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Loss-Minimizing Flux Level Control
of Induction Motor Drives

Zengcai Qu, Mikaela Ranta, Marko Hinkkanen, Member, IEEE, and Jorma Luomi, Member, IEEE

Abstract—The paper applies a dynamic space-vector model to
loss-minimizing control in induction motor drives. The induction
motor model, which takes hysteresis losses and eddy-current
losses as well as the magnetic saturation into account, improves
the flux estimation and rotor-flux-oriented control. Based on the
corresponding steady-state loss function, a method is proposed
for solving the loss-minimizing flux reference at each sampling
period. A flux controller augmented with a voltage feedback al-
gorithm is applied for improving the dynamic operation and field
weakening. Both the steady-state and dynamic performance of
the proposed method is investigated using laboratory experiments
with a 2.2-kW induction motor drive. The method improves the
accuracy of the loss minimization and torque production, it does
not require excessive computational resources, and it shows fast
convergence to the optimum flux level.

Index Terms—Control, core losses, efficiency optimization, field
weakeining, induction machine.

I. INTRODUCTION

In variable-speed induction motor (IM) drives, the core
losses and the resistive losses depend on the flux level. A large
number of loss minimization strategies have been developed
for adjusting the flux level according to the motor load and
speed. These loss minimization control techniques have been
reviewed, e.g., in [1], [2]. Principally, the methods can be
divided into two categories: online search controllers and loss-
model-based controllers. Online search controllers measure
the input power and iteratively change the flux level until
the input power minimum is detected. They do not rely on
motor parameters, but their convergence tends to be slow
and they may cause flux and torque pulsations. Loss-model-
based controllers use a functional loss model for evaluating the
optimum flux level [3], [4], [5]. They are normally faster than
online search methods but sensitive to parameter variations.
However, loss-model-based controllers are well suited to IM
drives where vector control is used and motor parameters are
needed for the control.

Various loss functions have been used for describing the IM
losses [2]. The resistive losses and core losses of the motor are
commonly included in the loss model. Usually, the core losses
are assumed to be proportional to the square of the frequency;
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Fig. 1. Dynamic Γ model of the IM in stator coordinates. The voltage accross
the core-loss conductance GFe is us

Fe = dψs
s/dt.

this behaviour corresponds to eddy-current losses. It is also
possible to include both eddy-current losses and hysteresis
losses in the loss model [6], [7]. If the loss model is sufficiently
simple, the optimum flux level can be solved analytically. For
more complicated loss models, it is possible to determine the
optimum flux level iteratively [1].

In this paper, the dynamic space-vector model proposed for
IMs in [8] is applied to loss-minimizing control. The model
includes both hysteresis losses and eddy-current losses as well
as the magnetic saturation. The core losses and the magnetic
saturation are also taken into account in the flux estimation and
rotor-flux-oriented control. Based on the corresponding steady-
state loss function, a method is proposed for solving the loss-
minimizing flux reference at each sampling period. In order
to improve the dynamic operation of the drive, a proportional
flux controller is applied. The flux controller is also augmented
with a voltage-feedback field-weakening algorithm. Both the
steady-state performance and the dynamic performance of the
proposed method are investigated using laboratory experiments
with a 2.2-kW IM drive.

II. Γ MODEL

Real-valued space vectors will be used; for example, the
stator-flux vector is ψs = [ψsd, ψsq]T and its magnitude is
denoted by

ψs = ‖ψs‖ =
√
ψ2
sd + ψ2

sq (1)

The space vectors in stator coordinates are denoted by the
superscript s and no superscript is used for vectors in syn-
chronous coordinates. The identity matrix is I = [ 1 0

0 1 ] and the
orthogonal rotation matrix is J = [ 0 −11 0 ]. Per-unit quantities
will be used.

A. Voltage and Flux Equations

Fig. 1 shows the the dynamic Γ model of the IM in stator
coordinates [9]. In synchronous coordinates rotating at ωs, the
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Fig. 2. Stator inductance (5) as a function of the stator flux for Lu = 2.31
p.u., β = 0.87 p.u. and S = 7. Markers show the measured inductance values
from no-load tests (different stator frequencies were applied at each flux level).

IM model can be described by the voltage equations

dψs

dt
= us −Rsis − ωsJψs (2a)

dψR

dt
= −RRiR − ωrJψR (2b)

where the stator voltage vector is denoted by us, the stator
current vector by is, and the stator resistance by Rs. The rotor
current vector is iR and the rotor resistance is RR. The angular
slip frequency ωr = ωs − ωm, where ωm is the electrical
angular speed of the rotor. The stator and rotor flux linkages
are given by

ψs = LM(i′s + iR) (3a)
ψR = ψs + LσiR (3b)

respectively, where i′s = is− iFe, the stator inductance is LM,
and the leakage inductance is Lσ . The current of the core-loss
conductance GFe is iFe, and the voltage across the core-loss
conductance is

uFe = us −Rsis (4)

B. Magnetic Saturation

The stator inductance and the leakage inductance depend
on the flux linkages (or the currents) due to the magnetic
saturation [10]. If the loss-minimizing flux level control is to
be applied, the magnetic-saturation effects should be modeled
and taken into account in the control algorithms.

In the case of the Γ model, modeling the stator inductance
LM as a function of the stator flux typically suffices.1 The
leakage inductance Lσ is assumed to be constant and the stator
inductance is modeled by a simple power function [1], [12]:

LM(ψs) =
Lu

1 + (βψs)S
(5)

1For achieving the same accuracy, more complex saturation models would
be needed in the case of the inverse-Γ model [11]. The transformation between
the inverse-Γ model and the Γ model is given in the Appendix.

Fig. 3. Steady-state core-loss conductance (7) as a function of stator frequency
for ΛHy = 0.015 p.u. and GFt = 0 p.u. Markers show the measured
conductance values from no-load tests (different flux levels were applied at
each stator frequency).

where Lu is the unsaturated inductance, and S and β are
nonnegative constants. These parameters can be identified
using series of no-load tests at different voltage levels. Fig. 2
shows the stator inductance as a function of the stator flux.

C. Core-Loss Conductance

The core losses can be divided into two parts: hysteresis
losses and classical eddy current losses. The hysteresis losses
are proportional to the frequency, while the eddy current
losses are proportional to the square of the frequency [13].
In steady state, the stator core losses are classically modeled
as a function of the stator angular frequency ωs and the stator-
flux magnitude ψs,

PFe = ΛHy|ωs|ψ2
s︸ ︷︷ ︸

PHy

+GFtω
2
sψ

2
s︸ ︷︷ ︸

PFt

(6)

where the first term corresponds to the hysteresis losses PHy

and the second term corresponds to the eddy-current losses
PFt. The constants ΛHy and GFt determine the ratio between
the loss components at a given stator flux and angular fre-
quency. The steady-state core-loss conductance corresponding
to (6) is

GFe(ωs) =
ΛHy

|ωs|
+GFt (7)

which is illustrated in Fig. 3. The parameters ΛHy and GFt

can be identified using series of no-load tests at different stator
frequencies.

The steady-state model (7) cannot be directly used in
dynamic models since the angular frequency ωs is irrelevant
in transients and in the case of non-sinusoidal waveforms. In
the following, a nonlinear core-loss conductance [8]

GFe(uFe, ψs) = ΛHy
ψs

uFe
+GFt (8)

is applied in the dynamic Γ model. The conductance depends
on the magnitude of the instantaneous voltage across it and the
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magnitude of the instantaneous stator flux. The instantaneous
core losses become pFe = ΛHyuFeψs +GFtu

2
Fe, which equals

(6) in steady state.

D. Loss Function in Steady State
The power balance of the IM model is given by

iTs us = Rsi
2
s +RRi

2
R + pFe +

dWf

dt
+ Teωm (9)

The electromagnetic torque is

Te = i′s
T
Jψs (10)

and the rate of change of the magnetic energy is
dWf

dt
= i′s

T dψs

dt
+ iTR

dψR

dt
= iM

dψs

dt
+ iR

dψσ
dt

(11)

In steady state, the power fed into the stator is

Ps = iTs us = Ploss + Teωm (12)

where the total losses are

Ploss = Rsi
2
s +RRi

2
R + (ΛHy|ωs|+GFtω

2
s )ψ2

s (13)

The first term corresponds to the stator resistive losses, the
second term to the rotor resistive losses, and the last term to
the core losses.

For searching the loss-minimizing rotor-flux level, the loss
function (13) will be formulated as a function of Te, ωm, and
ψR in the following. Based on (2b) and (10), the slip angular
frequency can be expressed as

ωr =
RRTe
ψ2
R

(14)

and the stator angular frequency is ωs = ωm + ωr. The rotor
current can be solved from (2b) as

iR = −ωrJψR

RR
(15)

The stator flux is obtained based on (3b) and (15) as

ψs =

(
I +

ωrLσ
RR

J

)
ψR (16)

The magnetizing current is iM = ψs/LM and the core-loss
current is

iFe = [ΛHy sign(ωs) +GFtωs]Jψs (17)

Finally, the stator current is

is = iFe + iM − iR (18)

Using (14)–(18), the losses in (13) can be expressed as a
function of Te, ωm, and ψR. If the loss-minimizing flux
magnitude is to be searched for a given operating point, Te
and ωm can be considered as constant parameters.

Fig. 4 illustrates the loss-minimizing rotor flux as a function
of the torque for a 2.2-kW IM. These flux values are found
by numerically minimizing the loss function in (13). It can
be seen that the loss-minimizing flux decreases strongly with
the decreasing torque at torque levels below the rated torque.
On the other hand, the loss-minimizing flux increases only
moderately with the increasing torque at torque levels above
the rated torque (due to the magnetic saturation). The loss-
minimizing flux depends only slightly on the speed since the
resistive losses are dominating in the example IM.

Fig. 4. Loss-minimizing rotor flux as a function of the torque at different
speeds. The optimal flux is obtained by minimizing (13). The parameters of
a 2.2-kW IM given in Table III were used.

III. CONTROL SCHEME

The speed-sensorless rotor-flux-oriented control system—
augmented with the loss-minimizing flux level control—is
shown in Fig. 5. The control system is based on the Γ model
shown in Fig. 1, and it is implemented in estimated rotor-flux
coordinates. The vector components in these coordinates will
be marked by the subscripts d and q.

A. Flux Observer With Core-Loss Compensation

An inherently sensorless reduced-order rotor-flux observer
is applied [14], [15], [16]. The observer is based on the voltage
model, which is corrected by a current-model-based prediction
error. More specifically, the error term is formulated using the
component of the back electromotive force (EMF) induced by
the rotor flux in the direction of the rotor-flux estimate. In
this direction, the back EMF component computed from the
current model does not depend on the speed estimate. The
observer is implemented in estimated rotor-flux coordinates.

The observer is equal to [16] with two exceptions: (i) the
observer is modified so that the parameters and variables
correspond to those of the Γ model, which makes it easier
to model the magnetic saturation and to incorporate the loss-
minimizing method in the control system; (ii) the effect of the
core losses is included in the observer. For clarity, the observer
and these modifications are briefly described in the following.

In the observer, the stator inductance is obtained using the
function LM(ψ̂s) defined in (5), where, naturally, the estimated
stator-flux magnitude has to be applied. Similarly, the core-
loss conductance is obtained using the function GFe(ûFe, ψ̂s)
defined in (8), where the magnitude of the voltage across
the conductance is ûFe = ‖us − R̂sis‖ and R̂s is the stator-
resistance estimate. Furthermore, the magnetic coupling factor

γ(ψ̂s) =
LM(ψ̂s)

LM(ψ̂s) + Lσ
=

Lu

Lu + Lσ + Lσ(βψ̂s)S
(19)



4

IM

iss

udc

i′s,ref us
s,refCurrent

control

Reduced-
order
flux

observer

ψR,ref
i′sd,ref

i′sq,ref

εu

ω̂m

ψ̂R

ϑ̂s

Te,ref

ωm,ref

î
′
s

Torque
gain

Flux
control

Speed
control

Loss
control

Fig. 5. Speed-sensorless rotor-flux-oriented control system. The observer provides the parameter estimates (R̂s, RR, Lσ , and LM) to other blocks, but, for
clarity, these signals are not shown.

is applied. To simplify notation, the arguments of the functions
LM, GFe, and γ will be omitted in the following equations.

In order to take the core losses into account, the current i′s
going into the magnetic circuit is estimated as

î
′
s = is −GFe(us − R̂sis) (20)

The estimates for the rotor-flux magnitude and position are
obtained from

dψ̂R

dt
= ed + g1(êd − ed) (21a)

dϑ̂s
dt

=
eq + g2(êd − ed)

ψ̂R

= ω̂s (21b)

where the observer gains g1 and g2 equal the gains in [16].
The components of the back EMF induced by the rotor flux
are calculated from the stator side as

ed =
1

γ
(usd − R̂sisd)− Lσ

dî′sd
dt

+ ω̂sLσ î
′
sq (22a)

eq =
1

γ
(usq − R̂sisq)− Lσ

dî′sq
dt
− ω̂sLσ î

′
sd (22b)

The d component of the back-EMF estimate can be calculated
from the rotor side as

êd = γRR

(
î′sd −

ψ̂R

LM

)
(23)

Proper selection of the observer gains g1 and g2 is crucial,
particularly for low-speed operation. It is worth noticing that
the observer (21) would reduce to the pure voltage model
(which cannot be used in practice) if g1 = g2 = 0 were used.

The estimate ψ̂s for the stator-flux magnitude is needed for
the functions GFe, LM, and γ. This estimate depends on the
rotor-flux estimate ψ̂R and the current components according
to

ψ̂s = γ
√

(ψ̂R + Lσ î′sd)2 + (Lσ î′sq)2 = f(ψ̂s) (24)

This nonlinear function cannot be explicitly solved. To
circumvent this problem, the value of ψ̂s from the previous
time step is applied on the right-hand side of (24) in the

discrete-time implementation, i.e. ψ̂s,k+1 = f(ψ̂s,k) where k
is the time-step index. This computationally efficient method
can be seen as the fixed-point iteration.2

The rotor-speed estimate is computed by embedding the slip
relation in a low-pass filter

dω̂m

dt
= αo

(
ω̂s −

γRRî
′
sq

ψ̂R

− ω̂m

)
(25)

where αo is the filter bandwidth. In order to tackle the effects
of temperature variations, the stator-resistance adaptation law

dR̂s

dt
= kRγ (êd − ed) (26)

is applied, where the gain kR equals the gain in [16]. The
adaptation is disabled in the vicinity of no-load operation and
at higher stator frequencies due to poor signal-to-noise ratio.

B. Loss-Minimizing Flux Reference

The total losses (13) should be minimized while the elec-
tromagnetic torque and the rotor speed should be controlled
to their desired values. In a fashion similar to (13)–(18), the
estimated total losses can be expressed as a function of the
estimated rotor speed ω̂m, the electromagnetic torque reference
Te,ref , and the (unfiltered) rotor flux reference ψ?R,ref . Since
the loss-minimizing flux magnitude is to be determined for a
given operating point, ω̂m and Te,ref are known, and thus the
loss minimization law can be expressed as

ψ?R,ref = arg min
ψR∈[ψR,min,ψR,max]

{P̂loss(ψR)} (27)

The minimum point of the loss function (13) can be very ef-
fectively found by means of a one-dimensional search method.
At each sampling period, the golden section method is applied
to search the loss-minimizing flux reference.

2The fixed-point iteration converges if |df(ψ̂s)/dψ̂s| < 1, leading to the
condition LuLσS(βψ̂s)S < γ[Lu + Lσ + Lσ(βψ̂s)S ]2 if the effect of
the core-loss compensation is omitted in (24). This condition is fulfilled for
any realistic parametrizations of Lu, β, S, and Lσ . The nonlinear equation
(24) could be avoided by changing the state variables of the observer, but the
observer equations would become much more complex in that case.
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Additionally, the calculated optimal rotor flux ψ?R,ref is low-
pass filtered as

dψR,ref

dt
= αlpf

(
ψ?R,ref − ψR,ref

)
(28)

where ψR,ref is the filtered flux reference and αlpf is the
bandwidth of the filter.

C. Flux Controller

In order to speed up the rotor-flux dynamics, a proportional
flux controller with a feedforward term is applied. A voltage-
feedback field-weakening algorithm is integrated into the flux
controller for enabling high-speed operation. The reference for
the flux-producing current component is

i′sd,ref =
ψR,ref

LM
+Kf(ψR,ref − ψ̂R) + Iu

with the limitation − is,max√
2
≤ i′sd,ref ≤

is,max√
2

(29)

where Kf = αf/(γRR)− 1/LM is the gain, αf is the closed-
loop bandwidth, and is,max is the maximum stator current. The
field-weakening term similar to [17] is applied,

Iu = Ku

∫
(u2s,max − u2s,ref)︸ ︷︷ ︸

εu

dt

with the limitation Iu ≤ 0

(30)

where Ku = ψ̂RRR/(Lσus,max)2 is the gain and us,max is
the maximum voltage corresponding to the linear modulation
region [18]. The term Iu is non-zero only at high speeds. The
torque-producing current component is evaluated as

i′sq,ref =
Te,ref

γψ̂R

(31)

In addition, limitations corresponding to the maximum current
and the breakdown torque are applied.

IV. EXPERIMENTAL SETUP AND PARAMETERS

The performance of the proposed method is investigated by
means of computer simulations and experiments in Section V.
The experimental setup and the parameters are decribed in the
following.

A. Experimental Setup

A 2.2-kW four-pole IM is used in the laboratory exper-
iments. The rated values of the motor are given in Table
I and the base values of the per-unit system in Table II.
In all experiments, including no-load tests, the IM is fed
by a frequency converter controlled by a dSPACE DS1103
PPC/DSP board. A servo motor is used as a loading machine.
The total moment of inertia of the experimental setup is 0.015
kgm2. The speed is measured using an incremental encoder
for monitoring purposes. A Voltech PM6000 power analyzer
is applied in steady-state loss measurements.

The phase currents are measured using LEM LA 55-P/SP1
transducers, and the sampling is synchronized to the pulse-
width modulation. The stator voltages are evaluated from the

TABLE I
RATED VALUES OF 2.2-KW 4-POLE 400-V IM

Power PN 2.2 kW
Line-to-line voltage UN 400 V (rms)
Current IN 5 A (rms)
Frequency fN 50 Hz
Rotation speed nN 1436 r/min
Shaft torque TN 14.6 Nm

TABLE II
BASE VALUES OF PER-UNIT SYSTEM

Voltage uB
√

2/3UN

Current iB
√

2IN
Frequency fB fN
Angular frequency ωB 2πfN
Flux linkage ψB uB/ωB

Impedance ZB uB/iB
Inductance LB ZB/ωB

measured dc-link voltage and the switching states. The effect
of inverter nonlinearities on the stator voltage is substantial
at low speeds. Therefore, the most significant inverter non-
linearities, i.e. the dead-time effect and power device voltage
drops, are compensated for. Using phase a as an example, a
compensated duty cycle is evaluated as [16]

da = da,ref +
2dδ
π

arctan

(
ia
iδ

)
(32)

where da,ref is the ideal duty cycle obtained from the current
controller and ia is the phase current. The parameter dδ =
0.011 p.u. takes into account both the dead-time effect and the
threshold voltage of the power devices. The shape of the arctan
function is determined by the parameter iδ = 0.21 p.u. The
current-feedforward compensation method in (32) corresponds
to the method in [19], [20], except that the signum functions
were replaced with the arctan functions in order to improve
the performance in the vicinity of current zero crossings.

Unless otherwise noted, the maximum stator current is
is,max = 1.5 p.u. The sampling period of the pulse-width
modulator, current controller and flux observer is 200 µs,
and the sampling period of the rest of the control system is
1 ms. The flux-reference filter bandwidth αlpf = 0.06 p.u.
and the flux-control bandwidth αf = 0.06 p.u. Furthermore,
the bandwidth of 0.06 p.u. is used for the speed control.
The minimum and maximum values of the flux reference
are ψR,min = 0.2 p.u. and ψR,max = 1.2 p.u., respectively.
The per-unit observer gains equal to [16] were applied in the
experiments.

B. Parameter Identification

Per-unit motor parameters used in the simulations and
experiments are given in Table III. The identification procedure
for the parameters of the stator inductance function (5) and
the core-loss conductance function (8) is described in the
following.

The stator resistance Rs was measured in advance by means
of a dc test. No-load tests were performed to obtain the
parameters used in the stator-inductance function (5) and in
the core-loss conductance function (8). The stator voltage
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TABLE III
PER-UNIT MOTOR PARAMETERS

Stator resistance Rs 0.065
Rotor resistance RR 0.040
Leakage inductance Lσ 0.17
Stator inductance function

Unsaturated inductance Lu 2.31
Constant β 0.87
Constant S 7

Core-loss conductance function
Constant ΛHy 0.015
Constant GFt 0

and current were measured at four different stator frequencies
(0.3, 0.5, 0.7, and 0.8 p.u.) and at six different voltage levels
(approximately corresponding to the stator-flux values between
0.2 p.u. and 1.2 p.u.). At each operating point, the voltage
uFe = us − Rsis and the stator flux ψs = −JuFe/ωs were
evaluated.

The parameters of the inductance function (5) were obtained
by minimizing

JL(Lu, β, S) =

N∑
n=1

[
i′s,n −

ψs,n

LM(ψs,n)

]2
(33)

where i′s = iTs ψs/ψs is the component of the stator current in
the direction of the stator-flux vector and N is the total number
of operating points. As a result, the parameters S, Lu, and β
given in Table III were obtained. The inductances ψs,n/i

′
s,n

obtained from the measurement data and the fitted inductance
(5) are shown in Fig. 2. It can be seen that the function (5)
fits very well to the data.

The parameters of the conductance function (8) were ob-
tained by minimizing

JG(GFt,ΛHy) =

N∑
n=1

[iFe,n −GFe(ωs,n) · uFe,n]
2 (34)

where iFe = iTs uFe/uFe. At the frequencies used in the no-
load tests, the core losses of this machine consist mainly of the
hysteresis losses; based on the fitting, the core-loss parameters
ΛHy and GFt given in Table III were obtained. At higher
frequencies, the influence of GFt would probably become
more significant. In the control system, the maximum value of
the conductance function GFe is limited to 0.2 p.u. The core-
loss conductances iFe,n/uFe,n obtained from the measured
data and the fitted conductance (8) are shown in Fig. 3. It can
be seen that the measured values of the core-loss conductance
depend on the flux level in addition to the stator frequency.

Alternatively, if a priori information of the motor is avail-
able, the core-loss parameters could be calculated as

ΛHy =
kHyPFeN

ωsNψ2
sN

, GFt =
(1− kHy)PFeN

ω2
sNψ

2
sN

(35)

where PFeN are the rated core losses and kHy is the ratio
between the hysteresis losses and the total core losses in the
rated operating point.3 The rated stator flux is ψsN and the
rated stator angular frequency is ωsN.

3Applying PFeN and kHy provided in [18] for the same IM, the parameters
ΛHy = 0.022 p.u. and GFt = 0.007 p.u. are obtained.

V. RESULTS

A. Parameter Sensitivity

In order to investigate the parameter sensitivity of the
core-loss model, computer simulations were carried out in
MATLAB/Simulink environment. The IM was modeled as
described in Section II, the control system was modeled
according to Section III, and the parameters in Table III were
used.

The core-loss model is included in the observer. Inaccurate
parameters cause errors in the estimates of the rotor-flux
magnitude and position and, thus, in the estimated torque. As
an example, at the speed 0.5 p.u. and torque 30% of the rated
torque, the torque error is 4% if the core losses are omitted in
the control system. If the estimated value of ΛHy is twice its
actual value, the corresponding torque error is 3%. The relative
torque error decreases as the load increases. For instance, at
the speed 0.5 p.u. and torque equal to the rated torque, the error
in the estimated torque is 2% if the core losses are omitted.

The core-loss model affects the evaluation of the optimum
flux level in the loss control directly. As an example, at the
speed 0.5 p.u. and torque 30% of the rated torque, the flux
level increases 9% if the core losses are omitted in the control
system. This relatively large increase in the flux level causes
losses to increase only 0.2%.

B. Experimental Results

The performance of the proposed method was investigated
experimentally by means of dynamic test sequences and
steady-state loss measurements.

1) Dynamic Experiments: In Fig. 6, the speed reference
was stepped from 0 to 0.5 p.u. at t = 1 s and back to 0 at t = 4
s. A rated load torque step was applied at t = 2 s and removed
at t = 3 s. Fig. 6(a) shows the result of the constant-flux
control and Fig. 6(b) is the result of proposed loss-minimizing
flux control. It can be seen that the flux estimate follows the
loss-minimizing flux reference. The proposed method reduces
both the steady-state rotor flux and stator current in this case.

Changes in the speed reference or load torque result in a
varying torque reference, which in turn causes changes in the
loss-minimizing rotor flux reference. The rate of change of
the rotor flux reference is restricted by the bandwidth αlpf .
The changes in the actual rotor flux are slower due to the
rotor time constant. A low rotor flux level is used at low
torques, and increasing the torque takes more time when
the loss-minimizing flux control is used than in constant-flux
operation, although the current control uses the maximum
current when large changes in the flux are required. Therefore,
the acceleration in Fig. 6(b) is slower than that in Fig. 6(a),
and the speed change after the load torque step is larger.
However, the dynamic performance of the proposed method is
acceptable for many applications. For higher dynamic response
requirements, the minimum-flux limit can be raised.

Fig. 7 shows an acceleration from standstill to a speed
of 1.5 p.u. and a speed reversal. During the transients, the
flux is reduced by the field-weakening term (30) since all the
available voltage is in use. For a fast reduction of the flux
level, the d-axis current becomes negative at about t = 1.16
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(a) (b)

Fig. 6. Experimental results showing speed reference steps and a load torque step: (a) constant-flux control; (b) loss-minimizing flux control. The uppermost
subplot shows the speed reference and the measured speed, the second subplot shows the estimated torque, the third subplot shows the stator current components,
the fourth subplot shows the stator current magnitude and the last subplot shows the rotor flux reference (dashed) and the estimated rotor flux (solid).

s in accordance with the limits in (29). As steady state is
reached, the flux follows the flux reference given by the loss-
minimizing algorithm, and the losses are minimized.

In Fig. 8, operation at zero speed is shown. A rated load
torque step is applied at t = 1.5 s, and a negative torque
step twice the rated torque is applied at t = 2.5 s. The
load is removed at t = 3.5 s. As discussed in more detail
in [16], speed-sensorless operation at zero speed is possible
since (i) the inverter nonlinearities are compensated for, (ii)
observer gains are properly selected, and (iii) stator-resistance
adaptation together with good inductance estimates is applied.
Even if the initial flux level is low at t = 1.5 s, the system
tolerates the load torque step without problems.

2) Steady-State Losses: Experiments were carried out to
compare the steady-state losses between the proposed method
and constant-flux control. The core losses were omitted in the
flux observer in constant-flux control.

A Voltech PM6000 power analyzer was used for measuring
the input power to the IM, the mechanical output power
was calculated from the measured speed and the shaft torque
(measured with a HBM T10F torque flange), and the total
losses of the IM in steady state were determined. In order to
exclude the influence of temperature changes, a cooling time
was allowed between the experiments, and the stator resistance
estimate was followed.

The fundamental component of the stator voltage was also
recorded with the power analyzer. The maximum available
output voltage of the converter was limited below 1 p.u., since
the diode rectifier of the frequency converter was connected

Fig. 7. Experimental results showing operation in the field-weakening region.

to a 380-V 50-Hz supply (while the base values are based
on the rated values of the 400-V IM). Furthermore, the linear
modulation region in steady state and a minimum pulse-width
limitation were applied.
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Fig. 8. Experimental results showing load torque steps at zero speed.

Fig. 9 shows the measured total losses of the IM and the
stator voltage as a function of the measured shaft torque.
Measurements were carried out at the speeds of 0.5 p.u.
and 1.0 p.u. The results show that the proposed method
significantly reduces the losses in steady state at low loads.
At the speed of 0.5 p.u., the losses are reduced not only in
the low-torque region but also at torque levels above the rated
torque. The improvement at high torque levels is achieved by
applying a flux higher than the rated flux, in accordance with
Fig. 4.

The maximum achievable flux level is limited at higher
speeds by the maximum stator voltage.4 It can be seen in Fig. 9
that, at the speed of 1.0 p.u., the loss-minimizing flux level
cannot be applied if the torque is more than approximately half
the rated torque. In this case, the flux level is (automatically)
determined by the voltage-feedback field-weakening algorithm
(30).

Fig. 10 shows the measured losses as a function of the
rotor flux estimate. Four different shaft torque values were
applied while the speed was kept at 0.5 p.u. It can be seen that
measured losses depend on the rotor flux, and that losses can
be minimized by suitably selecting the flux level. Furthermore,
the loss-minimizing flux level was calculated for each torque
using (27). It can be seen that the flux from (27) agrees well
with the actual loss-minimizing flux.

3) S5 Duty Cycle: Experiments were also carried out in in-
termittent periodic duty with acceleration and electric braking
(IEC duty type S5 60%, JM = 0.0069 kgm2, Jext = 0.0086
kgm2). During the operation time, the load was 30% of the

4The maximum achievable stator voltage decreases slightly with the in-
creasing torque, since the dc-link voltage decreases with the increasing load
and there are load-dependent voltage drops in the inverter and cables.

Fig. 9. Experimental results showing the total losses of the motor and the
stator voltage as a function of the measured torque at speeds of 0.5 p.u. and
1.0 p.u. The first subplot shows the losses and the second subplot shows the
fundamental component of the stator voltage. Solid lines marked with circles
are the results obtained with the proposed method and dashed lines marked
with stars are the results with constant-flux control.

Fig. 10. Measured losses (markers) as a function of the rotor flux and
theoretical optimal rotor flux values (vertical lines). The speed is 0.5 p.u.
The torque is 0.38TN (squares), 0.77TN (triangles), 1.14TN (circles) and
1.49TN (diamonds).

rated torque, and the speed was 0.8 p.u. The maximum stator
current was is,max = 2.0 p.u. Fig. 11 shows an example of
the measured results for the cycle duration of 3 s.

Both the loss-minimizing algorithm and the constant-flux
control were applied. The mean value of the input power was
calculated off-line using the phase currents, dc-link voltage,
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Fig. 11. S5 duty cycles.

Fig. 12. Input power measurement of S5 duty cycles.

and switching states, which were captured with the DS1103
board. Fig. 12 shows the results for different cycle durations
between 1 s and 7 s. It can be seen that loss-minimizing
flux optimization leads to lower losses than the constant-flux
approach if the cycle duration is long enough. In the case of
the shortest cycle durations, the current required for changing
the flux in accelerations and decelerations contributes to the
losses so much that the constant-flux operation becomes more
beneficial.

VI. CONCLUSION

This paper proposed a loss-minimizing flux control method
for the IM drive. The magnetic saturation as well as the
hysteresis and eddy-current losses are included in the loss
minimization, flux estimation, and sensorless control of the
IM. The proposed system provides smooth transitions between
the loss-minimizing region at lower speeds and the voltage-
feedback field-weakening region at higher speeds. Based on
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Fig. 13. Inverse-Γ model in stator coordinates.

the simulation studies of a 2.2-kW IM drive system, the loss-
minimizing algorithm is not very sensitive to errors in core-
loss model parameters. The inclusion of the core-loss model in
the flux observer notably improves the accuracy of the torque
production.

The experimental results show that the dynamic perfor-
mance of the method is acceptable. The losses in steady
state are significantly reduced in a wide torque range, as
compared to the losses in the constant-flux approach. It was
also experimentally demonstrated that the actual loss minimum
is achieved for all practical purposes. In intermittent periodic
duty, the proposed method reduces the losses if the cycle dura-
tion is long enough. In the case of the shortest cycle durations,
the constant-flux operation becomes more beneficial.

APPENDIX
INVERSE-Γ MODEL

In the case of rotor-flux orientation control, the inverse-Γ
model shown in Fig. 13 is typically preferred in the design
and implementation of the control algorithms. The parameters
and variables of the Γ model can be transformed to those of
the inverse-Γ model using the coupling factor

γ =
LM

LM + Lσ
=

Lu

Lu + Lσ + Lσ(βψs)S
(36)

as follows:

L′σ = γLσ L′M = γLM R′R = γ2RR (37)

When this transformation is used, the models are mathemati-
cally equivalent in steady state (and in transients as well if the
magnetics are linear). It can be seen that due to the magnetic
saturation, the equivalent inverse-Γ model parameters depend
on the stator flux. The rotor flux can be transformed to inverse-
Γ flux as ψ′R = γψR.
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