Qu, Zengcai; Ranta, Mikaela; Hinkkanen, Marko; Luomi, Jorma

Loss-minimizing flux level control of induction motor drives

Published in:
IEEE Transactions on Industry Applications

DOI:
10.1109/TIA.2012.2190818

Published: 15/05/2012

Document Version
Peer reviewed version

Please cite the original version:
Loss-Minimizing Flux Level Control of Induction Motor Drives

Zengcai Qu, Mikaela Ranta, Marko Hinkkanen, Member, IEEE, and Jorma Luomi, Member, IEEE

Abstract—The paper applies a dynamic space-vector model to loss-minimizing control in induction motor drives. The induction motor model, which takes hysteresis losses and eddy-current losses as well as the magnetic saturation into account, improves the flux estimation and rotor-flux-oriented control. Based on the corresponding steady-state loss function, a method is proposed for solving the loss-minimizing flux reference at each sampling period. A flux controller augmented with a voltage feedback algorithm is applied for improving the dynamic operation and field weakening. Both the steady-state and dynamic performance of the proposed method is investigated using laboratory experiments with a 2.2-kW induction motor drive. The method improves the accuracy of the loss minimization and torque production, it does not require excessive computational resources, and it shows fast convergence to the optimum flux level.

Index Terms—Control, core losses, efficiency optimization, field weakening, induction machine.

I. INTRODUCTION

In variable-speed induction motor (IM) drives, the core losses and the resistive losses depend on the flux level. A large number of loss minimization strategies have been developed for adjusting the flux level according to the motor load and speed. These loss minimization control techniques have been reviewed, e.g., in [1], [2]. Principally, the methods can be divided into two categories: online search controllers and loss-model-based controllers. Online search controllers measure the input power and iteratively change the flux level until the input power minimum is detected. They do not rely on motor parameters, but their convergence tends to be slow and they may cause flux and torque pulsations. Loss-model-based controllers use a functional loss model for evaluating the optimum flux level [3], [4], [5]. They are normally faster than online search methods but sensitive to parameter variations. However, loss-model-based controllers are well suited to IM drives where vector control is used and motor parameters are needed for the control.

Various loss functions have been used for describing the IM losses [2]. The resistive losses and core losses of the motor are commonly included in the loss model. Usually, the core losses are assumed to be proportional to the square of the frequency;

\[P_{core} = k_{core} \cdot \psi^2 \]

this behaviour corresponds to eddy-current losses. It is also possible to include both eddy-current losses and hysteresis losses in the loss model [6], [7]. If the loss model is sufficiently simple, the optimum flux level can be solved analytically. For more complicated loss models, it is possible to determine the optimum flux level iteratively [1].

In this paper, the dynamic space-vector model proposed for IMs in [8] is applied to loss-minimizing control. The model includes both hysteresis losses and eddy-current losses as well as the magnetic saturation. The core losses and the magnetic saturation are also taken into account in the flux estimation and rotor-flux-oriented control. Based on the corresponding steady-state loss function, a method is proposed for solving the loss-minimizing flux reference at each sampling period. In order to improve the dynamic operation of the drive, a proportional flux controller is applied. The flux controller is also augmented with a voltage-feedback field-weakening algorithm. Both the steady-state performance and the dynamic performance of the proposed method are investigated using laboratory experiments with a 2.2-kW IM drive.

II. \(\Gamma \) MODEL

Real-valued space vectors will be used; for example, the stator-flux vector is \(\psi_s = [\psi_{sd}, \psi_{sq}]^T \) and its magnitude is denoted by

\[\psi_s = \| \psi_s \| = \sqrt{\psi_{sd}^2 + \psi_{sq}^2} \] (1)

The space vectors in stator coordinates are denoted by the superscript \(s \) and no superscript is used for vectors in synchronous coordinates. The identity matrix is \(I = [1, 0] \) and the orthogonal rotation matrix is \(J = [0, -1] \). Per-unit quantities will be used.

A. Voltage and Flux Equations

Fig. 1 shows the the dynamic \(\Gamma \) model of the IM in stator coordinates [9]. In synchronous coordinates rotating at \(\omega_s \), the
IM model can be described by the voltage equations

\[
\begin{align*}
\frac{d\psi_s}{dt} &= u_s - R_s i_s - \omega_s J \psi_s \quad (2a) \\
\frac{d\psi_R}{dt} &= -R_R i_R - \omega_i J \psi_R \quad (2b)
\end{align*}
\]

where the stator voltage vector is denoted by \(u_s\), the stator current vector by \(i_s\), and the stator resistance by \(R_s\). The rotor current vector is \(i_R\) and the rotor resistance is \(R_R\). The angular slip frequency \(\omega_s = \omega - \omega_m\), where \(\omega_m\) is the electrical angular speed of the rotor. The stator and rotor flux linkages are given by

\[
\begin{align*}
\psi_s &= L_M(i_s^t + i_R) \quad (3a) \\
\psi_R &= \psi_s + L_{\sigma} i_R \quad (3b)
\end{align*}
\]

respectively, where \(i_s^t = i_s - i_{Fe}\), the stator inductance is \(L_M\), and the leakage inductance is \(L_{\sigma}\). The current of the core-loss conductance \(G_{Fe}\) is \(i_{Fe}\), and the voltage across the core-loss conductance is

\[
u_{Fe} = u_s - R_s i_s \quad (4)
\]

B. Magnetic Saturation

The stator inductance and the leakage inductance depend on the flux linkages (or the currents) due to the magnetic saturation [10]. If the loss-minimizing flux level control is to be applied, the magnetic-saturation effects should be modeled and taken into account in the control algorithms.

In the case of the \(\Gamma\) model, modeling the stator inductance \(L_M\) as a function of the stator flux typically suffices.\(^1\) The leakage inductance \(L_{\sigma}\) is assumed to be constant and the stator inductance is modeled by a simple power function [1], [12]:

\[
L_M(\psi_s) = \frac{L_u}{1 + (\beta \psi_s)^2} \quad (5)
\]

where \(L_u\) is the unsaturated inductance, and \(S\) and \(\beta\) are nonnegative constants. These parameters can be identified using series of no-load tests at different voltage levels. Fig. 2 shows the stator inductance as a function of the stator flux.

C. Core-Loss Conductance

The core losses can be divided into two parts: hysteresis losses and classical eddy current losses. The hysteresis losses are proportional to the frequency, while the eddy current losses are proportional to the square of the frequency [13]. In steady state, the stator core losses are classically modeled as a function of the stator angular frequency \(\omega_s\) and the stator-flux magnitude \(\psi_s\),

\[
P_{Fe} = \Lambda_{Hy} |\omega_s| |\psi_s|^2 + G_{Ft} \omega_s^2 |\psi_s|^2 \quad (6)
\]

where the first term corresponds to the hysteresis losses \(P_{Hy}\) and the second term corresponds to the eddy-current losses \(P_{Ft}\). The constants \(\Lambda_{Hy}\) and \(G_{Ft}\) determine the ratio between the loss components at a given stator flux and angular frequency. The steady-state core-loss conductance corresponding to (6) is

\[
G_{Fe}(\omega_s) = \frac{\Lambda_{Hy}}{|\omega_s|} + G_{Ft} \quad (7)
\]

which is illustrated in Fig. 3. The parameters \(\Lambda_{Hy}\) and \(G_{Ft}\) can be identified using series of no-load tests at different stator frequencies.

The steady-state model (7) cannot be directly used in dynamic models since the angular frequency \(\omega_s\) is irrelevant in transients and in the case of non-sinusoidal waveforms. In the following, a nonlinear core-loss conductance [8]

\[
G_{Fe}(u_{Fe}, \psi_s) = \Lambda_{Hy} \frac{\psi_s}{u_{Fe}} + G_{Ft} \quad (8)
\]

is applied in the dynamic \(\Gamma\) model. The conductance depends on the magnitude of the instantaneous voltage across it and the

\[\text{Fig. 2. Stator inductance (5) as a function of the stator flux for } L_u = 2.31 \text{ p.u., } \beta = 0.87 \text{ p.u. and } S = 7. \text{ Markers show the measured inductance values from no-load tests (different stator frequencies were applied at each flux level).}
\]

\[\text{Fig. 3. Steady-state core-loss conductance (7) as a function of stator frequency for } \Lambda_{Hy} = 0.015 \text{ p.u. and } G_{Ft} = 0 \text{ p.u. Markers show the measured conductance values from no-load tests (different flux levels were applied at each stator frequency).}
\]

\[\text{\(^1\)For achieving the same accuracy, more complex saturation models would be needed in the case of the inverse-\(\Gamma\) model [11]. The transformation between the inverse-\(\Gamma\) model and the \(\Gamma\) model is given in the Appendix.}\]
magnitude of the instantaneous stator flux. The instantaneous core losses become \(p_{Fe} = \Lambda_{Hy} u_{Fe} \psi_s + G_{Fe} u_{Fe}^2 \), which equals (6) in steady state.

D. Loss Function in Steady State

The power balance of the IM model is given by

\[
i^T_s u_s = R_s i_s^2 + R_H i^2_H + p_{Fe} + \frac{dW_f}{dt} + T_e \omega_m \quad (9)
\]

The electromagnetic torque is

\[
T_e = i_s^T J \psi_s \quad (10)
\]

and the rate of change of the magnetic energy is

\[
\frac{dW_f}{dt} = i_s^T \frac{d\psi_s}{dt} + i_R \frac{d\psi_R}{dt} = i_M \frac{d\psi_s}{dt} + i_R \frac{d\psi_R}{dt} \quad (11)
\]

In steady state, the power fed into the stator is

\[
P_s = i_s^T u_s = P_{loss} + T_e \omega_m \quad (12)
\]

where the total losses are

\[
P_{loss} = R_s i_s^2 + R_H i^2_H + (\Lambda_{Hy} |\omega_m| + G_{Fe} |\omega_m^2|) \psi_s^2 \quad (13)
\]

The first term corresponds to the stator resistive losses, the second term to the rotor resistive losses, and the last term to the core losses.

For searching the loss-minimizing rotor-flux level, the loss function (13) will be formulated as a function of \(T_e, \omega_m, \) and \(\psi_R \) in the following. Based on (2b) and (10), the slip angular frequency can be expressed as

\[
\omega_s = \frac{R_H T_e}{\psi_R} \quad (14)
\]

and the stator angular frequency is \(\omega_s = \omega_m + \omega_s \). The rotor current can be solved from (2b) as

\[
i_R = -\frac{\omega_s J \psi_R}{R_H} \quad (15)
\]

The stator flux is obtained based on (3b) and (15) as

\[
\psi_s = \left(I + \frac{\omega_s L_H}{R_H} J \right) \psi_R \quad (16)
\]

The magnetizing current is \(i_M = \psi_s / L_M \) and the core-loss current is

\[
i_{Fe} = [\Lambda_{Hy} \text{sign}(\psi_s) + G_{Fe} |\psi_s|] J \psi_s \quad (17)
\]

Finally, the stator current is

\[
i_s = i_{Fe} + i_M - i_R \quad (18)
\]

Using (14)-(18), the losses in (13) can be expressed as a function of \(T_e, \omega_m, \) and \(\psi_R \). If the loss-minimizing flux magnitude is to be searched for a given operating point, \(T_e \) and \(\omega_m \) can be considered as constant parameters.

Fig. 4 illustrates the loss-minimizing rotor flux as a function of the torque at different speeds. The optimal flux is obtained by minimizing (13). The parameters of a 2.2-kW IM given in Table III were used.

III. CONTROL SCHEME

The speed-sensorless rotor-flux-oriented control system—augmented with the loss-minimizing flux level control—is shown in Fig. 5. The control system is based on the \(\Gamma \) model shown in Fig. 1, and it is implemented in estimated rotor-flux coordinates. The vector components in these coordinates will be marked by the subscripts d and q.

A. Flux Observer With Core-Loss Compensation

An inherently sensorless reduced-order rotor-flux observer is applied [14], [15], [16]. The observer is based on the voltage model, which is corrected by a current-model-based prediction error. More specifically, the error term is formulated using the component of the back electromotive force (EMF) induced by the rotor flux in the direction of the rotor-flux estimate. In this direction, the back EMF component computed from the current model does not depend on the speed estimate. The observer is implemented in estimated rotor-flux coordinates.

The observer is equal to [16] with two exceptions: (i) the observer is modified so that the parameters and variables correspond to those of the \(\Gamma \) model, which makes it easier to model the magnetic saturation and to incorporate the loss-minimizing method in the control system; (ii) the effect of the core losses is included in the observer. For clarity, the observer and these modifications are briefly described in the following.

In the observer, the stator inductance is obtained using the function \(L_M(\hat{\psi}_s) \) defined in (5), where, naturally, the estimated stator-flux magnitude has to be applied. Similarly, the core-loss conductance is obtained using the function \(G_{Fe}(\hat{u}_{Fe}, \hat{\psi}_s) \) defined in (8), where the magnitude of the voltage across the conductance is \(\hat{u}_{Fe} = ||u_s - \hat{R}_s i_s|| \) and \(\hat{R}_s \) is the stator-resistance estimate. Furthermore, the magnetic coupling factor

\[
\gamma(\hat{\psi}_s) = \frac{L_M(\hat{\psi}_s)}{L_M(\hat{\psi}_s) + L_\sigma} = \frac{L_u}{L_u + L_\sigma + L_\sigma (\beta \hat{\psi}_s)} \quad (19)
\]
is applied. To simplify notation, the arguments of the functions L_M, G_{Fe}, and γ will be omitted in the following equations.

In order to take the core losses into account, the current i_s' going into the magnetic circuit is estimated as

$$i_s' = i_s - G_{Fe}(u_s - \dot{R}_s i_s)$$ \hspace{1cm} (20)

The estimates for the rotor-flux magnitude and position are obtained from

$$\frac{d\hat{\psi}_R}{dt} = e_d + g_1(e_d - e_d)$$ \hspace{1cm} (21a)$$
$$\frac{d\hat{\omega}_s}{\psi_R} = e_q + g_2(e_d - e_d) = \dot{\omega}_s$$ \hspace{1cm} (21b)

where the observer gains g_1 and g_2 equal the gains in [16]. The components of the back EMF induced by the rotor flux are calculated from the stator side as

$$e_d = \frac{1}{\gamma}(u_{sd} - \dot{R}_s i_{sd}) - L_\sigma \frac{d\hat{i}_{sd}'}{dt} + \hat{\omega}_s L_\sigma \hat{i}_{sq}'$$ \hspace{1cm} (22a)$$
$$e_q = \frac{1}{\gamma}(u_{sq} - \dot{R}_s i_{sq}) - L_\sigma \frac{d\hat{i}_{sq}'}{dt} - \hat{\omega}_s L_\sigma \hat{i}_{sd}'$$ \hspace{1cm} (22b)

The d component of the back-EMF estimate can be calculated from the rotor side as

$$\dot{e}_d = \gamma R_d \left(\dot{i}_{sd}' - \frac{\hat{\psi}_R'}{L_M} \right)$$ \hspace{1cm} (23)

Proper selection of the observer gains g_1 and g_2 is crucial, particularly for low-speed operation. It is worth noticing that the observer (21) would reduce to the pure voltage model (which cannot be used in practice) if $g_1 = g_2 = 0$ were used.

The estimate $\hat{\psi}_s$ for the stator-flux magnitude is needed for the functions G_{Fe}, L_M, and γ. This estimate depends on the rotor-flux estimate $\hat{\psi}_R$ and the current components according to

$$\hat{\psi}_s = \gamma \sqrt{(\hat{\psi}_R + L_\sigma \hat{i}_{sd}')^2 + (L_\sigma \hat{i}_{sq}')^2} = f(\hat{\psi}_s)$$ \hspace{1cm} (24)

This nonlinear function cannot be explicitly solved. To circumvent this problem, the value of $\hat{\psi}_s$ from the previous time step is applied on the right-hand side of (24) in the discrete-time implementation, i.e. $\hat{\psi}_{s,k+1} = f(\hat{\psi}_{s,k})$ where k is the time-step index. This computationally efficient method can be seen as the fixed-point iteration.\(^2\)

The rotor-speed estimate is computed by embedding the slip relation in a low-pass filter

$$\frac{d\hat{\omega}_m}{dt} = \alpha_o \left(\hat{\omega}_s - \frac{\gamma R_d \hat{i}_{sq}'}{\psi_R} - \hat{\omega}_m \right)$$ \hspace{1cm} (25)

where α_o is the filter bandwidth. In order to tackle the effects of temperature variations, the stator-resistance adaptation law

$$\frac{dR_s}{dt} = k_R (e_d - e_d)$$ \hspace{1cm} (26)

is applied, where the gain k_R equals the gain in [16]. The adaptation is disabled in the vicinity of no-load operation and at higher stator frequencies due to poor signal-to-noise ratio.

B. Loss-Minimizing Flux Reference

The total losses (13) should be minimized while the electromagnetic torque and the rotor speed should be controlled to their desired values. In a fashion similar to (13)–(18), the estimated total losses can be expressed as a function of the estimated rotor speed $\hat{\omega}_m$, the electromagnetic torque reference $T_{e,ref}$, and the (unfiltered) rotor flux reference $\hat{\psi}_{R,ref}$. Since the loss-minimizing flux magnitude is to be determined for a given operating point, $\hat{\omega}_m$ and $T_{e,ref}$ are known, and thus the loss minimization law can be expressed as

$$\psi_{R,ref}^* = \arg \min_{\psi_R \in [\psi_{R,min}, \psi_{R,max}]} \{ \tilde{P}_{loss}(\psi_R) \}$$ \hspace{1cm} (27)

The minimum point of the loss function (13) can be very effectively found by means of a one-dimensional search method. At each sampling period, the golden section method is applied to search the loss-minimizing flux reference.

\(^2\)The fixed-point iteration converges if $|df(\hat{\psi}_s)/d\hat{\psi}_s| < 1$, leading to the condition $L_\sigma L_s S(\beta \hat{\psi}_s)^{S} < |L_\sigma + L_s (\beta \hat{\psi}_s)|^2$ if the effect of the core-loss compensation is omitted in (24). This condition is fulfilled for any realistic parametrizations of L_σ, β, S, and L_s. The nonlinear equation (24) could be avoided by changing the state variables of the observer, but the observer equations would become much more complex in that case.
Additionally, the calculated optimal rotor flux \(\psi_{R,\text{ref}}^* \) is low-pass filtered as
\[
\frac{d\psi_{R,\text{ref}}}{dt} = \alpha_{\text{lpf}} \left(\psi_{R,\text{ref}}^* - \psi_{R,\text{ref}} \right)
\]
where \(\psi_{R,\text{ref}} \) is the filtered flux reference and \(\alpha_{\text{lpf}} \) is the bandwidth of the filter.

C. Flux Controller

In order to speed up the rotor-flux dynamics, a proportional flux controller with a feedforward term is applied. A voltage-feedback field-weakening algorithm is integrated into the flux controller for enabling high-speed operation. The reference for the flux-producing current component is
\[
t'_{sd,\text{ref}} = \frac{\psi_{R,\text{ref}}}{L_M} + K_f (\psi_{R,\text{ref}} - \dot{\psi}_R) + I_u
\]
where the limitation \(-\frac{i_{s,\text{max}}}{\sqrt{2}} \leq t'_{sd,\text{ref}} \leq \frac{i_{s,\text{max}}}{\sqrt{2}}\),
\[
I_u = K_u \int \left(u_{s,\text{max}}^2 - u_{s,\text{ref}}^2 \right) dt
\]
and the limitation \(I_u \leq 0 \),
\[
I_u = K_u \int \left(u_{s,\text{max}}^2 - u_{s,\text{ref}}^2 \right) dt
\]
where \(K_f = \alpha_f / (\gamma R_R) - 1 / L_M \) is the gain, \(\alpha_f \) is the closed-loop bandwidth, and \(i_{s,\text{max}} \) is the maximum stator current. The field-weakening term similar to [17] is applied,
\[
I_u = K_u \int \left(u_{s,\text{max}}^2 - u_{s,\text{ref}}^2 \right) dt
\]
where \(K_u = \psi_{R,\text{ref}} R_R / (L_\sigma u_{s,\text{max}})^2 \) is the gain and \(u_{s,\text{max}} \) is the maximum voltage corresponding to the linear modulation region [18]. The term \(I_u \) is non-zero only at high speeds. The torque-producing current component is evaluated as
\[
t'_{sq,\text{ref}} = \frac{T_{e,\text{ref}}}{\gamma \psi_R}
\]
with the limitation \(I_u \leq 0 \),
\[
I_u = K_u \int \left(u_{s,\text{max}}^2 - u_{s,\text{ref}}^2 \right) dt
\]
In addition, limitations corresponding to the maximum current and the breakdown torque are applied.

IV. EXPERIMENTAL SETUP AND PARAMETERS

The performance of the proposed method is investigated by means of computer simulations and experiments in Section V. The experimental setup and the parameters are described in the following.

A. Experimental Setup

A 2.2-kW four-pole IM is used in the laboratory experiments. The rated values of the motor are given in Table I and the base values of the per-unit system in Table II. In all experiments, including no-load tests, the IM is fed by a frequency converter controlled by a dSPACE DS1103 PPC/DSP board. A servo motor is used as a loading machine. The total moment of inertia of the experimental setup is 0.015 kgm². The speed is measured using an incremental encoder for monitoring purposes. A Voltech PM6000 power analyzer is applied in steady-state loss measurements.

The phase currents are measured using LEM LA 55-SP1 transducers, and the sampling is synchronized to the pulse-width modulation. The stator voltages are evaluated from the measured dc-link voltage and the switching states. The effect of inverter nonlinearities on the stator voltage is substantial at low speeds. Therefore, the most significant inverter nonlinearities, i.e. the dead-time effect and power device voltage drops, are compensated for. Using phase a as an example, a compensated duty cycle is evaluated as [16]
\[
d_a = d_{a,\text{ref}} + \frac{2d_\delta}{\pi} \arctan \left(\frac{i_a}{i_a} \right)
\]
where \(d_{a,\text{ref}} \) is the ideal duty cycle obtained from the current controller and \(i_a \) is the phase current. The parameter \(d_\delta = 0.011 \) p.u. takes into account both the dead-time effect and the threshold voltage of the power devices. The shape of the arctan function is determined by the parameter \(i_a = 0.21 \) p.u. The current-feedforward compensation method in (32) corresponds to the method in [19], [20], except that the signum functions were replaced with the arctan functions in order to improve the performance in the vicinity of current zero crossings.

Unless otherwise noted, the maximum stator current is \(i_{s,\text{max}} = 1.5 \) p.u. The sampling period of the pulse-width modulator, current controller and flux observer is 200 \(\mu s \), and the sampling period of the rest of the control system is 1 ms. The flux-reference filter bandwidth \(\alpha_{\text{lpf}} = 0.06 \) p.u. and the flux-control bandwidth \(\alpha_f = 0.06 \) p.u. Furthermore, the bandwidth of 0.06 p.u. is used for the speed control. The minimum and maximum values of the flux reference are \(\psi_{R,\text{min}} = 0.2 \) p.u. and \(\psi_{R,\text{max}} = 1.2 \) p.u., respectively. The per-unit observer gains equal to [16] were applied in the experiments.

B. Parameter Identification

Per-unit motor parameters used in the simulations and experiments are given in Table III. The identification procedure for the parameters of the stator inductance function (5) and the core-loss conductance function (8) is described in the following.

The stator resistance \(R_s \) was measured in advance by means of a dc test. No-load tests were performed to obtain the parameters used in the stator-inductance function (5) and in the core-loss conductance function (8). The stator voltage

<table>
<thead>
<tr>
<th>Power (P_N)</th>
<th>2.2 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line-to-line voltage (U_N)</td>
<td>400 V (rms)</td>
</tr>
<tr>
<td>Current (I_N)</td>
<td>5 A (rms)</td>
</tr>
<tr>
<td>Frequency (f_N)</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rotation speed (n_N)</td>
<td>1436 r/min</td>
</tr>
<tr>
<td>Shaft torque (T_N)</td>
<td>14.6 Nm</td>
</tr>
</tbody>
</table>

Voltage \(u_B \)	\(\sqrt{2}/3U_N \)
Current \(i_B \)	\(\sqrt{2}I_N \)
Frequency \(f_B \)	\(f_N \)
Angular frequency \(\omega_B \)	\(2\pi f_N \)
Flux linkage \(\psi_B \)	\(u_B / \omega_B \)
Impedance \(Z_B \)	\(u_B / i_B \)
Inductance \(L_B \)	\(Z_B / \omega_B \)

| \(T_{e,\text{ref}} \) | \text{rated} |
| \(\gamma \psi_R \) | \text{rated} |

\(L_M \) Rotation speed \(n_N \) Shaft torque \(T_N \) Base values of the per-unit system
and current were measured at four different stator frequencies (0.3, 0.5, 0.7, and 0.8 p.u.) and at six different voltage levels (approximately corresponding to the stator-flux values between 0.2 p.u. and 1.2 p.u.). At each operating point, the voltage \(u_{Fe} = u_s - R_s i_s \) and the stator flux \(\psi_s = -J u_{Fe}/\omega_s \) were evaluated.

The parameters of the inductance function (5) were obtained by minimizing

\[
J_L(L_u, \beta, S) = \sum_{n=1}^{N} \left[i_{s,n} - \frac{\psi_{s,n}}{L_M(\psi_{s,n})} \right]^2
\]

where \(i_s = i_s^T \psi_s/\psi_s \) is the component of the stator current in the direction of the stator-flux vector and \(N \) is the total number of operating points. As a result, the parameters \(S, L_u, \) and \(\beta \) given in Table III were obtained. The inductances \(\psi_{s,n}/i_{s,n} \) obtained from the measurement data and the fitted inductance (5) are shown in Fig. 2. It can be seen that the function (5) fits very well to the data.

The parameters of the conductance function (8) were obtained by minimizing

\[
J_G(G_{Fl}, \Lambda_{Hy}) = \sum_{n=1}^{N} \left[i_{Fe,n} - G_{Fl}(\omega_{s,n}) \cdot u_{Fe,n} \right]^2
\]

where \(i_{Fe} = i_{Fe}^T u_{Fe}/u_{Fe} \). At the frequencies used in the no-load tests, the core losses of this machine consist mainly of the hysteresis losses; based on the fitting, the core-loss parameters \(\Lambda_{Hy} \) and \(G_{Fl} \) given in Table III were obtained. At higher frequencies, the influence of \(G_{Fl} \) would probably become more significant. In the control system, the maximum value of the conductance function \(G_{Fl} \) is limited to 0.2 p.u. The core-loss conductances \(i_{Fe,n}/u_{Fe,n} \) obtained from the measured data and the fitted conductance (8) are shown in Fig. 3. It can be seen that the measured values of the core-loss conductance depend on the flux level in addition to the stator frequency.

Alternatively, if a priori information of the motor is available, the core-loss parameters could be calculated as

\[
\Lambda_{Hy} = \frac{k_{Hy} P_{Fe,N}}{\omega_{s,N} \psi_{s,N}^2}, \quad G_{Fl} = \frac{(1 - k_{Hy}) P_{Fe,N}}{\omega_{s,N}^2 \psi_{s,N}^2}
\]

where \(P_{Fe,N} \) are the rated core losses and \(k_{Hy} \) is the ratio between the hysteresis losses and the total core losses in the rated operating point. \(\Lambda_{Hy} \) is the rated stator flux is \(\psi_{s,N} \) and the rated stator angular frequency is \(\omega_{s,N} \).

A. Parameter Sensitivity

In order to investigate the parameter sensitivity of the core-loss model, computer simulations were carried out in MATLAB/Simulink environment. The IM was modeled as described in Section II, the control system was modeled according to Section III, and the parameters in Table III were used.

The core-loss model is included in the observer. Inaccurate parameters cause errors in the estimates of the rotor-flux magnitude and position and, thus, in the estimated torque. As an example, at the speed 0.5 p.u. and torque 30% of the rated torque, the torque error is 4% if the core losses are omitted in the control system. If the estimated value of \(\Lambda_{Hy} \) is twice its actual value, the corresponding torque error is 3%. The relative torque error decreases as the load increases. For instance, at the speed 0.5 p.u. and torque equal to the rated torque, the error in the estimated torque is 2% if the core losses are omitted.

The core-loss model affects the evaluation of the optimum flux level in the loss control directly. As an example, at the speed 0.5 p.u. and torque 30% of the rated torque, the flux level increases 9% if the core losses are omitted in the control system. This relatively large increase in the flux level causes losses to increase only 0.2%.

B. Experimental Results

The performance of the proposed method was investigated experimentally by means of dynamic test sequences and steady-state loss measurements.

1) Dynamic Experiments: In Fig. 6, the speed reference was stepped from 0 to 0.5 p.u. at \(t = 1 \) s and back to 0 at \(t = 4 \) s. A loaded load torque step was applied at \(t = 2 \) s and removed at \(t = 3 \) s. Fig. 6(a) shows the result of the constant-flux control and Fig. 6(b) is the result of proposed loss-minimizing flux control. It can be seen that the flux estimate follows the loss-minimizing flux reference. The proposed method reduces both the steady-state rotor flux and stator current in this case.

Changes in the speed reference or load torque result in a varying torque reference, which in turn causes changes in the loss-minimizing rotor flux reference. The rate of change of the rotor flux reference is restricted by the bandwidth \(\omega_{up} \). The changes in the actual rotor flux are slower due to the rotor time constant. A low rotor flux level is used at low torques, and increasing the torque takes more time when the loss-minimizing flux control is used than in constant-flux operation, although the current control uses the maximum current when large changes in the flux are required. Therefore, the acceleration in Fig. 6(b) is slower than that in Fig. 6(a), and the speed change after the load torque step is larger.

However, the dynamic performance of the proposed method is acceptable for many applications. For higher dynamic response requirements, the minimum-flux limit can be raised.

Fig. 7 shows an acceleration from standstill to a speed of 1.5 p.u. and a speed reversal. During the transients, the flux is reduced by the field-weakening term (30) since all the available voltage is in use. For a fast reduction of the flux level, the d-axis current becomes negative at about \(t = 1.16 \).
s in accordance with the limits in (29). As steady state is reached, the flux follows the flux reference given by the loss-minimizing algorithm, and the losses are minimized.

In Fig. 8, operation at zero speed is shown. A rated load torque step is applied at $t = 1.5$ s, and a negative torque step twice the rated torque is applied at $t = 2.5$ s. The load is removed at $t = 3.5$ s. As discussed in more detail in [16], speed-sensorless operation at zero speed is possible since (i) the inverter nonlinearities are compensated for, (ii) observer gains are properly selected, and (iii) stator-resistance adaptation together with good inductance estimates is applied. Even if the initial flux level is low at $t = 1.5$ s, the system tolerates the load torque step without problems.

2) Steady-State Losses: Experiments were carried out to compare the steady-state losses between the proposed method and constant-flux control. The core losses were omitted in the flux observer in constant-flux control.

A Voltech PM6000 power analyzer was used for measuring the input power to the IM, the mechanical output power was calculated from the measured speed and the shaft torque (measured with a HBM T10F torque flange), and the total losses of the IM in steady state were determined. In order to exclude the influence of temperature changes, a cooling time was allowed between the experiments, and the stator resistance estimate was followed.

The fundamental component of the stator voltage was also recorded with the power analyzer. The maximum available output voltage of the converter was limited below 1 p.u., since the diode rectifier of the frequency converter was connected to a 380-V 50-Hz supply (while the base values are based on the rated values of the 400-V IM). Furthermore, the linear modulation region in steady state and a minimum pulse-width limitation were applied.
Fig. 8. Experimental results showing load torque steps at zero speed.

Fig. 9 shows the measured total losses of the IM and the stator voltage as a function of the measured shaft torque. Measurements were carried out at the speeds of 0.5 p.u. and 1.0 p.u. The results show that the proposed method significantly reduces the losses in steady state at low loads. At the speed of 0.5 p.u., the losses are reduced not only in the low-torque region but also at torque levels above the rated torque. The improvement at high torque levels is achieved by applying a flux higher than the rated flux, in accordance with Fig. 4.

The maximum achievable flux level is limited at higher speeds by the maximum stator voltage. It can be seen in Fig. 9 that, at the speed of 1.0 p.u., the loss-minimizing flux level cannot be applied if the torque is more than approximately half the rated torque. In this case, the flux level is (automatically) determined by the voltage-feedback field-weakening algorithm (30).

Fig. 10 shows the measured losses as a function of the rotor flux estimate. Four different shaft torque values were applied while the speed was kept at 0.5 p.u. It can be seen that measured losses depend on the rotor flux, and that losses can be minimized by suitably selecting the flux level. Furthermore, the loss-minimizing flux level was calculated for each torque using (27). It can be seen that the flux from (27) agrees well with the actual loss-minimizing flux.

3) S5 Duty Cycle: Experiments were also carried out in intermittent periodic duty with acceleration and electric braking (IEC duty type S5 60%, \(J_{M} = 0.0069 \) kgm\(^2\), \(J_{ext} = 0.0086 \) kgm\(^2\)). During the operation time, the load was 30% of the rated torque, and the speed was 0.8 p.u. The maximum stator current was \(i_{s,\text{max}} = 2.0 \) p.u. Fig. 11 shows an example of the measured results for the cycle duration of 3 s.

Both the loss-minimizing algorithm and the constant-flux control were applied. The mean value of the input power was calculated off-line using the phase currents, dc-link voltage,
and switching states, which were captured with the DS1103 board. Fig. 12 shows the results for different cycle durations between 1 s and 7 s. It can be seen that loss-minimizing flux optimization leads to lower losses than the constant-flux approach if the cycle duration is long enough. In the case of the shortest cycle durations, the current required for changing the flux in accelerations and decelerations contributes to the losses so much that the constant-flux operation becomes more beneficial.

VI. Conclusion

This paper proposed a loss-minimizing flux control method for the IM drive. The magnetic saturation as well as the hysteresis and eddy-current losses are included in the loss minimization, flux estimation, and sensorless control of the IM. The proposed system provides smooth transitions between the loss-minimizing region at lower speeds and the voltage-feedback field-weakening region at higher speeds. Based on

the simulation studies of a 2.2-kW IM drive system, the loss-minimizing algorithm is not very sensitive to errors in core-loss model parameters. The inclusion of the core-loss model in the flux observer notably improves the accuracy of the torque production.

The experimental results show that the dynamic performance of the method is acceptable. The losses in steady state are significantly reduced in a wide torque range, as compared to the losses in the constant-flux approach. It was also experimentally demonstrated that the actual loss minimum is achieved for all practical purposes. In intermittent periodic duty, the proposed method reduces the losses if the cycle duration is long enough. In the case of the shortest cycle durations, the constant-flux operation becomes more beneficial.

APPENDIX

Inverse-Γ Model

In the case of rotor-flux orientation control, the inverse-Γ model shown in Fig. 13 is typically preferred in the design and implementation of the control algorithms. The parameters and variables of the Γ model can be transformed to those of the inverse-Γ model using the coupling factor

$$\gamma = \frac{L_M}{L_M + L_\sigma} = \frac{L_\alpha}{L_\alpha + L_\sigma + L_\sigma (\beta \psi_s)^S}$$

as follows:

$$L'_\sigma = \gamma L_\sigma, \quad L'_M = \gamma L_M, \quad R'_R = \gamma^2 R_R$$

When this transformation is used, the models are mathematically equivalent in steady state (and in transients as well if the magnetics are linear). It can be seen that due to the magnetic saturation, the equivalent inverse-Γ model parameters depend on the stator flux. The rotor flux can be transformed to inverse-Γ flux as $$\psi'_R = \gamma \psi_R$$.

ACKNOWLEDGMENT

This paper is dedicated to the memory of Prof. Jorma Luomi, who passed away in December 2011 after a short battle against cancer.

REFERENCES

