Dasmahapatra, Atreyi; Daga, Loredana Edith; Karttunen, Antti J.; Maschio, Lorenzo; Casassa, Silvia

Key Role of Defects in Thermoelectric Performance of TiMSn (M = Ni, Pd, and Pt) Half-Heusler Alloys

Published in:
Journal of Physical Chemistry C

DOI:
10.1021/acs.jpcc.0c03243

Published: 16/07/2020

Please cite the original version:
The Key Role of Defects in Thermoelectric Performance of TiMSn(M = Ni, Pd, Pt) Half-Heusler Alloys

Atreyi Dasmahapatra,† Loredana Edith Daga,† Antti J. Karttunen,† Lorenzo Maschio,*,† and Silvia Casassa*,†

†Dipartimento di Chimica, Università di Torino, Italy
‡Department of Chemistry and Materials Science, Aalto University, Finland

E-mail: lorenzo.maschio@unito.it; silvia.casassa@unito.it

Abstract

Half-Heusler alloys are thermoelectric materials that enable direct conversion of waste heat to electricity. A systematic study of these alloys has never been attempted using local Gaussian type (GTOs) orbitals, and hybrid density functional theory methods within a periodic approach. In this work, we study the thermoelectric properties of TiMSn (M = Ni, Pd, Pt) alloys with space group $F43m$ using the CRYSTAL code. We, first, set benchmarks for TiNiSn by comparing our data to existing literature values of Seebeck coefficient, power-factor and thermoelectric figure-of-merit. Our results agree well. We, then, extend these calculations to TiPdSn and TiPtSn, for which consistent previous data are limited. Our computations show that all TiMSn (M = Ni, Pd, Pt) alloys prefer p-type carriers and exhibit a figure-of-merit of ≈ 1 at a chosen carrier concentration and temperature. In addition, we aim to explain the low band-gap of TiNiSn by modeling defects in the pure system. Our defect model proves to have a smaller band-gap and its power-factor is found to be almost twice of the pure TiNiSn.
Introduction

The term thermoelectrics has sparked huge interest in recent years, as the perspective of turning waste heat into useful electricity grows in the light of renewed attention toward the environment. From electric cars to wearable devices, and thereon up to space exploration, the horizon of reducing energy demands seems to be at hand. Unfortunately, due to the modest efficiency and relatively high cost, currently available devices and materials are not able to deliver this promise.

Compared to other fields of solid-state physics and materials’ chemistry, the alliance of theoretical modelling, experimental characterization and synthesis is not prevalent in thermoelectrics. Plausible reasons are that for an experimentally synthesized sample there is a high density of defects (intersitial, substitutional, etc.) that provide a high carrier density. Despite the crystalline nature of the compound, realistic models that integrate these defects are difficult to mimic. Moreover, grain boundaries found in real materials are beneficial to thermoelectric properties as they reduce the thermal conductivity of the sample, but these structural defects are also complicated to integrate in a model.

As C. J. Humphreys once quoted: “Crystals are like people: it is the defects in them which tend to make them interesting!” For thermoelectrics this is indeed the case, as the presence of interstitial or substitutional defects not only adds flat bands in the gap but alters the shape of a large part of the band structure.

Half-Heusler (HH) alloys, intermetallic compounds of the composition ABX, are now actively investigated for their thermoelectric (TE) performance. These compounds have tunable band gaps which allow the possibility of tailoring TE efficiency and have potential applications in spintronics, solar cells, and data storage.

Experimentally, these materials are synthesized using various methods: spark plasma sintering, hot pressing, arc-melting and microwave-assisted solid-state reactions. These methods are generally followed by prolonged annealing that is targeted to densify the material and heal the sample of defects.
On computational side, a recent impetus in the investigation of these alloys is to use machine learning tools to accelerate the discovery of new novel materials. The primary focus, however, is doping the parent material to maximise the thermoelectric Power Factor σS^2 and in turn the thermoelectric figure of merit ($ZT = S^2\sigma T/k_{total}$, where k_{total} is the materials’ total thermal conductivity). This approach comes from the general idea that adding impurities (doping or substituting by isoelectronic elements) alters the band gap of the parent material, which in turn enhances the TE properties. The changes in the atomic bonding in the proximity of the grain boundaries and the consequent covalent bond delocalization can also deeply modify the thermoelectrics, thus stimulating the electron transport of the whole system.

In this paper, we investigate three thermoelectric compounds, TiNiSn, TiPdSn and TiPtSn with the CRYSTAL code, using hybrid density functional methods and basis sets of localized Gaussian orbitals. Such computational setup, if properly tuned, enables the inclusion of exact exchange at a relatively cheap computational cost, allowing for a natural reduction of self-interaction effects. Moreover, it can be more accurate and robust with respect to other DFT approaches that use Hubbard-U corrected functionals for defects and half-Heusler alloys. Our work is targeted towards confirming how, contrary to other materials, point defects in HH alloys have a strong impact on the whole band structure and consequently on transport properties. Moreover, we intend to benefit the community that uses Gaussian type orbitals in the study of crystalline materials, by establishing a reliable methodology and providing an integrated tool to compute thermoelectric properties within the CRYSTAL code. Among HH alloys, TiNiSn is heralded as a benchmark material and is well investigated in literature. Thus, naturally, we first compare our data for TiNiSn to existing literature and validate both the approach and the computational setting and then extend the same machinery to investigate TiPdSn and TiPtSn.

The paper is arranged as follows: in the following Section the computational set-up is described, in particular the reasoning for our choice of basis-sets and DFT functionals.
Results are presented in Section 3 where the variance of the band gap and reproducibility of band structure depending on the choice of functionals is studied. Thereafter, follows a discussion of thermoelectric properties with appropriate comparison to existing literature. In the last section, we present a defect model of TiNiSn that shows improved thermoelectric performance.

Methods

Functional and basis set

Throughout this work we apply Density Functional Theory (DFT) as implemented in the CRYSTAL code.19

While most studies with thermoelectrics employ plane-wave based packages and the Perdew-Burke-Ernzerhof (PBE) functional,23 the local basis in CRYSTAL allow us to introduce a proper amount of ‘exact exchange’ which is known to improve the accuracy of simulated properties that depend on the extent of electronic delocalization, namely band gaps, phonon spectra, and magnetic coupling constants.24

Nevertheless, atomic basis sets, which allow for an easy use of hybrid functionals, have to be accurately calibrated for periodic systems and the correct percentage of exact exchange has to be determined.

In order to define a reference set-up, which predicts the best compromise of the electronic band gap and lattice parameter for the family of systems under investigation, we perform a comprehensive screening in the choice of the basis-sets and on the amount of Hartree-Fock (HF) exchange.

For the basis, we adopt a standard and rather robust procedure to adapt molecular Karlsruhe Split-Valence Polarization basis (\textit{def2-SVP}) to periodic calculations.25 A consistent basis set, referred in the following as \textit{P.def2-SVP}, is obtained by cutting off f functions, when present, and adjusting the outermost s and p shells for periodic calculations, also us-
ing the BDIIS optimization procedure. For each element included here, the basis set has been used successfully in previous studies. The basis sets and the literature references are reported in the Supplementary Information (SI).

For the functional, we explore PBE with three different percentages of HF exchange, namely pure PBE, PBE10 (10% HF exchange) and PBE0 (25% of exact exchange). On the basis of our results, we resolved to use the hybrid PBE10 for all further computation. It is to be noted here that calculations with PBE are reported for sake of comparison with literature results.

Computational parameters

The DFT exchange-correlation contribution is evaluated by numerical integration over the unit cell volume, using a pruned grid with 75 radial and 974 angular points. Integration over the reciprocal space is carried out using Monkhorst-Pack meshes of $8 \times 8 \times 8$. The Coulomb and exchange series, summed in direct space, are truncated using overlap criteria thresholds of $[8,8,8,8,16]$. Convergence for the self-consistent field algorithm is achieved up to a threshold of 10^{-9} Hartree on the total Energy, per unit cell. Geometry optimisation is performed using analytical gradients with respect to atomic coordinates and unit-cell parameters, within a quasi-Newtonian scheme combined with Broyden-Fletcher-Goldfarb-Shanno Hessian updating. The default convergence criteria are adopted for both gradient components and nuclear displacements. The full set of vibrational frequencies in Γ is obtained within the harmonic approximation by diagonalizing the mass-weighted Hessian matrix. This matrix is built by numerically differencing the analytical gradient with respect to atomic Cartesian coordinates. The zero-point energy (ZPE) and the thermal contributions to the vibrational energy (E_{vib}) and entropy (S_{vib}) are calculated by considering the vibrational spectrum in Γ, and then added to the SCF energy and the pressure x volume term to get all the thermodynamic potential, i.e. enthalpy and Gibbs free energy, at any given temperature.
Thermoelectric properties such as Seebeck coefficient (S) electrical conductivity (σ) and electron contribution to the thermal conductivity (k_{el}) are computed by using the semi-classical Boltzmann transport equation theory and the frozen band approximation. We also assume constant relaxation time approximation for carriers (RTA) and fix it at 10 fs (1 \cdot 10^{-14} s) for all systems and temperatures. A dense mesh of up to 4000 k-points is used in the first Brillouin zone for the calculation of thermoelectric parameters. Our computations do not include the effect of spin-orbit coupling (SOC) as this feature is yet to be implemented in the CRYSTAL code.

Thus, we do our computations within the regime of the CRYSTAL code, using carefully screened localized Gaussian type orbitals and hybrid DFT functionals to describe the chemistry of the half-Heusler alloys. Once a reliable computational setting is achieved, features of the code can then be exploited are: (i) calculation of the thermoelectric parameters for different carrier-concentrations, at various temperature and at low computational cost; (ii) chemical insight into the electronic structure due to the atomic nature of the basis set; (iii) modeling of low concentration of point defects using a supercell approach.

Results & Discussion

Defect-free Crystal Structure

The HH pure-phase crystallizes in a MgAgAs-type structure with space group F\overline{4}3m (#216). Similar to other ternary HH alloys, Sn, (Ni/Pt/Pd) and Ti atoms occupy fused face-centered cubic sublattices at Wyckoff positions of 4b (1/4, 1/4, 1/4), 4c (1/2, 1/2, 1/2) and 4a (0, 0, 0) respectively. A representative model is shown in Fig. [1].

Structural parameters and electron band gap, calculated at the PBE10/P.def2-SVP level, are collected in Table [1]. The equilibrium Bulk modulus, B_0, elastic contants, c_{11}, c_{12}, c_{44}, Poisson ratio, ν, and Young’s modulus, Y, are obtained with CRYSTAL by solving the third-order Birch-Murnaghan isothermal equation of state.
For the lattice parameter, a, our finding for TiNiSn deviates from experiment of a negligible 0.2%33,34 whereas TiPdSn and TiPtSn values are in accord to those in Ref. 35 and 36, respectively. Band gaps will be discussed in the next Section.

In the case of TiNiSn, the elastic properties are reproduced accurately even though our perfect crystal model is not completely consistent with realistic experimental samples, where local and structural defects are always present. Hence, a good agreement is achieved for Young’s modulus but significant discrepancies are observed for B_0 and the elastic constants.

In absence of experimental data for TiPdSn and TiPtSn alloys, we compared our calculations with results obtained with a plane-wave approach by Kaur et al.35 and Roy et al.36 respectively. As shown in Table \ref{table1} the agreement for TiPdNi’s B_0 and TiPtSn’s c_{44} elastic constant is excellent.

Defect-free Electronic band structure

For a complete discussion of thermoelectric properties of half-Heusler compounds, a correct description of the electronic band structure of the material is essential. In Fig. \ref{fig2} we show the band structures of all three ternary compounds computed at the PBE10/P.\textit{def2-SVP} level.

As expected, each compound has an indirect band gap, between the valence-band max-
Table 1: PBE10/Pdef2-SVP results for the three HH alloys. Lattice parameter a in Å. Indirect electronic band gap in eV. Bulk modulus, B_0, elastic contants, c_{11}, c_{12}, c_{44}, Young’s modulus, Y, in GPa and Poisson ratio, ν. Literature date are reported when available. Ref. 1, Ref. 34, (EXP); 2 Ref. 37, (EXP); 3 Ref. 38, (EXP); 4 Ref. 9, (THEO); 5 Ref. 35, (THEO); 6 Ref. 36, (THEO).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>a</th>
<th>gap</th>
<th>B_0</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
<th>ν</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiNiSn</td>
<td>5.91</td>
<td>0.69</td>
<td>137.94</td>
<td>235.53</td>
<td>89.98</td>
<td>60.97</td>
<td>0.296</td>
<td>169.62</td>
</tr>
<tr>
<td>Ref.</td>
<td>5.92</td>
<td>0.12</td>
<td>124.90</td>
<td>214.90</td>
<td>79.90</td>
<td>67.50</td>
<td>0.271</td>
<td>171.65</td>
</tr>
<tr>
<td>TiPdSn</td>
<td>6.17</td>
<td>0.76</td>
<td>131.21</td>
<td>184.96</td>
<td>105.27</td>
<td>58.97</td>
<td>0.330</td>
<td>134.11</td>
</tr>
<tr>
<td>Ref.</td>
<td>6.23</td>
<td>0.74</td>
<td>135.90</td>
<td>135.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiPtSn</td>
<td>6.22</td>
<td>1.13</td>
<td>146.02</td>
<td>206.96</td>
<td>116.85</td>
<td>65.89</td>
<td>0.329</td>
<td>150.42</td>
</tr>
<tr>
<td>Ref.</td>
<td>6.25</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

imum at the Γ-point and the conduction-band minimum at X-point. The percentage of exact exchange in the functionals, does affects the numerical value of the band-gap. For instance, for TiNiSn the band-gap varies from 0.48 eV (PBE) to 0.69 eV (PBE10) and finally to 0.98 eV (PBE0). Nevertheless, none of the functionals produce the band gap as low as the experimentally measured value of 0.12 eV. We discuss this anomaly in detail in the following.

For TiPdSn, our computed band-gap is 0.76 eV (0.47 eV with PBE) which matches with previous calculations done using the range-separated hybrid HSE06 functionals. TiPtSn has the highest band-gap of the three alloys at 1.13 eV (0.72, PBE) which is \approx10% less than the literature value obtained with the HSE06 functional.

For the band-structure, the primary difference between the three compounds is at the X-point. Going from Ni-Pd-Pt, the splitting between the two lowest energy conduction bands reduces, increasing the band gap. These bands have a pudding mold-like character, which is more pronounced in the case of TiNiSn.

The projected density of states on the atomic orbitals of each elements (PDOS) can enlighten more on this important effect. The lowest virtual states of TiNiSn, panel (a) of Fig. 3 result as a combination of Ni-Ti AOs and are slighty closer to the Fermi level with
Figure 2: Computed electronic band structures for (a) TiNiSn, (b) TiPdSn and (c) TiPtSn at the PBE10/P.def2-SVP level. The indirect band-gaps are 0.69, 0.76 and 1.13 eV (from left to right) between the Γ and X point. Dotted line corresponds to the Fermi energy. This is the primary reason behind why the electronic band-gap increases as we go from TiNiSn to TiPtSn, since the Sn contribution in the Fermi region is almost negligible for all three compounds.

Figure 3: Computed PDOS on the atomic orbitals of (a) Ti, (b) Ni/Pd/Pt and (c) Sn, at the PBE10/P.def2-SVP level. Dotted line corresponds to the Fermi energy.

Defect-free Thermoelectric properties

We now discuss the Seebeck coefficient (S) the electrical conductivity (σ) and the Power Factor with respect to the relaxation time ($PF = S^2 \sigma / \tau$) for these half-Heusler alloys. Since thermoelectric materials have high temperature applications, we also present the dependence of these parameters on temperature, from 300 to 1000 K. We first compute thermoelectric properties of TiNiSn and compare it with existing literature, both from computational and experimental studies, to establish a benchmark. Later, we extend the same calculations to TiPdSn and TiPtSn, on which computational data are sparse.
Fig. 4 compares S and power-factor for TiNiSn with change in charge carrier concentration (n_c) for both p and n-type carriers adopting the PBE and PBE10 functionals. At low n_c, the Seebeck coefficient, differs slightly between PBE and PBE10 but as n_c increases, S quickly converges. For higher temperatures (not shown here) difference between the S is almost negligible. On the contrary, PF is lightly more sensitive to HF percentage at high n_c values but its main features are the same with the two functionals.

Figure 4: (left) Seebeck coefficient for TiNiSn obtained with PBE10 (solid line, red) and PBE (dotted line, black) for both p-type and n-type doping plotted against carrier concentration at 300 K. Inset: Variance of Seebeck coefficient with change in chemical potential (μ), in eV. (right) Power-factor ($PF, S^2\sigma/\tau$) with respect to relaxation time (τ) of carriers, for p-type and n-type doping with change in n_c at $T = 300$ K (solid line, red: PBE10 and dotted line, black: PBE) and $T = 700$ K (solid line, orange: PBE10 and dotted line, blue: PBE). The x-axis for the figure on the right is extended to $1 \cdot 10^{17}$ for ease of comparison between the functionals. S and PF with n-carriers is plotted on the negative axis for clarity.

Overall, our computations match the general trend of large Seebeck values for TiNiSn and provides good agreement with existing literature at specified charge carrier concentrations. In particular, the highest reported value of S for TiNiSn found through computational and experimental studies in literature is $\approx -250 \mu V/K$, which we achieve for $n_c \sim 1 \cdot 10^{19} \text{ cm}^{-3}$.\cite{39,41} Scanning at the lower carrier concentration ranges of $n_c \sim 1 \cdot 10^{18} \text{ cm}^{-3}$ we have $S = -400 \mu V/K$ which corresponds to work done by with Zilber et al.,\cite{42} who report a value of $S = -425 \pm 50 \mu V/K$ with $n_c \sim 7 \cdot 10^{18} \text{ cm}^{-3}$.

The power-factor dependency on temperature is correctly reproduced since it increases from ≈ 2 to $\approx 7 \text{ W/mK}^2 \cdot 10^{11}$ as the temperature increases from 300 to 700 K, in agreement
with the results of Wang et al.23

At 300 K, the maximum value of PF for p-type carriers is 2.2 ± 10^{11} W/mK2 corresponding to $n_c \sim 1 \cdot 10^{20}$ cm-3 and $S = +124 \mu$V/K while for n-type the highest power-factor is 1.2 W/mK2 \cdot 10^{11}$, with $S = -103 \mu$V/K, achieved when $n_c \sim 5 \cdot 10^{19}$ cm-3.

Our computations suggest that p-type doping results in higher thermoelectric efficiency in TiNiSn and this is particularly evident at $n_c \sim 1 \cdot 10^{19}$ cm-3 where PF for p-type is almost double than for n-type, right panel of Fig.4. For most experimental data TiNiSn is recognized to favor n-type doping. However, as Zilber et al. propose, the electron donor levels arising from grain boundaries in polycrystalline TiNiSn samples can be reduced to single-crystals, to attain the p-type TiNiSn thermoelectric.42

Convinced that our methodology to compute thermoelectric parameters yields satisfactory results for half-Heusler compounds, we now extend the same setup for the study of TiPdSn and TiPtSn. As mentioned earlier, for these compounds reliable computational or experimental studies are limited.

In Fig.5 we plot variation of Seebeck coefficient for TiPdSn with temperature at two values of $n_c \sim 1 \cdot 10^{18}$ and $n_c \sim 1 \cdot 10^{20}$ cm-3 (left) and for TiPtSn at $n_c \sim 2 \cdot 10^{17}, 1 \cdot 10^{18}$ and $1 \cdot 10^{20}$ cm-3 (right).

![Figure 5](image_url)

Figure 5: Temperature dependence of Seebeck coefficient. (left) TiPdSn, $n_c = 1 \cdot 10^{18}$ (red circles) and $n_c = 1 \cdot 10^{20}$ (black triangles) cm-3 for p-type doping. (right) TiPtSn, $n_c = 2 \cdot 10^{17}, n_c = 1 \cdot 10^{18}$ and $n_c = 1 \cdot 10^{20}$ cm-3 for both p and n-type doping. Calculations performed at the PBE10/P.\textit{def2-SVP} level.
Maximum Power Factor in both cases is achieved considering p-type carriers, see Table 2 at $n_c \sim 1 \cdot 10^{20}$ cm$^{-3}$.

However, for TiPdSn at 300 K our value of $S = +116$ μV/K is half of the value suggested by Kaur ($S = +320$ μV/K). We believe that this discrepancy arises from the different lifetime adopted in Ref. 35 that is 30 times larger compared to our current work. As regards the dependence on temperature of the Seebeck coefficient, the trend change as a function of the carrier concentration, i.e. for $n_c \sim 1 \cdot 10^{18}$ cm$^{-3}$ S exhibits an increasing with temperature until 700 K and then a steep decrease until 1000 K, whereas at higher n_c (black curve of the left panel, Fig. 5) S monotonously rises on increasing temperature.

In case of TiPtSn, work by Kimura et al. determined the alloy to have an n-type behavior. However, our highest value of the PF graph is for a p-type kind of thermoelectric. Thus, we include both p and n transport while reporting the data. With change in temperature, the Seebeck coefficient of TiPtSn shows an increasing trend for p-type and a decreasing trend for n-type carrier, irrespective of the carrier concentration, right panel of Fig. 5. At ambient conditions and $n_c \sim 1 \cdot 10^{20}$, S for p and n carriers is computed to be $+140$ μV/K and -85 μV/K, respectively, values which are significantly different from the one of Kimura et al., who reported an $S = -500$ μV/K at 300 K and presumably at $n_c \sim 1 \cdot 10^{22}$ cm$^{-3}$. If we investigate low carrier concentration, $n_c \sim 1 \cdot 10^{18}$ cm$^{-3}$, we find a n-type Seebeck value of -460 μV/K. Furthermore, similar to Ref. 44 we also notice the transition to p-type behavior at 1200 K (≈ 1100 K for Kimura et al.) for $n_c \sim 2 \cdot 10^{17}$ cm$^{-3}$. However, this is quite unrealistic as low concentration corresponds to chemical potential of 5–6 eV which is far below the Fermi level of this system.

With our calculated Power Factors, we can estimate the dimensionless figure of merit for these family of alloys. The figure of merit is described as $ZT = S^2 \sigma T/k_{total}$ where k_{total} is the total thermal conductivity from electronic (el) and phononic (ph) contribution and T is
temperature in Kelvin. Assuming the phononic thermal conductivity from literature data and using our own calculations for k_{el}, we calculate ZT in chosen carrier concentrations, for p and n-type thermoelectrics, respectively, Table 2 and 3.

The total thermal conductivity of TiNiSn is 4 - 6 Wm$^{-1}$K$^{-1}$ for 300–700 K taken from experimental measurements as in Ref. 45. At our peak carrier concentration $n \sim 1 \cdot 10^{20}$ cm$^{-3}$, assuming $k_{total} = 6$ Wm$^{-1}$K$^{-1}$, we obtain a ZT of 0.75, which indicates that TiNiSn is likely to be a good p-type thermoelectric at 700 K. Assuming an n-type behavior at the same n concentration and T, we arrive at a ZT of 0.50 which is in agreement with most values from literature.

For TiPdSn only p-type transport is reported. The highest ZT is 0.34 at $n \sim 1 \cdot 10^{20}$ cm$^{-3}$ and $T = 700$ K. This value is not in agreement with Ref. 35 who report their highest ZT value of 0.74 at 500 K and discrepancies can possibly be ascribed to a difference in the value of computed band-gap in addition to the different value of τ, already mentioned.

For TiPtSn, similar to Kimura et al., we have low values of ZT, irrespective of the T, for $n_c < 1 \cdot 10^{18}$ cm$^{-3}$ and then, as n_c rises up to $1 \cdot 10^{20}$ cm$^{-3}$, ZT reaches a maximum value of 0.71 at 900 K.

Summarizing, our calculations confirm large Power Factors for all three compounds. It is well known that using techniques like the Phonon Glass Electron Crystal (PGEC) it is possible to moderate the k_{total} and hence increase their ZT and consequently enhance their thermoelectric performance.
Table 2: **p-type**. Dimensionless thermoelectric figure of merit, ZT, evaluated for TiMSn, (M = Ni, Pd, Pt) alloys for specified carrier concentration and temperature. The lattice thermal conductivity k_{ph} is $6 \text{ W m}^{-1}\text{K}^{-1}$ from Ref. [44] and Ref. [42] for the three systems, respectively, while k_{el} is from our computed data. Relaxation time is fixed at $\tau = 1 \cdot 10^{-14} \text{ s}$ or 10 fs.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>n (cm^{-3})</th>
<th>T (K)</th>
<th>PF/τ (W/mK$^2 \cdot 10^{14}$)</th>
<th>ZT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiNiSn</td>
<td>$1 \cdot 10^{18}$</td>
<td>300</td>
<td>0.40</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>0.50</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{19}$</td>
<td>300</td>
<td>1.4</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>2.4</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{20}$</td>
<td>300</td>
<td>2.2</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>6.4</td>
<td>0.75</td>
</tr>
<tr>
<td>TiPdSn</td>
<td>$1 \cdot 10^{18}$</td>
<td>300</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>0.45</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{19}$</td>
<td>300</td>
<td>1.38</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>2.20</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{20}$</td>
<td>300</td>
<td>2.00</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>5.80</td>
<td>0.34</td>
</tr>
<tr>
<td>TiPtSn</td>
<td>$2 \cdot 10^{17}$</td>
<td>300</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{18}$</td>
<td>300</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900</td>
<td>0.52</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{20}$</td>
<td>300</td>
<td>3.00</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>9.10</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Modeling Defects in TiNiSn

In this section, we address the disparity in the experimentally measured and computationally attained band gap for TiNiSn HH alloy. While the experimental band-gap is at 0.12 eV,37 this value was never reproduced in computational studies, irrespective of the computational method or DFT functional used.13,43,33

In our work, we compute a band gap of 0.48 eV with PBE functional that is still 4 times larger than the experimental one. However, there is the possibility that real materials, which contain defects, may have localized states in the density of states (DOS) that lead to a significant decrease of the band gap. This approach, which may explain the discrepancy
Table 3: n-type. Dimensionless thermoelectric figure of merit, ZT, evaluated for TiMSn, (M = Ni, Pd, Pt) alloys for specified carrier concentration and temperature. The lattice thermal conductivity k_{ph} is 6 Wm$^{-1}$K$^{-1}$ from Ref. [44,37] and Ref. [42] for the three systems, respectively, while k_{el} is from our computed data. Relaxation time is fixed at $\tau = 1 \cdot 10^{-14}$ s or 10 fs.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>n (cm$^{-3}$)</th>
<th>T (K)</th>
<th>PF/τ (W/mK2 \cdot 1011)</th>
<th>ZT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiNiSn</td>
<td>$1 \cdot 10^{18}$</td>
<td>300</td>
<td>0.45</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>0.62</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{19}$</td>
<td>300</td>
<td>1.2</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>2.5</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{20}$</td>
<td>300</td>
<td>1.0</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>4.3</td>
<td>0.50</td>
</tr>
<tr>
<td>TiPtSn</td>
<td>$2 \cdot 10^{17}$</td>
<td>300</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{18}$</td>
<td>300</td>
<td>0.50</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700</td>
<td>0.57</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>$1 \cdot 10^{20}$</td>
<td>300</td>
<td>1.10</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900</td>
<td>7.50</td>
<td>0.71</td>
</tr>
</tbody>
</table>

between DFT and experimentally measured energy gap, was proposed and successfully tested by several Authors. In particular, Colinet et al. and Jund et coworkers computed a sensitive drop of the band gap when an interstitial Ni is introduced in the pure HH TiNiSn and, in a recent publication, Kirievsky et al. reproduced the same effect modeling, among the others, composition conserving defects.

We adopted an analogous approach by studying at the PBE10/P.def2-SVP level two anti-site composition conserving Ni defects in a 2x2x2 super-cell of the primitive HH cell (24 atoms). These defects, which preserve the symmetry of the $F\overline{4}3m$ space group, have the lowest formation energy among those calculated and it can therefore be assumed that are quite widespread in the experimental samples.

Thus, a single Ni atom is removed from its half-Heusler position [-3/8, 1/8, 1/8] and inserted in one of the two vacant Wyckoff positions 8c with fractional coordinates [3/4, 3/4, 3/4] and [1/4, 1/4, 1/4], respectively, getting the two defect models $W8c-333$ and $W8c-111$. Both these sites are occupied in the full-Heusler (FH) TiNi$_2$Sn crystal structure, thus,
essentially, we have only displaced a Ni from its original HH site to a new FH site, as can be seen in Fig. 1 of the SI.

The formation energy of the defects, ΔE_f, is evaluated according to equation

$$\Delta E_f = E_{\text{el}}^{\text{defect}} - E_{\text{el}}^{\text{perfect}}$$

where E_{el} are the electronic energy/per atom of the perfect ordered stoichiometric compound and of the W8c-333/W8c-111 systems, respectively. If the atoms in the supercell are not relaxed, we obtain ΔE_f in the order of 0.6 eV, very close to those computed by other Authors for similar defects in HH alloys. In particular, Colinet et al. calculated a formation enthalpy at the PBE level (ignoring the much smaller zero-vibration contribution) of 0.77 eV for an interstitial Ni in a 96 atoms supercell of TiNiSn. But if all the atoms in the supercell are allowed to relax, the formation energies drop off and the two defective structures, W8c-333 and W8c-111, become only 0.081 V and 0.066 eV less stable than the perfect HH.

Formation enthalpies at zero Kelvin, $H(0)$, which take into account the zero-point vibrational contribution, and Gibbs free energies of formation at room temperature, $G(298)$, accounting for the thermal phonon terms, are reported in Table 4. As already stated by others, all these contributions do not change significantly the magnitude of the formation energies for these defects that remain very low.

Table 4: PBE10/P.dff2-SVP results for defect models. Lattice parameter a in Å. Indirect electronic band gap in eV. Δ are evaluated according to Eq. 1 by using the following definition for enthalpy and Gibbs free energy: $H(0) = E_{\text{el}} + ZPE + PV; G(298) = E_{\text{el}} + ZPE + PV - TS$ and ZPE stands for the zero-point energy. Frequencies are computed at Γ point only. Values are in eV per atom. Bulk modulus, B_0, elastic constants, c_{11}, c_{12}, c_{44}, Young’s modulus, Y, in GPa and Poisson ratio, ν.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>a (Å)</th>
<th>gap</th>
<th>$\Delta H(0)$</th>
<th>$\Delta G(298)$</th>
<th>B_0</th>
<th>c_{11}</th>
<th>c_{12}</th>
<th>c_{44}</th>
<th>ν</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiNiSn$_{2\times2\times2}$</td>
<td>8.36</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>138.02</td>
<td>235.58</td>
<td>90.19</td>
<td>60.67</td>
<td>0.297</td>
<td>169.15</td>
</tr>
<tr>
<td>W8c-333</td>
<td>8.35</td>
<td>0.19</td>
<td>0.078</td>
<td>0.070</td>
<td>133.48</td>
<td>194.63</td>
<td>104.83</td>
<td>44.51</td>
<td>0.351</td>
<td>120.67</td>
</tr>
<tr>
<td>W8c-111</td>
<td>8.34</td>
<td>0.26</td>
<td>0.064</td>
<td>0.060</td>
<td>133.84</td>
<td>205.21</td>
<td>99.10</td>
<td>59.45</td>
<td>0.315</td>
<td>149.38</td>
</tr>
</tbody>
</table>

Structure relaxation yields to small but significant differences in the electronic structure
as well as in the atomic coordination patterns.

In agreement with the already mentioned results, we observe a narrowing in the band gaps which decrease to 0.187 eV in \textit{W8c-333} and 0.261 eV in \textit{W8c-111}, see Fig. 1 in SI. The antisite Ni atom leads to a localized level in the vicinity of the Fermi level. In particular, the projected density of states reveal the presence of Ti-Ni virtual states within the "forbidden region" of the perfect system, see Fig. 6 and 7. The projections onto the AOs of Ti(1)/Ti(5) and Ni(9)/Ni(15) present rather similar features in \textit{W8c-111} and \textit{W8c-333} with a net drop of the lowest virtual states with respect to HH TiNiSn. It is worth to mention that the Ni(24) contribution to the lowest unoccupied bands differentiates the two defect systems as it is significantly more pronounced in \textit{W8c-111} than in \textit{W8c-333}, panel (c) of Fig. 7. This difference can account for the different values in some of the thermoelectric parameters calculated for the two defect models, as will be shown and discussed in the following.

As the Ni atom is displaced from its HH to a FH position, other chemical equivalent Ni atom within the 2x2x2 supercell are no longer equivalent on the basis of different coordination patterns. For example, in \textit{W8c-111}, Ti(1) and Ti(5) have 3 and 5 Ni atoms in the first neighboring shell while in \textit{W8c-333} Ti(1) and Ti(5) both have four Ni as first neighbours (refer to Table 1 and 2 of SI for the adopted notation). Similar behaviour is noted for Sn atoms. Interesting enough, after the geometry optimization, both the defect alloys exhibit Ti(1) with three Ni, at a distance of \(\approx 2.57\), and the Ti(5) surrounded by five Ni atoms, including the displaced Ni(24). It seems that atomic rearrangement within the super-cell are driven by the defective Ni which tends to restore its 4-Ti \(\oplus\) 4-Sn octahedral coordination. Hirshfield charges, collected in Table 2 of the SI, confirm the lost of chemical equivalence among the atoms in the 2x2x2 defective supercells as well as sensitive differences among the two models. For \textit{W8c-111}, the increase in Ti(1) atomic charge is particularly evident and is partially compensated by the charge lost by the displaced Ni(24).

Finally, we compare the Seebeck coefficients of the defect models with respect to the
pure HH, Fig. 8 right panel. At $n_c = 1 \cdot 10^{19} \text{ cm}^{-3}$, the absolute value of S for $W8c-333$ is considerably lower than the pure HH or $W8c-111$. Between $n_c = 1 \cdot 10^{19}$ and $n_c = 1 \cdot 10^{20} \text{ cm}^{-3}$ S for both defect systems becomes slightly higher than the pure when considering only p-type carriers. For n-type carriers, $W8c-111$ has the highest S in the aforementioned range and converges to the same value as the pure HH only at high n_c values of $1 \cdot 10^{21} \text{ cm}^{-3}$.

In the right panel of Fig. 8 we compare the PF of the pure TiNiSn and the defect systems. $W8c-111$ has a Power Factor almost twice that of the pure system at $n_c \sim 5 \cdot 10^{19} \text{ cm}^{-3}$, for n-type carriers. The electronic contribution to thermal conductivity for this defect system at 300 K is 0.10 Wm$^{-1}$K$^{-1}$ which is slightly lower than the pure TiNiSn (0.15 Wm$^{-1}$K$^{-1}$). This could explain the enhanced thermoelectric properties of $W8c-111$ when n-type carriers are considered and is consistent with the peculiar antivacant Ni states calculated for this model, see Fig. 7.
Hence, by modeling a composition that conserves Ni defects in TiNiSn we are able to reproduce rather accurately the expected electronic and thermoelectric properties of TiNiSn.

![Figure 8: Seebeck coefficient, S and Power Factor, PF for perfect TiNiSn, W8c-333 and W8c-111 at $T = 300$ K, as a function of the charge carrier concentration, n_c. PF with n-carriers is plotted on the negative axis for clarity.](image)

Conclusions

In this work, we used the CRYSTAL code to perform a thorough investigation of the geometry, electronic band structure and thermoelectric properties of three half-Heusler alloys: TiNiSn, TiPdSn and TiPtSn. We described each of these compounds using localized Gaussians and the global hybrid DFT functional PBE10 with 10% Hartree-Fock exchange. Lattice parameters and electronic band structures are correctly reproduced with agreeable band gaps. Next we computed thermoelectric properties - Seebeck coefficient, electrical conductivity and electronic contribution to the total thermal conductivity within CRYSTAL using a set of basis adapted from the $def2$-SVP and calibrated for periodic calculations.

In TiNiSn, p-type doping shows higher ZT as often noticed in computational studies and in contrast to experimental evidence. Moreover, considering the experimental trend of n-type behavior, we were able to reproduce recognized values of the thermoelectric figure-of-merit. For TiPdSn and TiPtSn, we predicted both alloys to favor p-type transport in their pure single-crystal form and have high room temperature values of Power Factor at carrier
concentrations \(c_n \sim 1 \cdot 10^{19} \) and \(c_n \sim 1 \cdot 10^{20} \) cm\(^{-3}\) respectively. Thus, if the lattice thermal conductivity is carefully controlled, the figure-of-merit is expected to be high. Lastly, we presented two defect TiNiSn models which we believe are a better description of the real material. These defect models feature a Ni atom displaced from its original half-Heusler crystallographic site to a vacant full-Heusler site. Differences in the system response to Ni occupying different interstitial sites were found, that were not expected from pure symmetry considerations. Such differences are seen in the band gap, defect formation free energy and Seebeck coefficients. The Power Factor of the defect model \(W8c-111 \) prefers \(n \)-type carriers and displays almost twice the value for the same without defects. Thus, we were able to systematically reduce the band-gap as well as increase the power-factor for TiNiSn using a more realistic model. The presence of defects is usually not an undesired feature in thermoelectrics since it leads to increased phonon scatterings - which in turn lower the thermal conductivity of the material - thus increasing the \(ZT \) value.

Acknowledgement

The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897) with the support of the EC Research Innovation Action under the H2020 Programme.

A. J. K. also thanks Academy of Finland for funding (grant no. 317273) and CSC, the Finnish IT Center for Science, for computational resources.

A. D., L. E. D., S. C. and L. M. thank University of Turin and Compagnia di Sanpaolo for financial support (Project No. CSTO162398).

Supporting Information Available

The following files are available free of charge.

- SI.pdf: containing information about the basis set used for the calculations and further
details about the defective models. In the manuscript it is referred as Supplementary Information (SI).

- SI.bib: bibliography file for the SI.

This material is available free of charge via the Internet at http://pubs.acs.org/

References

(17) Kirievsky, K.; Fuks, D.; Gelbstein, Y. Composition conserving defects and their influence on the electronic properties of thermoelectric TiNiSn. Physical Chemistry Chemical Physics 2020,

(24) Corà, F.; Alfredsson, M.; Mallia, G.; Middlemiss, D.; Mackrodt, W.; Dovesi, R.; Or-

