensity upper bound such that aj ≥ aj(Xc−εθeθ (s))

and aj(Xc+εθeθ (s)) for all s ∈ [0, t]. We have

Poj,1

(∫ t

0
aj(X

c−εθeθ (s))ds
)
= Poj

(
ajt
)

− Poj,3
(
ajt−

∫ t

0
aj(X

c−εθeθ (s))ds
)

(19)

and

Poj,2

(∫ t

0
aj(X

c+εθeθ (s))ds
)
= Poj

(
ajt
)

− Poj,4
(
ajt−

∫ t

0
aj(X

c+εθeθ (s))ds
)
. (20)

Based on the decompositions in Eqs.(19) and (20), RFD correlates
the simulation of Xc−εθeθ and Xc+εθeθ by simulating the common
Poisson process Poj(ajt) and then filtering out the selection by
the corresponding exact propensities, exploiting the rejection-based
simulation framework [9]. The variance of the estimator by RFD is reduced
to be proportional to the variance of the residual Poisson process with rates
equal to the difference between the upper bound and the exact propensity.

2.2 Deterministic sensitivity analysis

In this section, we present two popular methods to compute sensitivity
analysis in the deterministic framework. These methods, namely the direct
differential method and the finite difference method, are different in the
level of approximation introduced to compute the sensitivity coefficient
defined in Eq.(9). An exhaustive review of methods for deterministic
sensitivity analysis of biological systems can be found in [24].

2.2.1 Direct differential method
One way to compute the sensitivity coefficients at different time points
is through the direct differential method [25]. This method is a non-
approximative technique in the sense that, given that the finite precision
arithmetic of the computer is not taken into account, the values of the
computed derivatives are exact. Consider Eq.(9), the corresponding set of
n ODEs for the sensitivity coefficients is defined, for each reaction index
θ = 1, ...,m, as

dSθ(t)

dt
= Fdθ (t) + J(t)× Sθ(t), (21)

where J(t) is the Jacobian matrix of the original ODE system given by
Eq.(6) and Fdθ (t) gives the vector of derivatives of each function Fi(t)
with respect to parameter dθ . We recall that the Jacobian matrix is ann×n
matrix in which the (i, j) element is given by ∂Fi/∂[Xj ]. A complete
mathematical description on how to derive Eq.(21) can be found in the
Supplementary Material. The sensitivity set of ODEs in Eq.(21) must be
solved simultaneously with the original ODE system in Eq.(6) by means
of a suitable numerical method. The initial condition for the first n ×m
variables of the complete model is 0, unless dθ = [Xi](0). In the latter
case the initial condition is 1.

The main disadvantage of the direct differential method is that it
relies on the definition of the Jacobian matrix, which may require
human intervention and it is time-consuming especially for large-scale
or nonlinear problems. To overcome the problem, the temporal evolution
of the sensitivity coefficients can be numerically estimated by the FD
approximation.

2.2.2 Finite difference approximation
The principle of the FD approximation is that it approximates the
differential operator by replacing the derivatives with the differential
quotients. The approximation error between the numerical solution and
the exact solution is determined by the error that is committed by moving
from a differential operator to a difference operator. According to the error
order, a FD method can be divided in first or second order. A commonly
used second order FD method is the central difference approximation,
which computes the sensitivity coefficient as:

Sθ(t) =
∂[X](t)

∂dθ
∼=

[X]d+εθeθ (t)− [X]d−εθeθ (t)

2εθ
, (22)

where εθ indicates the multiplication between the considered perturbation
factor ε and the deterministic ratedθ , andeθ is the unitm-vector as defined
for the stochastic case. This method is easy to implement because it requires
no extra code beyond the original model solver. The approximation error
of the central FD approximation in Eq.(22) is O(ε2).

3 Method comparison
In this section, the methods introduced in Sect.2 will be compared to
identify potential differences in their output. Three theoretical models
have been considered to test the computational approaches in specific
conditions where stochastic and deterministic simulation provide different
results. Such conditions are: systems with unstable steady states (described
in Sect.3.1 by considering the Oregonator model [26]), oscillators with
population extinction (described in Sect.3.2 by considering the Oscillator
model [27]) and bistable systems (described in Sect.3.3 by considering the
Schlögl model [31]). Since these conditions rely on important properties
of dynamical systems, which are per se quite difficult to understand, we
intentionally considered simple theoretical models, because our aim is to
highlight result differences in very controlled situations. We think that this
strategy has several benefits because it permits focusing on the investigated
dynamical properties without being confused by the complexity of the
model itself. On the other hand, the theoretical basis of these models may
prevent a clear understanding of reaction stoichiometry from a chemical
point of view. We refer to the provided references for any further detail on
this topic.

For all benchmarks, four levels of comparison have been studied: (i)
between the two deterministic methods, (ii) between the five stochastic
methods, (iii) between stochastic and deterministic FD methods and
(iv) between stochastic and deterministic “exact” methods (namely the
direct differential method and the GT method). To provide a concise
method comparison, all the sensitivity results provided in the following
are related to one model parameter and one model variable. However, the
results for the other model parameters and variables can be found in the
Supplementary Material.

All calculations have been run in similar conditions on a Windows
Server 2008 R2 computer, with 2 quad core Intel Xeon 2.13GHz CPUs
and 20 GB of RAM memory. Deterministic simulations have been
computed in MATLAB v.R2017b by means of the ODE solver ode45,
while stochastic simulations have been computed by means of ad hoc
implementations of the required methodologies. For all the stochastic
algorithms, 10, 000 model simulations have been computed to derive
the sensitivity coefficients. For FD methods, both in the deterministic
and in the stochastic framework, we set the perturbation multiplicative
factor ε = 0.01. Finally, to allow a simple model translation between
the deterministic and the stochastic framework, we assumed in all cases a
theoretical reaction volume equal to the inverse of the Avogadro’s number.
This allows the semplification of Eq.(4) to have molar concentrations equal
to abundances. For the sake of simplicity, we also omitted all unit of
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Fig. 1. The dynamics of the Oregonator model. (A) and (B) Model dynamics at the steady state (c1 = d1 = 0.1, c2 = d2 = 2, c3 = d3 = 104, c4 = 0.016, d4 = 0.08, c5 =

d5 = 26 and #X0 = [X0] = 500,#Y0 = [Y0] = 1000,#Z0 = [Z0] = 2000) in the deterministic and stochastic case. (C) and (D) Model dynamics from a perturbed state
(#X = 600,#Y = 1000,#Z = 2000, model parameters as in cases A and B) in the deterministic and stochastic case.

measures for the deterministic rates, which can be easily deduced as ad
hoc ratios of concentration versus time [5].

3.1 The Oregonator model

The first model is a simplified version of a theoretical oscillator called
Oregonator [26]. It has three species (X, Y and Z) and five reactions:

R1 : X + Y
c1−→ ∅ R2 : Y

c2−→ X

R3 : X
c3−→ 2X + Z R4 : 2X

c4−→ ∅
R5 : Z

c5−→ Y,

(23)

where the symbol ∅ is used for degradation.
This set or reactions corresponds to the following set of ODEs:

d[X]
dt

= −d1[X][Y ] + d2[Y ] + d3[X]− 2d4[X]2

d[Y ]
dt

= −d1[X][Y ]− d2[Y ] + d5[Z]
d[Z]
dt

= d3[X]− d5[Z].
(24)

For this model, a predefined set of rate parameters and initial values
can lead the system dynamics to a steady state condition, which makes the
computation of the three derivatives all equal to zero (see Fig.1A). This
behaviour never occurs when stochastic simulation is employed, because
when reactions are fired one after the other in an asynchronous way,
the system immediately exits from the equilibrium and starts oscillating
(see Fig.1B). To analyse the impact of this discrepancy between the two
approaches, we will compare the sensitivity results for this model in two
cases: (i) in a perturbed state, where the ODEs are not equal to zero
(Fig.1C–D), and (ii) in the steady state condition (Fig.1A–B).

In Fig.2, the sensitivity results of the model around the perturbed
state are presented. The figure shows that both the deterministic and the

Table 1. Methods’ runtime for the Oregonator model around the perturbed state.

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.33±0.24 s 0.57±0.39 s 0.57±0.38 s 0.49±0.34 s 0.27± 0.23 s
Total 36.91 h 63.78 h 63.61 h 54.43 h 30.27 h
(10,000 runs)

Deterministic approach

Comp. time FD method Direct differential method
2.52 s 0.34 s

Table 2. Methods’ runtime for the Oregonator model around the steady state.

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.33±0.25 s 0.57±0.39 s 0.57±0.39 s 0.53±0.37 s 0.50±0.58 s
Total 36.27 h 63.18 h 63 h 58.50 h 55.98 h
(10,000 runs)

Deterministic approach

Comp. time FD method Direct differential method
1.05 s 0.08 s

stochastic approaches provide similar results. As expected, we see a perfect
overlap of the two deterministic methods (Fig.2A). The same happens for
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Fig. 2. Results for the sensitivity analysis computed on the Oregonator model around the perturbed state for parameters d1 and c1 on variableX. (A) Sensitivity results compared between
the deterministic methods. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD methods. (D) Sensitivity results compared
between the “exact” methods.

the average of the five stochastic methods (Fig.2B), which mainly differ
in terms of result variance. The average result of the stochastic methods
also overlaps with the one of the deterministic simulation (Fig.2C and
Fig.2D). However, the computational time required by the two approaches
is very different (see Tab.1). Each stochastic method needs more than one
day to compute the 10, 000 simulations required to derive the sensitivity
coefficient, while only few seconds are needed in the deterministic case.
Among all the stochastic methods, RFD is the one providing the lowest
runtime and result variance. On the contrary, the GT algorithm is the one
providing the largest result variance.

The quite close overlap between the deterministic and the stochastic
framework does not hold when parameter sensitivity is computed at the
model steady state (Fig.3). In such a case we observe that the sensitivity
results are different between the two approaches. The two deterministic
methods exhibit instability, which can be clearly appreciated for the direct
differential method (Fig.3A). For what concerns the FD method, we
observed that if we decrease the approximation error (by decreasing ε),
the amplitude of the oscillations of the sensitivity coefficient increases
correspondently, suggesting that also this method is not stable. This is due
to the fact that a very small perturbation of model parameters is enough
to exit from the steady state and this makes the deterministic approach
unreliable independently from the employed integration method or the
adopted tolerance value. This, however, never happens in the stochastic
framework, where the random nature of the approach prevents the system
to be in the steady state. For this reason, the computational time of
deterministic methods listed in Tab.2 is not informative, while we can
notice that the stochastic algorithms require a similar computational effort
as given in Tab.1. Although RFD is not the fastest method, it is still the
best compromise between computational time and variance.

3.2 The Oscillator model

The Oscillator [27] model is a noise-induced system with three species (A,
B and C) and three reactions:

R1 : A+B
c1−→ 2B

R2 : B + C
c2−→ 2C

R3 : C +A
c3−→ 2A.

(25)

The corresponding set of ODEs is:

d[A]
dt

= −d1[A][B] + d3[A][C]
d[B]
dt

= d1[A][B]− d2[B][C]
d[C]
dt

= d2[B][C]− d3[A][C].

(26)

The model exhibits a symmetrical bell shape that, in the deterministic
framework, is preserved with a perpetual periodical oscillating behaviour
along all simulation time (see Fig.4A). Conversely, in the stochastic
framework the amplitude of the oscillations changes over time and this
opens the possibility for one or two out of three species to disappear (zero
abundance). When this happens, the oscillatory pattern of the system stops
and no other reactions are fired (see Fig.4B).

Fig.5 shows the sensitivity results obtained from the different methods.
Comparing the two deterministic methods (Fig.5A), we see a perfect
overlap of the two methods. This means that the error introduced by the
finite difference approximation can be considered to be irrelevant. We can
also notice how the sensitivity function increases its oscillation amplitude
over time. This happens because perturbing a model parameter affects the
frequency of the oscillations. As a result, the nominal and the perturbed
state become increasingly out of sync over time. This explains both the
periodicity of the sensitivity function and the increasing amplitude of its
oscillations. We refer to [28; 29; 30] as a first look to the vast literature
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Fig. 3. Results for the sensitivity analysis computed on the Oregonator model around the steady state for parameters d1 and c1 on variable X. (A) Sensitivity results compared between
the deterministic methods. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD methods. (D) Sensitivity results compared
between the “exact” methods.

Fig. 4. Species dynamics for the Oscillator model. (A) Model dynamics computed with the deterministic approach (d1 = 1, d2 = 1, d3 = 1 and [A0] = 900, [B0] = 500, [C0] =

200). (B) One possible model dynamics computed with the stochastic approach (c1 = 1, c2 = 1, c3 = 1 and #A0 = 900,#B0 = 500,#C0 = 200). In this case species B and C
died at time 0.15m and this event stops the oscillatory pattern of the model.

dealing with sensitivity analysis of oscillatory systems, which is more
focused on quantities of oscillations such as period and amplitude. Among
the stochastic methods, we see that the GT method has the largest variance
with respect to all the other methods (Fig.5B and Fig.5D). Moreover,
all the stochastic methods have a large result variance. This is because
in the 10, 000 simulations used to derive the sensitivity a wide range
of possibilities are explored, with simulations that oscillate for all the
simulation time, while other stop at some time because some model
variables go to zero. Looking at Fig.5B and Fig.5D, we observe how
deterministic and stochastic approaches provide different results. In fact,
after a certain amount of time, the mean of the stochastic approach does
not overlap anymore with the deterministic approach. This can be better
appreciated in Fig.6 where Fig.5B and Fig.5D are zoomed to provide the

firsts 2 and 6 oscillation periods. At the very beginning, the sensitivity
values computed by the two approaches overlap (Fig.6A and Fig.6C), while
they step by step decouple as the simulation time progresses (Fig.6B and
Fig.6D).

As expected, the computational time required by the stochastic
methods is still higher than the one of deterministic methods (see Tab.3).

3.3 The Schlögl model

The Schlögl model [31] is a reaction network that exhibits bistability and
switching behaviour [32; 33; 34]. The system has two stable steady states
separated by an unstable state. The model consists of three species (A, B
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Fig. 5. Results for the sensitivity analysis computed on the Oscillator model for parameters d1 and c1 on variableA. (A) Sensitivity results compared between the deterministic methods.
(B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD methods. (D) Sensitivity results compared between the “exact” methods.

Fig. 6. Zoom for 2 and 6 periods for the sensitivity analysis computed on the Oscillator model for parameters d1 and c1 on variableA. (A) and (B) Results computed with the FD methods.
(C) and (D) Results computed with the “exact” methods.
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Fig. 7. Dynamics of speciesX of the Schlögl model. (A) Model dynamics computed with the deterministic approach (d1 = 1.5·10−7, d2 = 1.67·10−5, d3 = 1.0·10−4, d4 = 3.5

and [A0] = 100000, [B0] = 200000, [X0] = 250). (B) Two possible model dynamics computed with the stochastic approach (c1 = 3.0 · 10−7, c2 = 1.0 · 10−4, c3 =

1.0 ·10−3, c4 = 3.5 and #A0 = 100000,#B0 = 200000,#X0 = 250). The difference between the two dynamics shows the bistability of the model in the stochastic framework.

Table 3. Methods’ runtime for the Oscillator model.

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.14±0.13 s 0.26±0.22 s 0.26±0.21 s 0.22±0.19 s 0.21±0.21 s
Total 34.36 h 66.96 h 66.20 h 54.72 h 53.29 h
(10,000 runs)

Deterministic approach

Comp. time FD method Direct differential method
1.78 s 0.39 s

and X) and four reactions:

R1 : A+ 2X
c1−→ 3X R2 : 3X

c2−→ A+ 2X

R3 : B
c3−→ X R4 : X

c4−→ B.
(27)

The corresponding set of ODEs is:

d[A]
dt

= −d1[A][X]2 + d2[X]3

d[B]
dt

= −d3[B] + d4[X]
d[X]
dt

= d1[A][X]2 − d2[X]3 + d3[B]− d4[X].

(28)

In the deterministic framework, the system converges to one of the
two steady states depending on the initial state (see Fig.7A). Instead, in
the stochastic framework, the system may jump between the two stable
states spontaneously, due to its inherent randomness, creating a behaviour
that cannot be observed in the deterministic framework (see Fig.7B and
Fig.8). For this model we only provide the results for the speciesX because
species A and B are large and are assumed to remain essentially constant
over the simulation time.

In Fig.9, we report the results of the sensitivity analysis. Looking
at Fig.9A, we notice that the sensitivity values obtained by the two
deterministic methods do not overlap. This approximation can be
overcome with a smaller choice of ε (see Fig.9A, dashed line). This means
that for this model the approximation introduced by the FD method is not
negligible with the choice of ε = 0.01. Also, the results show that the
mean of the sensitivity values computed with the stochastic methods never
overlaps the deterministic one (Fig.9C). In fact, only with the stochastic
approach the bistability nature of the model can be appreciated. The
occurrence of bistability also explains why the variance of all the stochastic
algorithms increases until a certain time point (close to 10). From time 10

Fig. 8. Histogram of speciesX at time 6 calculated by 10,000 stochastic simulation runs.
The x-axis is the interval of population of species X. The y-axis is the probability for species
X to be in the corresponding interval. The figure shows the bistability of the model since at
time 6 the population of speciesX fluctuates around two peaks (close to 100 and 400) for
all the three considered cases: nominal state (Xc1 ), perturbed positive state (Xc1+εc1 )
and perturbed negative state (Xc1−εc1 ).

to time 15, the second stable state becomes a rare event and, as can be seen
in Fig.10, all the system states end up around the value of 90. However,
the variance still remains high due to the small value of the parameter c1,
which produces an high sensitivity value.

The computational time required by the two approaches is lower than
for all the other considered models. The means of the stochastic methods
are comparable with the deterministic direct differential method (see Tab.4)
and RFD is still the best option in terms of low computational time and
small variance.

4 Conclusions
This paper compares the stochastic and the deterministic sensitivity
analysis for biochemical reaction systems. Three theoretical models have
been considered to test the computational approaches in specific conditions
where stochastic and deterministic simulation yield different results (the
Oregonator model for systems with unstable steady states, the Oscillator
model for oscillators with population extinction and the Schlögl model for
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Fig. 9. Results for the sensitivity analysis computed on the Schlögl model for parameters d1 and c1 on variable X. (A) Sensitivity results compared between the deterministic methods.
The dashed line provides the output of the FD method with ε = 0.001. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD
methods. (D) Sensitivity results compared between the “exact” methods.

Fig. 10. Histogram of species X at time 15 calculated by 10,000 simulation runs. The
x-axis is the interval of population of species X. The y-axis is the probability for speciesX
to be in the corresponding interval. The figure shows that at time 15 the second state (the
one close to 400) becomes a rare event for all the three considered cases: nominal state
(Xc1 ), perturbed positive state (Xc1+εc1 ) and perturbed negative state (Xc1−εc1 ).

bistable systems). Our comparison shows that both approaches have some
pros and cons as summarized in Fig. (11).

The results for the Oregonator model underline how the deterministic
approach is not able to deal with the steady state condition that, for this
model, is so different with respect to the one of the perturbed state. This
instability could be an important limitation of the method because the
steady state condition is often used in the deterministic approach for

Table 4. Methods’ runtime for the Schlögl model.

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.03±0.04 s 0.06±0.05 s 0.05±0.06 s 0.04±0.05 s 0.03±0.04s
Total 24.93 h 44.59 h 44.69 h 39.88 h 27.95 h
(10,000 runs)

Deterministic approach

Comp. time FD method Direct differential method
0.15 s 0.04 s

parameter calibrations. Moreover, the deterministic approach is unable
to show the specific model behaviour that is expressed only when the
randomness nature of the system is considered. In fact, the deterministic
and stochastic approaches show the same results for the Oregonator model
around the perturbed state as the system has the same behaviour. Instead,
for the Oscillator and the Schlögl model, the results are different because
the two systems have different behaviour in the two conditions. This point
is very important because, given the high computational cost of sensitivity
analysis, a relatively small number of modeling works rely on the stochastic
approach to compute the sensitivity analysis. Moreover, in some of these
works the impact of such a choice might have been underestimated. To
this regard, on the top of the three conditions considered in the review,
only the risk of population extinction could be potentially predicted when
deterministic simulation is employed. Indeed, this is a direct consequence
of low numbered species that can be observed also by deterministic
simulation. Conversely, the other two conditions can be identified only
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Fig. 11. Graphical comparison of the reviewed methods for computing sensitivity analysis. For each computational approach the most important pros and cons are indicated. The FD and
the RFD methods are highlighted in grey to indicate that these are the methods providing the best performances, on average, in all the case studies presented in the review. (A) The methods
are firstly divided in exact and approximate strategies. (B) The methods are firstly divided in deterministic and stochastic methods.

if the modeler tries to also simulate the system by stochastic simulation. In
our experience, it would be good to run some stochastic simulations of the
model to check that the stochastic behaviour of the system does not deviate
too much from the deterministic one. When this happens, deterministic
simulation should not be used. This preliminary checking, however, could
be computationally demanding in case of large models or in case of a large
set of repeated analyses.

The limitations of the stochastic framework are the large variance of
their estimates and the computational time. In all of our test cases, the GT
method has the largest variance and most of the time the shortest runtime.
For the four FD methods considered, IRN has the largest variance and
the shortest simulation time. In terms of simulation time, IRN showed
a computational time that is comparable with CRN even if this method
showed a smallest variance with respect to IRN. Additionally, even if the
CFD and RFD showed similar results in terms of variance, RFD often has
the lowest computational time.
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Key points
• Sensitivity analysis is emerging as an important tool for investigating

mathematical models of biological dynamics.
• The deterministic and the stochastic approaches for computing

sensitivity analysis can provide very different results in conditions
where deterministic simulation is unable to capture the exact evolution
in time of the biological system (systems with unstable steady states,
oscillators with population extinction, bistable systems).

• Despite the fact that steady state analysis is very popular
in deterministic modeling, the deterministic approach exhibited
numerical instability in specific conditions when the sensitivity has
been computed at the model steady state.

• Stochastic methods take into account system stochasticity, but they
are often affected by the large variance of the results and a long
computational time.

• RFD resulted to be the best compromise among the stochastic
algorithms in terms of variance and computational cost.
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Figure legends
Fig. 1 The dynamics of the Oregonator model. (A) and (B) Model dynamics
at the steady state (c1 = d1 = 0.1, c2 = d2 = 2, c3 = d3 =

104, c4 = 0.016, d4 = 0.08, c5 = d5 = 26 and #X0 = [X0] =

500,#Y0 = [Y0] = 1000,#Z0 = [Z0] = 2000) in the deterministic
and stochastic case. (C) and (D) Model dynamics from a perturbed state
(#X = 600,#Y = 1000,#Z = 2000, model parameters as in cases
A and B) in the deterministic and stochastic case.

Fig. 2 Results for the sensitivity analysis computed on the Oregonator
model around the perturbed state for parameters d1 and c1 on variable
X . (A) Sensitivity results compared between the deterministic methods.
(B) Sensitivity results compared between the stochastic methods. (C)
Sensitivity results compared between the FD methods. (D) Sensitivity
results compared between the “exact” methods.

Fig. 3 Results for the sensitivity analysis computed on the Oregonator
model around the steady state for parameters d1 and c1 on variable
X . (A) Sensitivity results compared between the deterministic methods.
(B) Sensitivity results compared between the stochastic methods. (C)
Sensitivity results compared between the FD methods. (D) Sensitivity
results compared between the “exact” methods.

Fig. 4 Species dynamics for the Oscillator model. (A) Model dynamics
computed with the deterministic approach (d1 = 1, d2 = 1, d3 = 1

and [A0] = 900, [B0] = 500, [C0] = 200). (B) One possible model
dynamics computed with the stochastic approach (c1 = 1, c2 = 1, c3 =

1 and #A0 = 900,#B0 = 500,#C0 = 200). In this case species B
and C died at time 0.15m and this event stops the oscillatory pattern of the
model.

Fig. 5 Results for the sensitivity analysis computed on the Oscillator model
for parameters d1 and c1 on variable A. (A) Sensitivity results compared
between the deterministic methods. (B) Sensitivity results compared
between the stochastic methods. (C) Sensitivity results compared between
the FD methods. (D) Sensitivity results compared between the “exact”
methods.

Fig. 6 Zoom for 2 and 6 periods for the sensitivity analysis computed on
the Oscillator model for parameters d1 and c1 on variable A. (A) and (B)
Results computed with the FD methods. (C) and (D) Results computed

with the “exact” methods.

Fig. 7 Dynamics of speciesX of the Schlögl model. (A) Model dynamics
computed with the deterministic approach (d1 = 1.5 · 10−7, d2 =

1.67 · 10−5, d3 = 1.0 · 10−4, d4 = 3.5 and [A0] = 100000, [B0] =

200000, [X0] = 250). (B) Two possible model dynamics computed with
the stochastic approach (c1 = 3.0 · 10−7, c2 = 1.0 · 10−4, c3 = 1.0 ·
10−3, c4 = 3.5 and #A0 = 100000,#B0 = 200000,#X0 = 250).
The difference between the two dynamics shows the bistability of the
model in the stochastic framework.

Fig. 8 Histogram of species X at time 6 calculated by 10,000 stochastic
simulation runs. The x-axis is the interval of population of species X. The
y-axis is the probability for speciesX to be in the corresponding interval.
The figure shows the bistability of the model since at time 6 the population
of species X fluctuates around two peaks (close to 100 and 400) for all
the three considered cases: nominal state (Xc1 ), perturbed positive state
(Xc1+εc1 ) and perturbed negative state (Xc1−εc1 ).

Fig. 9 Results for the sensitivity analysis computed on the Schlögl model
for parameters d1 and c1 on variable X . (A) Sensitivity results compared
between the deterministic methods. The dashed line provides the output of
the FD method with ε = 0.001. (B) Sensitivity results compared between
the stochastic methods. (C) Sensitivity results compared between the FD
methods. (D) Sensitivity results compared between the “exact” methods.

Fig. 10 Histogram of speciesX at time 15 calculated by 10,000 simulation
runs. The x-axis is the interval of population of species X. The y-axis is the
probability for species X to be in the corresponding interval. The figure
shows that at time 15 the second state (the one close to 400) becomes a rare
event for all the three considered cases: nominal state (Xc1 ), perturbed
positive state (Xc1+εc1 ) and perturbed negative state (Xc1−εc1 ).

Fig. 11 Graphical comparison of the reviewed methods for computing
sensitivity analysis. For each computational approach the most important
pros and cons are indicated. The FD and the RFD methods are highlighted
in grey to indicate that these are the methods providing the best
performances, on average, in all the case studies presented in the review.
(A) The methods are firstly divided in exact and approximate strategies. (B)
The methods are firstly divided in deterministic and stochastic methods.


