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Small-Signal Modeling of Mutual Saturation in

Induction Machines
Marko Hinkkanen, Member, IEEE, Anna-Kaisa Repo, Mikaela Ranta, and Jorma Luomi, Member, IEEE

Abstract—A small-signal model is derived for saturated in-
duction machines. Inductances are allowed to saturate as a
function of their own current (or flux), and the mutual saturation
effect originating mainly from skewed or closed rotor slots is
also included in the model. The model fulfills the reciprocity
conditions, and it can be applied to parameter identification
and to the analysis and development of flux angle estimation
methods. As application examples, the parameters of a 2.2-kW
induction machine were identified using the data obtained from
time-stepping finite-element analysis and locked-rotor measure-
ments. The proposed model fits well to the data, and the fitted
parameters are physically reasonable.

Index Terms—Closed slots, induction motors, magnetic satu-
ration, motor models, reciprocity, rotor skew, signal injection.

I. INTRODUCTION

Induction machines are usually magnetically saturated in

the rated operating point. Conventionally, the main flux is

assumed to saturate only as a function of the magnetizing

current. However, it has been observed that the main flux may

depend significantly on the load [1], [2]. This mutual saturation

effect originates mainly from skewed and closed rotor slots [3],

which are used in the majority of small machines.

Magnetic saturation affects the transient behavior of the

machine, but the effects of saturation are not well known.

For example, the dynamical effects of saturation are usually

ignored in parameter identification methods that rely on tran-

sient behaviour [4]. Consequently, incremental parameters may

be unintentionally identified in practical saturated conditions

instead of the expected steady-state parameters. Other exam-

ples are various flux estimation methods based on saturation-

induced spatial anisotropies, e.g. [5], [6]. Conventionally,

heuristic high-frequency small-signal models are applied in

the analysis of these methods. Saturation-induced anisotropies

depend on the load and flux level, and they are generally not

fixed in position relative to any flux component [7].

The small-signal impedance of a saturated machine depends

on the direction of the excitation signal [8]; this phenomenon

has been modeled assuming that the main flux depends only

on the magnetizing current [9], [10]. However, the saturation

phenomena specific to machines with closed or skewed rotor

slots are more complicated, and this assumption should be

relaxed.

It is common practice to consider the losses dissipated in

the magnetic circuit separately, and to use lossless inductors to

model the magnetic circuit as in Fig. 1. The saturable magnetic

circuit should fulfill the reciprocity conditions [11], [12] since

otherwise the magnetic circuit may unintentionally behave as

Fig. 1. Dynamic T model of an induction motor in coordinates rotating at
ωs. The angular slip frequency is ωr = ωs − ωm, where ωm is the angular
speed of the rotor.

an energy source or sink. In other words, the energy stored in

the magnetic circuit should be independent of the integration

path. When relaxing the assumptions relating to the saturation,

these conditions have to be taken into account.

This paper presents a small-signal model suitable for satu-

rated induction machines that may have closed or skewed rotor

slots. Each inductance is allowed to saturate as a function of

its own current (or flux), and the mutual saturation effect is

also included in the model. The proposed model fulfills the

reciprocity conditions. As an example, the model is applied

to parameter identification of a 2.2-kW induction machine.

The identification data is produced using time-stepping finite-

element analysis (FEA) [13] and locked-rotor measurements.

Voltage pulses [14] and pulsating voltage-signal injection are

used as excitation signals.

II. MACHINE MODEL

Vectors will be denoted by boldface lowercase letters and

matrices by boldface uppercase letters. The matrix transpose

will be marked with the superscript T. The identity matrix,

the orthogonal rotation matrix, and the zero matrix are

I =

[

1 0
0 1

]

, J =

[

0 −1
1 0

]

, O =

[

0 0
0 0

]

(1)

respectively. Incremental inductances will be marked with the

subscript t.

A. Large-Signal T Model

In a general coordinate system rotating at angular speed ωs,

the voltage equations of the induction machine are

dψs

dt
= us −Rsis − ωsJψs (2a)

dψr

dt
= ur −Rrir − (ωs − ωm)Jψr (2b)
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Fig. 2. Typical saturation characteristics of the main flux ψm(im, ir). On the
left-hand side, the main flux is shown as a function of the magnetizing current
im: the upper curve corresponds to no-load operation (rotor current ir = 0)
and the lower curve corresponds to operation under load (ir = ir0). On the
right-hand side, the main flux is shown as a function of the rotor current at two
different values of the magnetizing current (im = 0.5 · im0 and im = im0).
Incremental inductances Lmt0 = (∂ψm/∂im)0 and Lt0 = (∂ψm/∂ir)0,
and the steady-state magnetizing inductance Lm0 = ψm0/im0 are shown in
the operating point ψm0 = ψm(im0, ir0).

where us = [usd, usq]
T is the stator voltage vector, is =

[isd, isq]
T the stator current vector, andRs the stator resistance.

The rotor resistance is Rr, the rotor voltage vector ur, the rotor

current vector ir, and the electrical angular speed of the rotor

ωm.

The stator and rotor flux linkage vectors are

ψs = Lsis + Lmir (3a)

ψr = Lmis + Lrir (3b)

respectively, where Lm is the magnetizing inductance.1 The

stator and rotor inductances are defined by Ls = Lm+Lsσ and

Lr = Lm+Lrσ, respectively, where Lsσ and Lrσ are the stator

and rotor leakage inductances, respectively. The T-equivalent

flux linkage model corresponding to (3) is included in Fig.

1. The stator and rotor leakage fluxes are ψsσ = Lsσis and

ψrσ = Lrσir, respectively, and the main flux is ψm = Lmim,

where im = is+ir is the magnetizing current. All inductances

are allowed to depend on the currents (or the fluxes), and they

are assumed to be lossless.

B. Power Balance

For per-unit quantities, the power balance is obtained from

(2) as

iTs us + i
T
r ur = Rsi

2
s +Rri

2
r +

dWf

dt
+ Teωm (4)

where is = ‖is‖ and the magnitudes of other vectors are

denoted similarly. The electromagnetic torque is

Te = ψ
T
r Jir = i

T
s Jψs (5)

1Considering the stator flux ψs and the rotor flux ψr as state variables,
the state-space representation of the saturated machine can be formed by
substituting the stator and rotor currents solved from the flux equations (3) in
the voltage equations (2).

and the rate of change of the magnetic energy is

dWf

dt
= iTs

dψs

dt
+ iTr

dψr

dt

= is
dψsσ

dt
+ im

dψm

dt
+ ir

dψrσ

dt

(6)

The last form is obtained by assuming the flux vectors to be

parallel with the corresponding current vectors in accordance

with Fig. 1, while the inductances may be functions of the

currents or fluxes. Based on (6), the incremental inductances

should fulfill the reciprocity conditions [12]:

∂ψsσ

∂im
=
∂ψm

∂is
,

∂ψm

∂ir
=
∂ψrσ

∂im
,

∂ψrσ

∂is
=
∂ψsσ

∂ir
(7)

The reciprocity conditions are given in a more general form

in Appendix A.

C. Assumptions on Magnetic Saturation

In the following, Lsσ is assumed constant for simplicity, but

Lm and Lrσ are functions of two currents:

Lm(im, ir) =
ψm(im, ir)

im
, Lrσ(im, ir) =

ψrσ(im, ir)

ir
(8)

(cf. illustration in Fig. 2 relating to Lm). The following

incremental inductances fulfilling (7) are defined:

Lmt =
∂ψm

∂im
; Lrσt =

∂ψrσ

∂ir
; Lt =

∂ψm

∂ir
=
∂ψrσ

∂im
(9)

Assuming the magnetizing current magnitude im constant, the

magnitude ψm of the main flux decreases as the magnitude ir
of the rotor current increases. Hence, the incremental mutual

inductance Lt is negative. If needed, the saturation of Lsσ

could be easily taken into account.

III. LINEARIZED MODEL

A. Preliminaries

In the following, tildes refer to the deviation about the

operating point and operating-point quantities are marked with

the subscript 0, e.g., ũs = us−us0. Synchronous coordinates

rotating at constant angular speed ωs0 are considered. The

linearized voltage equations are

dψ̃s

dt
= ũs −Rsĩs − ωs0Jψ̃s (10a)

dψ̃r

dt
= ũr −Rrĩr − ωr0Jψ̃r + Jψr0ω̃m (10b)

where the operating-point angular slip frequency is ωr0 =
ωs0 − ωm0. The deviations of the stator and rotor fluxes are

ψ̃s = Ls0ĩs + Lm0ĩr + im0L̃m (11a)

ψ̃r = Lm0ĩs + Lr0ĩr + im0L̃m + ir0L̃rσ (11b)

respectively. The linearized torque expression is

T̃e = ψ
T
r0Jĩr − iTr0Jψ̃r (12)
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The deviation of the magnetizing inductance can be written

as

L̃m =

(

∂Lm

∂im

∂im
∂imd

)

0

ĩmd +

(

∂Lm

∂im

∂im
∂imq

)

0

ĩmq

+

(

∂Lm

∂ir

∂ir
∂ird

)

0

ĩrd +

(

∂Lm

∂ir

∂ir
∂irq

)

0

ĩrq

=
Lmt0 − Lm0

i2m0

iTm0ĩm +
Lt0

im0ir0
iTr0ĩr

(13)

where ĩm = ĩs + ĩr. Assuming no mutual saturation effect,

i.e. Lt0 = 0, the deviation L̃m of the magnetizing inductance

is zero if the current deviation ĩm is perpendicular to the

operating-point current im0. The deviation of the rotor leakage

inductance L̃rσ can be derived in a fashion similar to (13).

B. State-Space Representation

The deviations of the inductances L̃m and L̃rσ can be

inserted into (11). Furthermore, ĩs and ĩr can be solved from

(11) and inserted into (10), leading to a linear multiple-input

state-space representation

dx̃

dt
= Ax̃+Bsũs +Brũr + bω̃m (14)

where the state vector and the input matrices are

x̃ =

[

ψ̃s

ψ̃r

]

, Bs =

[

I

O

]

, Br =

[

O

I

]

, b =





0
0

Jψr0



 (15)

The state matrix is

A = −
[

RsI O

O RrI

]

L−1 −
[

ωs0J O

O ωr0J

]

(16)

where the inductance matrix is defined as

L =

[

Ls0I Lm0I

Lm0I Lr0I

]

+
Lmt0−Lm0

i2m0

[

im0i
T
m0 im0i

T
m0

im0i
T
m0 im0i

T
m0

]

+
Lrσt0−Lrσ0

i2r0

[

O O

O ir0i
T
r0

]

+
Lt0

im0ir0

[

O im0i
T
r0

ir0i
T
m0 im0i

T
r0 + ir0i

T
m0

]

(17)

The matrix L is symmetric due to the reciprocity conditions,

and its last three terms originate from saturation.

The stator current, the rotor current, and the torque are

chosen as output variables,

ĩs = Csx̃, ĩr = Crx̃, T̃e = cx̃ (18)

where the output matrices relating to the currents are

Cs =
[

I O
]

L−1, Cr =
[

O I
]

L−1 (19)

and the output matrix relating to the torque

c = ψT
r0

[

O J
]

L−1 − iTr0
[

O J
]

(20)

in accordance with (12). The system can easily be analyzed

using conventional tools for linear systems. If the saturation

is not taken into account (i.e. Lmt0 = Lm0, Lrσt0 = Lrσ0,

and Lt0 = 0), the small-signal model equals the conventional

space-vector model. The model presented in [10] is obtained

as a special case by choosing Lrσt0 = Lrσ0 and Lt0 = 0.

C. Steady-State Relations

From (2) and (3), the steady-state condition
[

us0

ur0

]

=

[

RsI+ ωs0Ls0J ωs0Lm0J

ωr0Lm0J RrI+ ωr0Lr0J

] [

is0
ir0

]

(21)

is obtained. The operating-point voltages can thus be deter-

mined if the parameters and the operating-point currents are

known.

In many applications, the stator voltage us0, the stator

current is0, and the stator angular frequency ωs0 are known

in the operating point. Furthermore, the rotor winding is typi-

cally short-circuited, and the rotor current ir0 is inaccessible.

Therefore, it is useful to solve the rotor current from (21),

ir0 = −J [us0 − (RsI+ ωs0Ls0J)is0] /(ωs0Lm0) (22)

Hence, the magnetizing current im0 = is0 + ir0 and the rotor

flux ψr0 = Lm0is0 + Lr0ir0 needed in the linearized model

can be calculated.

In addition to ir0, two parameters can be solved from

(21). Convenient choices are the rotor resistance and the rotor

inductance:

Rr = i
T
r0(ur0 − ωr0Lm0Jis0)/i

2
r0 (23)

Lr0 = −iTr0J(ur0 − ωr0Lm0Jis0)/(ωr0i
2
r0) (24)

The rotor leakage inductance needed in the model is Lrσ0 =
Lr0 − Lm0. If the linearized model is used for parameter

estimation or fitting, the information in (21) should be used

to avoid inconsistency with the operating-point data. Further-

more, the fitting procedure becomes easier, since the number

of independent parameters decreases. If the operating-point

stator voltage us0 is unknown, it may be useful to express the

rotor current as

ir0 = (α0I+ ωr0J)
−1 (ur0 − ωr0Lm0Jis0) /Lr0 (25)

where α0 = Rr/Lr0 is the inverse rotor time constant.

IV. TRANSFER FUNCTIONS

The stator current can be expressed as ĩs(s) = Y s(s)ũs(s),
where the multiple-input-multiple-output transfer function ma-

trix (or the small-signal stator-admittance matrix) is

Y s(s) =

[

Ydd(s) Ydq(s)
Yqd(s) Yqq(s)

]

= Cs (sI4 −A)
−1
Bs (26)

where I4 is a 4×4 identity matrix. The expression (26) is valid

in any synchronous coordinates. An admittance matrix Y s(s)
can be represented in new synchronous coordinates as

Y ′

s(s) = eϑ0JY s(s)e
−ϑ0J (27)

where ϑ0 is the angle of the d axis of original coordinates

in new coordinates. The coordinate transformation matrix can

be expressed as eϑ0J = cos(ϑ0)I+sin(ϑ0)J. In the case of

no saturation, Y s(s) = Ydd(s)I+ Yqd(s)J = Y ′

s(s) holds,

and the admittance matrix does not depend on the angle ϑ0.
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In the unsaturated case, the system could be expressed as

a complex-valued single-input-single-output transfer function

for complex-valued space vectors.

When the stator current is considered as the input of the

system, the reciprocal relationship ũs(s) = Zs(s)ĩs(s) can

be used, where the small-signal stator-impedance matrix is

Zs(s) = Y −1
s (s). If the saturation is not taken into account,

the stator-impedance matrix reduces to the well-known expres-

sion

Zs(s)=Rσ0I+ (sI+ωs0J)Lσ0

− k2r0Rr(α0I−ωm0J) (sI+ α0I+ ωr0J)
−1 (28)

where the total leakage inductance and the total resistance are

Lσ0 = Lsσ + kr0Lrσ0, Rσ0 = Rs + k2r0Rr (29)

respectively, and kr0 = Lm0/Lr0 is the magnetic coupling

factor of the rotor.

If torsional dynamics are of interest [15], [16], the transfer

function from the rotor speed to the electromagnetic torque

is needed. The electromagnetic torque can be expressed as

T̃e(s) = G(s)ω̃m(s), where the single-input-single-output

transfer function is

G(s) = c (sI4 −A)
−1
b (30)

In a fashion similar to (26) and (30), other transfer-function

matrices can be obtained using (14) and (18).

V. REDUCED-ORDER STATOR IMPEDANCE

A short-circuited rotor winding is considered here, i.e. ur =
[0, 0]T. At higher frequencies, the stator-impedance matrix can

be approximated as

Zs(s) = Rσ + (sI+ ωs0J)Lσ (31)

where Lσ is the total leakage inductance matrix and Rσ is

the total resistance matrix. The derivation of (31) and the

expressions for Lσ and Rσ are given in Appendix B.

The effects of the rotor leakage inductance saturation are

more prominent at high frequencies while the saturation of

the magnetizing inductance mainly affects at low frequencies.

Omitting the saturation of the magnetizing inductance and the

effect of the main flux on the rotor leakage inductance as well,

i.e. Lmt0 = Lm0 and Lt0 = 0, yields

Lσ = Lσ0I+ (Lσt0−Lσ0)
ir0i

T
r0

i2r0

= eϑr0J

[

Lσt0 0
0 Lσ0

]

e−ϑr0J

(32)

Rσ = Rσ0I+ (Rσt0−Rσ0)
ir0i

T
r0

i2r0

= eϑr0J

[

Rσt0 0
0 Rσ0

]

e−ϑr0J

(33)

where ϑr0 is the angle of the operating-point rotor current

vector. The incremental total leakage inductance and the

incremental total resistance are

Lσt0 = Lsσ + krt0Lrσt0, Rσt0 = Rs + k2rt0Rr (34)

respectively, where krt0 = Lm0/(Lm0 +Lrσt0). It is worth

noticing that both the total leakage inductance matrix and the

total resistance matrix depend on the angle ϑr0 if the machine

is saturated. Under the assumptions Lmt0 = Lm0 and Lt0 = 0,

the impedance (31) can be written as

Zs(s) = eϑr0J

[

Rσt0 + sLσt0 −ωs0Lσ0

ωs0Lσt0 Rσ0 + sLσ0

]

e−ϑr0J (35)

According to the approximate reduced-order model (35), the

saturation of the rotor leakage inductance provides information

of the direction of the operating-point rotor current vector

ir0 (or the vector −Jψr0 since ur0 = [0, 0]T is assumed).

These saturation-induced saliencies related to the direction of

ψr0 may be exploited in flux-angle estimation, e.g. [5], [6].

Furthermore, these saliencies should be taken into account

when adapting Lσ0 and Rσ0 using signal-injection methods

similar to [17]. However, since the assumption Lt0 = 0 does

not usually hold for machines with skewed or closed rotor

slots, the approximate reduced-order model (35) should be

used with care.

VI. RESULTS

Small-signal characteristics of a 2.2-kW squirrel-cage in-

duction machine were studied by means of two-dimensional

time-stepping FEA [13] and laboratory experiments. The ma-

chine is equipped with closed and skewed rotor slots, and its

rating is: voltage 400 V; current 5 A; frequency 50 Hz; speed

1436 r/min; and torque 14.6 Nm. The base values are: angular

frequency 2π50 rad/s; voltage
√

2/3·400 V; and current
√
2·5

A.

A. Finite-Element Analysis at Rated Operating Point

Three different kinds of tests were carried out using time-

stepping FEA: the voltage-pulse test; the pulsating voltage-

signal injection test; and the speed-pulse test. Parameters of

the proposed model were identified based on the data from

the voltage-pulse test, and the predictions of the model are

compared with the results from the other two independent

tests. The rated operating point is considered. The skewing

of the rotor slots is not modeled in FEA.

1) Voltage-Pulse Test: Several frequencies can be simulta-

neously excited by means of a pulse test. Hence, the num-

ber of time-stepping FEA simulations required for gathering

frequency-response data can be significantly reduced as com-

pared to harmonic excitation. Here, the voltage pulse is defined

by [14]

ũs =

{

uδ sin
2(ωδt), 0 ≤ t ≤ 1/(2ωδ)

0, otherwise
(36)

where uδ = 0.1 p.u. and ωδ = 4 p.u. The duration time 1/(2ωδ)
corresponds to 2.5 ms. The pulse test was performed twice

with perpendicular pulses, whose directions are illustrated in

Figs. 3(a) and 3(b). The pulse was first applied to the d
direction, i.e. ũs = [ũs, 0]

T, and then to the q direction, i.e.

ũs = [0, ũs]
T; the d axis is aligned with the operating-point

stator voltage.
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Fig. 3. Excitation voltages: (a) pulse applied to ũsd in operating-point stator-
voltage coordinates; (b) pulse applied to ũsq in operating-point stator-voltage
coordinates; (c) pulsating voltage ũsd = uc sin(ωt) in arbitrary coordinates.

The results of time-stepping computations were transformed

to the frequency domain using DFT. Since two pulse tests

were made, it was possible to calculate all four small-signal

admittances Ydd(jω), Ydq(jω), Yqd(jω), and Yqq(jω). The

circles and crosses in Fig. 4 show the admittances from the

FEA data in the operating-point stator voltage coordinates. If

the motor were not saturated, the circles and crosses would

overlap.

The admittance matrix (26) of the proposed model was fitted

to the frequency response data obtained from time-stepping

FEA. The inductances Lsσ , Lm0, Lmt0, Lrσt0, and Lt0 and

the stator resistance Rs were allowed to vary freely in the

data fitting. These parameters together with the operating-point

data (us0, is0, ωs0, and ωr0) obtained from FEA were used to

calculate the operating-point rotor current from (22), Rr from

(23), and Lrσ0 = Lr0 − Lm0 from (24). An estimate of the

admittance matrix was calculated according to (26). The cost

function used in the data fitting is the sum of the square errors

of the elements in the admittance matrix. The result of the data

fitting is presented in Fig. 4 by solid lines. As can be seen,

the model fits rather well to the data. At frequencies close

to 3 p.u., the influence of the skin effect begins to decrease

the goodness of the fit. If needed, the skin effect could be

taken into account by an additional rotor branch [18]. Table

I gives the parameters obtained by fitting the proposed model

using the FEA data shown in Fig. 4. The fitted parameters

are physically reasonable, and they are consistent with the

operating point.

For comparison, the model (26) with the assumptions

Lrσt0 = Lrσ0 and Lt0 = 0, corresponding to the model in

[10], was investigated. The model fits well if only the lowest

frequencies (below 0.2 p.u.) are used. At higher frequencies,

the saturation of the rotor leakage inductance and the mutual

saturation effect decrease the goodness of the fit significantly

Fig. 4. Admittances from time-stepping FEA (circles and crosses) and from
fitted model (26) (solid lines) in coordinates fixed to us0: (a) Ydd(jω) shown
by thick line and circles, Yqq(jω) shown by thin line and crosses; (b) Yqd(jω)
shown by thick line and circles, Ydq(jω) shown by thin line and crosses. In
the case of no saturation, conditions Ydd(jω) = Yqq(jω) and Yqd(jω) =
−Ydq(jω) would hold.

(or nonphysical parameter values are obtained as a result).

In some applications, the stator impedance matrix may

be preferred over the stator admittance matrix. Solid lines

in Fig. 5 show the stator impedances corresponding to the

fitted admittances in Fig. 4. The d axis is aligned with the

operating-point stator voltage. The dashed lines present the

impedances calculated using the reduced-order model (31).

The curves differ significantly at low frequencies but they

practically overlap at frequencies above 1 p.u.

2) Pulsating Voltage-Signal Injection Test: The pulsating

excitation voltage was applied in time-stepping FEA in the

direction of the d axis of a synchronously rotating coordinate

system, i.e. ũs = [uc sin(ωt), 0]
T. The amplitude uc = 0.025

p.u. and the angular frequency ω = 1.2 p.u. were used.

The resulting small-signal current responses ĩsd and ĩsq were

transformed to the frequency domain, and the small-signal

stator admittances Ydd(jω) and Yqd(jω) were calculated. To
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Fig. 5. Impedances corresponding to Fig. 4 shown by solid lines and
impedances from the reduced-order model (31) shown by dashed lines.
The d axis is aligned with us0. In the case of no saturation, conditions
Zdd(jω)=Zqq(jω) and Zdq(jω)=−Zqd(jω) would hold.

TABLE I
PER-UNIT PARAMETERS AND OPERATING POINT IN FIG. 4

evaluate the effect of the direction of the excitation signal

on the admittances, the direction of the excitation signal (i.e.

the orientation of the d axis) was varied with respect to the

operating-point stator voltage as illustrated in Fig. 3(c); the

angle ϑ0 was varied in steps of 10◦. The d axis is aligned

with the operating-point stator voltage at ϑ0 = 0.

The admittances obtained using the pulsating voltage-signal

injection tests are depicted in Fig. 6. It can be seen that

the admittances depend significantly on the angle ϑ0. For

comparison, the admittances corresponding to the proposed

model are shown by the solid lines in the figure. These

admittances were calculated using (26) with the parameters

in Table I and the coordinate transformation (27). It can be

seen that the proposed model fits very well to the data from

the signal-injection test. It is worth noticing that Yqq(ϑ0) =
Ydd(ϑ0 − π/2) and Ydq(ϑ0) = −Yqd(ϑ0 − π/2).

3) Speed-Pulse Test: The transfer function from the rotor

speed to the electromagnetic torque was investigated by ap-

plying an pulse to the speed while the motor was supplied by

a sinusoidal voltage in time-stepping FEA [19]. Transforming

Fig. 6. Admittances at excitation frequency ω = 1.2 p.u. as a function of the
angle ϑ0 of vector us0. Circles and crosses are the admittances calculated
based on the signal-injection tests carried out in time-stepping FEA. The solid
lines are obtained using (26) and the fitted parameters corresponding to Fig.
4. In the case of no saturation, the admittances would be independent of ϑ0.

Fig. 7. Frequency response G(jω) = T̃e(jω)/ω̃m(jω). The solid lines are
obtained using (30) and the fitted parameters corresponding to Fig. 4. Circles
are calculated based on the speed-pulse test carried out in time-stepping FEA.

this data into the frequency domain, the frequency response

shown by the circles in Fig. 7 is obtained. For comparison,

the frequency response was calculated using (30) and the

parameter values given in Table I. This transfer function is

shown in Fig. 7 by the solid line. It can be observed that the

proposed model fits well to the data from the speed pulse test.

Hence, the fitted parameter values—obtained from the voltage-

pulse tests—are consistent with the data from the speed-pulse

test.

B. Experiments Under Locked-Rotor Condition

In the laboratory experiments, a 2.2-kW induction machine

was fed by a frequency converter controlled by a dSPACE

DS1103 PPC/DSP board. The rotor was mechanically locked;

this operating condition was chosen to ensure that there is no

oscillation in the rotor speed, i.e. ω̃m = 0 holds. The stator
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Fig. 8. Admittances from measurements (circles and crosses) and from fitted
model (26) (solid lines) in coordinates fixed to us0: (a) Ydd(jω) shown by
thick line and circles, Yqq(jω) shown by thin line and crosses; (b) Yqd(jω)
shown by thick line and circles, Ydq(jω) shown by thin line and crosses.
In the case of no saturation, conditions Ydd(jω)=Yqq(jω) and Yqd(jω)=
−Ydq(jω) would hold.

frequency was equal to the rated slip frequency. The magnitude

of the operating-point voltage was adjusted so that the rated

stator current is obtained.

To reduce the influence of the measurement noise, the

voltage-pulse test was not used in the laboratory experiments.

Instead, the small-signal admittance was measured at several

frequencies, one at a time, using the pulsating voltage-signal

injection tests. To evaluate all four elements in the admittance

matrix, the voltage signals were injected in two perpendicular

directions: first at ϑ0 = 0◦ and then at ϑ0 = 90◦ in accordance

with Fig. 3(c). The circles and crosses in Fig. 8 show the

measured admittances in the operating-point stator voltage

coordinates.

The admittance matrix (26) of the proposed model was

fitted to the measured frequency response data as described

in Section VI-A1. The result of the data fitting is presented in

Fig. 8 by the solid lines, and the corresponding parameters are

TABLE II
PER-UNIT PARAMETERS AND OPERATING POINT IN FIG. 8

given in Table II. It can be seen that the proposed model fits

well and the fitted parameters are physically reasonable. The

small differences between the measured and fitted admittances

may originate from measurement errors and from phenomena

omitted in the model (e.g., skin effect and iron losses).

The effect of the direction of the excitation signal on the

small-signal admittance was also analyzed. The voltage signal

pulsating at the frequency ω = 1.2 p.u. was used; the angle ϑ0
was varied in steps of 10◦ with respect to the operating-point

stator voltage, cf. Fig. 3(c). The measured admittances are

shown by the circles in Fig. 9. The admittances corresponding

to the proposed model are shown by the thick lines in the

figure. These admittances were calculated using (26) with

the parameters in Table II and the coordinate transformation

(27). It can be seen that the proposed model can predict the

admittance as a function of the direction of the excitation

signal. It is to be noted that the temperature and the resistances

increased while performing the test at different angles. In Fig.

9, the measured admittances at ϑ0 = 180◦ differ from those

at ϑ0 = 0◦ mainly due to the temperature rise.

For comparison, the model (26) with the assumptions

Lrσt0=Lrσ0 and Lt0=0, corresponding to the model in [10],

was fitted to the measured data shown in Fig. 8. The fitted

parameters are given in Table II. The model fits well only at the

lowest excitation frequencies. As an example, the admittance

at the excitation frequency ω = 1.2 p.u. as a function of the

excitation-signal angle ϑ0 is depicted by the thin lines in Fig.

9. It can be observed that the prediction from the proposed

model is superior to that from the model in [10].

VII. CONCLUSIONS

The magnetic saturation can be taken into account when

deriving a small-signal model for the induction machine.

The proposed model takes into account the mutual saturation

effect originating mainly from skewed and closed rotor slots,

and it fulfills the reciprocity conditions. The model can be

applied to parameter identification and to the analysis and

development of flux angle estimation methods. Furthermore,

the small-signal relationship between the rotor speed and

the electromagnetic torque—needed if torsional dynamics are
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Fig. 9. Measured admittances (circles) as a function of excitation-signal angle
ϑ0 at frequency ω = 1.2 p.u. The rotor is locked, the stator frequency equals
the rated slip frequency, and the stator current equals its rated value. Thick
lines are calculated using the proposed model (26), and the thin lines are
calculated using the model in [10]. Parameters given in Table II are used.

analyzed—can be evaluated. At higher frequencies, a reduced-

order small-signal model can be used; magnetic saturation

makes both the total leakage inductance and the total resistance

salient. As application examples, the machine parameters were

identified using the data obtained from time-stepping finite-

element analysis and locked-rotor measurements. Based on the

results, the mutual saturation can have significant effect on the

small-signal characteristics of the induction machine.

APPENDIX A

RECIPROCITY CONDITIONS

The reciprocity conditions given in (7) are related to the

T model shown in Fig. 1. More generally, the magnetic

coupling between is, ψs and ir, ψr can be modeled as a

multi-terminal (or multi-port) inductor. If a flux-controlled or

current-controlled inductor is lossless, it is reciprocal [11].

The incremental inductance matrix associated with a reciprocal

multi-terminal inductor is symmetric, leading to the reciprocity

conditions

∂ψsd

∂isq
=
∂ψsq

∂isd
,

∂ψsd

∂ird
=
∂ψrd

∂isd
,

∂ψsd

∂irq
=
∂ψrq

∂isd
(37)

∂ψsq

∂ird
=
∂ψrd

∂isq
,

∂ψsq

∂irq
=
∂ψrq

∂isq
,

∂ψrd

∂irq
=
∂ψrq

∂ird

These conditions can also be obtained from (6) assuming the

magnetic field to be conservative.

APPENDIX B

DERIVATION OF REDUCED-ORDER MODEL

To derive a reduced-order stator-impedance matrix for

higher frequencies, a new state vector z̃ is defined,

z̃ =

[

ĩs

ψ̃r

]

=

[

Cs

O I

]

x̃ = T−1x̃ (38)

yielding the state-space representation

dz̃

dt
= F z̃ +Gsũs +Grũr + gω̃m (39)

where the system matrices are Gr = T
−1Br, g = T−1b, and

F = T−1AT =

[

F 11 F 12

F 21 F 22

]

(40)

Gs = T
−1Bs =

[

Gs1

Gs2

]

(41)

Since ω̃m does not affect the stator impedance, ω̃m = 0 will be

assumed for simplicity in the following. Furthermore, a short-

circuited rotor winding is considered, i.e. ur = [0, 0]T. The

stator-current dynamics are usually significantly faster than

the rotor-flux dynamics. Hence, ψ̃r = [0, 0]T can be assumed

at higher frequencies, and the state-space representation (39)

reduces to

Lσ

dĩs
dt

= ũs −Rσ ĩs − ωs0JLσ ĩs (42)

where the total leakage inductance matrix is Lσ = G−1
s1 and

the total resistance matrix is Rσ = −LσF 11−ωs0JLσ. After

Laplace transforming (42), the reduced-order stator-impedance

matrix (31) is obtained.
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