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Observer-Based State-Space Current Controller for a
Grid Converter Equipped With an LCL Filter:

Analytical Method for Direct Discrete-Time Design
Jarno Kukkola, Marko Hinkkanen, Senior Member, IEEE, and Kai Zenger, Member, IEEE

Abstract—State-space current control enables high dynamic
performance of a three-phase grid-connected converter equipped
with an LCL filter. In this paper, observer-based state-space con-
trol is designed using direct pole placement in the discrete-time
domain and in grid-voltage coordinates. Analytical expressions
for the controller and observer gains are derived as functions
of the physical system parameters and design specifications. The
connection between the physical parameters and the control al-
gorithm enables automatic tuning. Parameter sensitivity of the
control method is analyzed. The experimental results show that
the resonance of the LCL filter is well damped, and the dynamic
performance specified by direct pole placement is obtained for the
reference tracking and grid-voltage disturbance rejection.

Index Terms—Active damping, current control, grid-connected
converter, LCL filter, parameter sensitivity, sensorless state
feedback.

I. INTRODUCTION

G RID-CONNECTED converters play an important role in
the grid integration of renewable energy sources. They

are also increasingly used as an active front-end rectifier in
motor drives, and interest for using an LCL filter between the
converter and the grid has increased during the past few years.
The LCL filter affords better grid-current quality, lower cost,
and smaller physical size in comparison with the conventional L
filter. However, a disadvantage of the LCL filters is the resonant
behavior. The resonance can be damped actively using control
[1] or passively at the expense of losses [2]. With state-space
current control [3]–[12], the dominant and resonant dynamics
can be simultaneously set through pole placement of the closed-
loop system. Hence, state-space control provides a convenient
and straightforward way for resonance damping, when high
dominant dynamic performance is desired [4].
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In state-space control, the closed-loop poles can be placed
using various approaches: 1) dead-beat control [3]; 2) optimiz-
ing some cost function as in linear quadratic (LQ) control [3],
[8], [9]; 3) using Bessel functions [5]; and 4) selecting the
desired pole locations directly [4], [7], [10], [11]. LQ control
is attractive for very complex systems, because it provides an
indirect method for pole placement based on optimal control.
However, the nonlinear Riccati equation has to be solved,
which is not easy analytically or in real time. Furthermore,
selection of the cost-function weights is difficult [9]. On the
other hand, with direct pole placement, the controller gains can
be analytically expressed using the parameters of the system
and dynamic performance specifications (i.e., the bandwidth
of current control and the resonance damping of the LCL
filter) [4], [10], [11]. The analytical design methods enable
automatic tuning and real-time adaptation of the controller, if
the parameters are known or estimated. This is valuable in grid
connection, because the topology and impedance of the grid
can vary.

The state-space current controller using direct pole place-
ment has been analytically designed in stationary [4], [11] and
synchronous coordinates [10]. When the state-space controller
has been designed in stationary coordinates, current control has
been implemented fully [4] or partially [11] in synchronous
coordinates, and additional approximate cross-coupling com-
pensation loops have been used. These loops are not needed, if
the controller is directly designed in synchronous coordinates
[10]. However, in [10], the continuous-time domain design has
been used. Then, the controller must be discretized, which de-
creases feasible dynamic performance [13] and pole-placement
accuracy with low sampling frequencies. The pole-placement
accuracy in the direct discrete-time design is dependent on
modeling accuracy. In [4], the design has been based on a
model in stationary coordinates, although control has been
implemented in synchronous coordinates. In [11], the cross-
coupling compensation and integrator loops have been ne-
glected in the pole-placement design. Thus, the pole-placement
accuracy is decreased in [4] and [11]. In order to use state-
space control, all the states must be measured or estimated [5],
[7]–[10], [12], [14]. Direct discrete-time pole placement would
be also a convenient method for tuning of the state observer,
but no analytical solution in synchronous coordinates has been
reported.

In this paper, a discrete-time observer-based state-space cur-
rent controller for the converter equipped with an LCL filter is
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Fig. 1. Space-vector circuit model of the LCL filter in stationary coordinates
(marked with the superscript s).

proposed. Due to the state observer, less sensors are needed in
comparison with the methods in [3], [4], and [11]. The main
contributions of this work are as follows.

1) Analytical expressions for the controller and observer
gains are derived as functions of the physical filter pa-
rameters and the desired pole locations. Due to direct
pole placement in synchronous coordinates, no additional
cross-coupling compensation loops are needed. The an-
alytical gain expressions enable implementation in real
converters.

2) Design guidelines for selecting the pole locations are
given.

The effect of the varying grid impedance and LCL filter
parameters on stability is examined. The proposed method is
experimentally validated and compared with the design based
on the continuous-time domain [10].

II. SYSTEM MODEL

Complex space vectors in synchronous dq coordinates are
used (e.g., the converter current ic = icd + jicq). Complex, ma-
trix, and vector quantities are marked with boldface symbols.
The equivalent circuit model for the LCL filter is shown in
Fig. 1, and the state-space current control structure is shown in
Fig. 2. Current control is implemented in grid-voltage oriented
synchronous coordinates, where the grid voltage is ug = ug +
j0. Two phase-to-phase grid voltages and the converter phase
currents are measured for the state-space controller. Further-
more, the dc-link voltage ud is measured for the pulsewidth
modulator (PWM), which calculates the duty cycles for the
power switches.

In the following, continuous-time and discrete-time LCL
filter models for control design purposes are introduced. The
losses of the filter are neglected for several reasons: 1) the loss-
less filter represents the worst case scenario for the resonance of
the LCL filter; 2) the complexity of the discrete-time model and
control algorithms will remain reasonable; and 3) particularly
with higher power ratings, the losses in the filter are relatively
small.

A. Continuous-Time Model

The state vector is selected as x = [ic, uf , ig]T, where uf

is the voltage across the filter capacitor Cf ; and ic and ig are
the converter and grid currents, respectively. In synchronous

coordinates rotating at the grid angular frequency ωg, the
continuous-time dynamics of the converter current ic are

dx

dt
=

⎡

⎣
−jωg − 1

Lfc
0

1
Cf

−jωg − 1
Cf

0 1
Lfg

−jωg

⎤

⎦

︸ ︷︷ ︸
A

x+

⎡

⎣
1

Lfc

0
0

⎤

⎦

︸ ︷︷ ︸
Bc

uc+

⎡

⎣
0
0

− 1
Lfg

⎤

⎦

︸ ︷︷ ︸
Bg

ug

ic =
[
1 0 0

]
︸ ︷︷ ︸

Cc

x. (1)

The transfer function from the converter voltage uc(s) to the
converter current ic(s) is

Y(s) = Cc(sI − A)−1Bc

=
1

Lfc

(s + jωg)
2 + ω2

z

(s + jωg)
[
(s + jωg)2 + ω2

p

] (2)

where

ωp =

√
Lfc + Lfg

LfcLfgCf
ωz =

√
1

LfgCf
(3)

are the resonance frequency and the antiresonance frequency of
the filter, respectively.

B. Hold-Equivalent Discrete-Time Model

In the following, a hold-equivalent discrete-time model is
presented. Sampling of the converter current and the grid volt-
age is synchronized with the PWM. The sampling frequency
equals the switching frequency in the single-update PWM or
twice the switching frequency in the double-update PWM. The
switching-cycle-averaged converter output voltage is consid-
ered, and the PWM is modeled as the zero-order hold (ZOH)
in stationary coordinates [15]. In other words, the converter
voltage us

c(t) is constant1 during kTs < t < (k + 1)Ts, where
Ts is the sampling period, and k is the discrete-time index. On
the contrary, the grid voltage ug(t) is assumed to be constant
in synchronous coordinates during Ts. Furthermore, the filter
parameters and the frequency ωg are assumed to be constant
during the sampling period. Under these assumptions, the exact
discrete-time model of (1) becomes

x(k + 1) = Φx(k) + Γcuc(k) + Γgug(k)

ic(k) = Ccx(k) (4)

where the system matrices are

Φ = eATs , Γc =

⎛

⎝
Ts∫

0

eAτe−jωg(Ts−τ)dτ

⎞

⎠Bc

Γg =

⎛

⎝
Ts∫

0

eAτdτ

⎞

⎠Bg. (5)

1If the reference for the PWM is updated in the middle of the sampling
period, the averaged converter voltage is piecewise constant [16]. A discrete-
time model could be also derived for this particular scheme.
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Fig. 2. Current control system. The gray blocks represent the plant model, and the white blocks represent the control algorithm. The sampling is synchronized
with the PWM. The effect of the computational delay z−1 on the angle of the converter voltage us

c is compensated for in the coordinate transformation. In the
implementation, the grid-voltage angle ϑg and the magnitude ug are calculated using a PLL. In order to simplify the block diagram, the signal uc is fed directly
through the state observer block and included in its output vector, i.e., x̂d = [x̂T uc]T.

For Γc, the factor e−jωg(Ts−τ) inside the integral originates
from the ZOH being modeled in stationary coordinates, i.e.,
the converter voltage is time variant in synchronous coordinates
during Ts. The closed-form expressions for the elements of the
matrices in (5) are given in Appendix A.

Due to the finite computation time, the converter-voltage
reference us

c,ref calculated at the present time step becomes
active at the next time step. This delay is modeled in sta-
tionary coordinates as us

c(k) = us
c,ref(k − 1), when the PWM

operates in the linear region. In synchronous coordinates,
the relation is uc(k) = u′

c,ref(k − 1) = e−jωgTsuc,ref(k − 1),
where the modified reference u′

c,ref is introduced in order to
simplify notation. The computational delay can be included in
the discrete-time model as

xd(k + 1) =

[
Φ Γc

0 0

]

︸ ︷︷ ︸
Φd

xd(k) +

[
0
1

]

︸︷︷︸
Γcd

u′
c,ref(k) +

[
Γg

0

]

︸ ︷︷ ︸
Γgd

ug(k)

ic(k) =
[
Cc 0

]
︸ ︷︷ ︸

Cd

xd(k) (6)

where the new state vector is xd = [xT, uc]T.

III. CURRENT CONTROL DESIGN

A. State-Space Controller

1) Control Law: The current control structure is shown in
Fig. 2. For improved disturbance rejection, an integral state

xI(k + 1) = xI(k) + ic,ref(k) − ic(k) (7)

is introduced, where ic,ref is the reference current. The state-
space control law is

u′
c,ref(k) = ktic,ref(k) + kIxI(k) − Kx̂d(k) (8)

where kt is the feedforward gain, kI is the integral gain, K =
[k1, k2, k3, k4] is the state-feedback gain, and x̂d = [x̂T, uc]T

is the state estimate augmented with the delayed voltage ref-
erence. A compensation for the angular displacement due to
the computational delay is included in the coordinate trans-
formation, as shown in Fig. 2. The state feedback together
with the integral action can be designed from the standpoint
of resonance damping and disturbance rejection. The reference
feedforward provides an additional degree of freedom for the
reference-tracking design.

2) Analytical Pole-Placement Design: For pole placement,
the system model (6) is augmented with the integral state (7),
resulting in

[
xd(k + 1)
xI(k + 1)

]

︸ ︷︷ ︸
xa(k+1)

=

[
Φd 0
−Cd 1

]

︸ ︷︷ ︸
Φa

[
xd(k)
xI(k)

]
+

[
Γcd

0

]

︸ ︷︷ ︸
Γca

u′
c,ref(k)

+

[
0
1

]

︸︷︷︸
Γra

ic,ref(k) +

[
Γgd

0

]

︸ ︷︷ ︸
Γga

ug(k) (9)

where xa is the augmented state vector; and Φa, Γca, Γra, and
Γga are the augmented system matrices. From (8) and (9), the
closed-loop dynamics become

xa(k + 1) = (Φa − ΓcaKa)xa(k)

+ (Γcakt + Γra)ic,ref(k) + Γgaug(k)

ic(k) = Caxa(k) (10)

where Ka = [K,−kI] is the augmented state-feedback gain,
Ca = [1, 0, 0, 0, 0] is the output matrix, and the state estimate
x̂d in (8) has been replaced with the true state xd based on the
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Fig. 3. Pole–zero plots. (a) Poles and zeros of the open-loop transfer function from u′
c,ref(z) to ic(z). (b) Closed-loop poles are set to the desired locations.

(c) Poles and zeros of the closed-loop transfer function from ic,ref(z) to ic(z).

separation principle [17]. The transfer function from the current
reference ic,ref(z) to the converter current ic(z) is

Gc(z) =
b(z)

a(z)
= Ca(zI −Φa + ΓcaKa)

−1(Γcakt + Γra).

(11)

The numerator polynomial is

b(z) = bc1(z − β1)(z − β2)(ktz − kt + kI) (12)

where bc1 is the first element of the input matrix Γc [cf., (26)
in Appendix A], β1 and β2 are the resonant open-loop zeros,
and the third zero depends on the feedforward gain kt. The
denominator polynomial (i.e., the characteristic polynomial) is

a(z) = det(zI −Φa + ΓcaKa). (13)

Let the desired closed-loop characteristic polynomial be

a(z) = z(z −α1)(z −α2)(z −α3)(z −α4) (14)

where one pole originating from the computational delay is set
to zero, and the selection of the four remaining pole locations
will be discussed in Section III-A3. The gain Ka leading to the
desired characteristic polynomial (14) could be solved using
numerical tools. However, if the gain can be computed in
the microprocessor of a converter, the control system can be
tuned automatically, and the performance specifications can be
changed in real time. For this purpose, analytical expressions
for the gain Ka as a function of the system parameters and the
desired pole locations are derived in Appendix B.

3) Selection of Pole Locations: Fig. 3(a) shows the poles
and the zeros of the open-loop transfer function from u′

c,ref(z)
to ic(z), obtained from (6). The poles and zeros on the unit
circle are the discrete counterparts of those in (2). Furthermore,
there is a pole originating from the delay at z = 0.

The poles of the closed-loop system can be arbitrarily set
within the limits of the accessible control effort and mod-
eling precision. When selecting pole locations, compromises
between robustness and dynamic performance have to be made
[4], [10]. In the characteristic polynomial (14), the two complex
poles α1,2 are placed to determine the dominant dynamics

(i.e., the bandwidth), and the other two poles α3,4 are placed to
determine the resonant dynamics (i.e., the resonance damping).
It is typically easier to specify the pole locations first in the
continuous-time domain and then map them to the discrete-time
domain via z = exp(sTs). In the continuous-time domain, the
dominant and resonant dynamics can be split into two second-
order polynomials as

(s2 + 2ζcdωcds + ω2
cd)︸ ︷︷ ︸

Dominant dynamics

(s2 + 2ζcrωcrs + ω2
cr)︸ ︷︷ ︸

Resonant dynamics

. (15)

Let us first consider the poles of the dominant dynamics. The
natural frequency ωcd is related to the desired bandwidth, and
the damping ratio is set to a high value, i.e., ζcd = 0.7, . . . , 1,
in order to prevent large overshoots. The corresponding discrete
poles are

α1,2 = exp

[(
−ζcd ± j

√
1 − ζ2

cd

)
ωcdTs

]
. (16)

For simplicity, ζcd = 1 is selected here, leading to a double
real pole. Fig. 3(b) illustrates the effect of the state-feedback
control on the pole locations. The dominant complex pole
at z = exp(−jωgTs) is moved to z = exp(−ωcdTs), and the
pole originating from the integral state is also placed at z =
exp(−ωcdTs), leading to a double real pole.

To keep control effort low, the resonant pole pair should
be kept near its natural frequency (i.e., ωcr ≈ ωp). It is typi-
cally sufficient to damp the resonance with the ratio of ζcr =
0.1, . . . , 0.4. Selecting much higher values for ζcr is not recom-
mended due to the increasing control effort [17]. The closed-
loop resonant poles are placed asymmetrically, i.e.,

α3,4 = exp(−jωgTs) · exp
[(

−ζcr ± j
√

1 − ζ2
cr

)
ωcrTs

]
(17)

corresponding to the asymmetry of the open-loop resonant
poles. Here, ζcr = 0.2 is selected. It is shown in Fig. 3(b) that
the resonant poles are damped, but their frequency is not altered
in order to minimize the control effort.

Fig. 4 shows the frequency responses of the transfer function
from the grid voltage ug(z) to the grid current ig(z) for the
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Fig. 4. Frequency response of the transfer function from the grid voltage
ug(z) to the grid current ig(z) in synchronous coordinates. The open-loop
transfer function is obtained from (4) as Y g,OL(z) = Cg(zI −Φ)−1Γg,
where Cg = [0, 0, 1]. The closed-loop transfer function Y g,CL is obtained
from (10) in a similar manner.

Fig. 5. Frequency response of the transfer function (11) from the current
reference ic,ref(z) to the converter current ic(z) in synchronous coordinates.
Different (solid lines) damping ratios ζcr and the case without the reference
feedforward (kt = 0, dashed line) are shown.

open- and closed-loop cases. These transfer functions can be
interpreted as converter output admittances, and they describe
the effect of the grid-voltage disturbance on the grid current.
The damping ratio in the closed-loop case is ζcr = 0.2. It
can be seen that the resonance peaks are well damped by the
state-feedback control. Furthermore, the closed-loop transfer
function is low in the vicinity of the zero frequency (within the
approximate bandwidth ωcd of the control), where the control
is effective against the disturbances.

4) Selection of a Zero Location: Fig. 3(c) shows the
poles and zeros of the closed-loop transfer function (11) from
ic,ref(z) to ic(z). Generally, the state-feedback control has
no effect on the zeros. The open-loop zeros β1,2 shown in
Fig. 3(a) are also present in the closed-loop system. However,
the reference-feedforward path of the control law (8) produces
a new zero in (11). If the zero is to be placed at βt, the
feedforward gain becomes

kt = kI/(1 − βt). (18)

This zero can be used to cancel (fully or partially) the closed-
loop pole originating from the integral state [17]. Here, the
zero is placed on the double pole, i.e., βt = exp(−ωcdTs).

Fig. 6. Flowchart of current control tuning.

Hence, the resulting low-frequency reference-tracking dynam-
ics become of the first order, with an approximate bandwidth
of ωcd.

Fig. 5 presents the frequency response of the transfer func-
tion (11). It can be seen that the reference feedforward increases
the reference-tracking bandwidth. It is to be noted that the
feedforward gain has no impact on the closed-loop disturbance-
rejection transfer function.

The aforementioned guidelines for selecting the pole and
zero locations will be used in the parameter sensitivity anal-
ysis (see Section IV) and in the experiments (see Section V).
It is worth noticing that the pole locations could be further
optimized. Fig. 6 illustrates the process of computing the
controller gains. The closed-loop poles can be placed using
basic arithmetics, and no nonlinear equations need to be solved,
contrary to LQ control [9]. This enables automatic tuning of the
controller, if the system parameters are known or estimated. It
is to be noted that steps 1–3 in Fig. 6 need to be calculated only
once (during the start-up of a converter), if the filter parame-
ters are not changed. The reference tracking and disturbance
rejection dynamics can be easily altered in real time by running
steps 4–6.
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Fig. 7. Space-vector circuit model of an LCL filter connected to an inductive
grid in stationary coordinates. The voltage ûg at the PCC is used in the control
system.

B. State Observer

The state observer is given by

x̂(k + 1) = Φx̂(k) + Γcuc(k) + Γgug(k)

+ Ko [ic(k) − Ccx̂(k)] (19)

where Ko = [ko1, ko2, ko3]T is the observer gain matrix. The
characteristic polynomial of the estimation-error dynamics is

ao(z) = det(zI −Φ + KoCc) (20)

and the desired characteristic polynomial is

ao(z) = (z −αo1)(z −αo2)(z −αo3). (21)

Analytical expressions for the observer gain Ko as a function
of the system parameters and the desired closed-loop poles are
given in Appendix B.

Again, the discrete-time poles of ao(z) can be mapped via its
continuous-time counterpart (s + αod)(s2 + 2ζorωors + ω2

or).
The real pole αod determines the dominant dynamics, and the
complex-conjugate poles (parametrized via ωor and ζor) are
placed at a higher frequency. A rule of thumb to select the ob-
server poles is to set them at least twice as fast as the controller
dynamics [17]. Here, the real pole αod = 2ωcd is selected,
and the complex-conjugate poles are placed at the resonance
frequency ωor = ωp − ωg with the damping ratio ζor = 0.7.
Then, the controller poles dominate the dynamic response. The
Nyquist frequency 1/(2Ts) determines the uppermost limit for
the selection of the poles.

IV. PARAMETER SENSITIVITY

The stiff grid and accurate filter parameter estimates were
assumed in the control design. Fig. 7 shows an equivalent
circuit model of an LCL filter connected to an inductive grid.
In the following, the stability of the control system is studied
taking into account a nonzero grid inductance. Furthermore, the
real filter parameters differ from the nominal values given in
Table I. The real filter parameters are marked with the prime.
The grid inductance is denoted by Lg, and the voltage at the
point of common coupling (PCC) is denoted by ûg. The voltage
ûg is used in the control system (instead of ug, which is not
accessible). The design parameters are given in Table II, and the
pole locations correspond to (16) and (17). Nominal parameters
are used in the control system.

TABLE I
NOMINAL SYSTEM PARAMETERS

TABLE II
TUNING EXAMPLE

A. Analysis

The real observer dynamics become

x̂(k + 1) = Φx̂(k) + Γcuc(k) + Γg

Lguf(k) + L′
fgug(k)

Lg + L′
fg

+ Ko [Ccx(k) − Ccx̂(k)] (22)

where uf = [0, 1, 0]x. The closed-loop dynamics, including the
controller and the observer, consist of (8), (9), and (22), where
the real parameters (L′

fc, C ′
f , and L′

fg + Lg) are used in (9). The
stability of the closed-loop system is analyzed considering three
different cases: 1) the filter inductances are nominal: L′

fc = Lfc

and L′
fg = Lfg; 2) the filter inductances are 10% larger than

the nominal values: L′
fc = 1.1Lfc and L′

fg = 1.1Lfg; and 3) the
filter inductances are 10% smaller than the nominal ones:
L′

fc = 0.9Lfc and L′
fg = 0.9Lfg. In all the cases, the real filter

capacitance C ′
f is varied from 0.5Cf to 1.5Cf , and the grid

impedance Lg is varied from zero to Lfg. When Lg = Lfg, the
effective grid-side inductance of the filter is doubled.

The stability is examined by calculating the eigenvalues of
the closed-loop system. Fig. 8 shows the regions where all the
eigenvalues are inside the unit circle, i.e., the discrete system is
stable. The figure illustrates also the regions where the damping
ratios of all the eigenvalues are larger than 0.05. As shown in the
figure, the example system is more sensitive to the parameter
variations in the LCL filter than to the varying grid inductance
Lg behind the PCC. If the manufacturing tolerance of 10% is
considered for the filter components, the system remains stable
within the examined range of the grid inductance Lg. Generally,
the analysis predicts stable operation within a wide range of
parameter variations.

B. Simulations

The parameter sensitivity analysis was validated using sim-
ulations. The dc voltage is constant, and the PWM of the con-
verter was included in the model. A phase-locked loop (PLL)
based on the synchronous-reference-frame transformation was
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Fig. 8. Stability regions as a function of the relative capacitance C′
f/Cf and grid inductance Lg/Lfg errors. Between the unity contours, all the eigenvalues of

the closed-loop system are inside the unit circle (stable system). Between the dashed lines, the damping ratios of the eigenvalues are at least 0.05. Points marked
by the crosses refer to the simulations in Fig. 9. (a) Real inductances in the LCL filter are nominal, i.e., L′

fc = Lfc and L′
fg = Lfg. (b) Real inductances are

L′
fc = 1.1Lfc and L′

fg = 1.1Lfg . (c) Real inductances are L′
fc = 0.9Lfc and L′

fg = 0.9Lfg .

Fig. 9. Current step and grid-voltage dip responses, when the real system
parameters are nominal (L′

fc = Lfc, L′
fg = Lfg, C′

f = Cf , and Lg = 0)

and changed (L′
fc = 1.1Lfc, L′

fg = 1.1Lfg , C′
f = 1.1Cf , and Lg = Lfg).

Simulated (top) converter currents and (bottom) grid currents.

used for synchronization [18], and its closed-loop poles were
set to the natural frequency of 2π · 20 rad/s with a damping
ratio of 1/

√
2. The reference icd,ref of the converter current

was set to -10 A [-0.4 per unit (p.u.)], and the step of 10 A
(0.4 p.u.) was applied in the reference icq,ref at t = 5 ms. A
symmetric grid-voltage dip from 1 to 0.5 p.u. was applied at
t = 15 ms.

Fig. 9 shows simulation results for two cases: 1) the real filter
parameters are nominal, and the grid is stiff; and 2) the real
filter parameters differ from the nominal ones (L′

fc = 1.1Lfc,
C ′

f = 1.1Cf , and L′
fg = 1.1Lfg), and the grid inductance is

Lg = Lfg. The simulated cases are also marked with the crosses
in Fig. 8. The simulation results agree well with the analysis.
The system is stable in both cases, but the resonance damping
is lower, and the dominant dynamics are slightly slower in the
case of parameter errors. It is to be noted that the analysis
and simulations were carried out using the lossless LCL filter
model; in practice, the losses increase damping.

V. EXPERIMENTAL RESULTS

The proposed current control method was verified exper-
imentally using a 12.5-kVA 400-V grid-connected converter

equipped with an LCL filter. The control method was imple-
mented on the dSPACE DS1006 processor board. The switch-
ing frequency of the converter was 4 kHz, and synchronous
sampling (twice per carrier) was used. The system parameters
are given in Table I. The converter under test was regulat-
ing the dc-bus voltage at 650 V, whereas another back-to-
back connected converter was feeding the load to the bus.
Synchronization was implemented with the PLL described in
Section IV-B.

A. Comparison Between the Proposed Method and Its
Continuous-Time Counterpart

Tuning of the control system equals the tuning example in-
troduced in Section IV-A and Table II. The proposed controller
was experimentally compared with a corresponding observer-
based state-space controller, which uses the same feedback
information but is based on the continuous-time design [10].
The comparison was arranged as follows: 1) the same desired
damping ratios were used; 2) the observer pole locations were
equal in both methods under comparison; and 3) the dominant
dynamics of the continuous-time design were tuned such that
the converter-current rise time equaled that of the proposed
design.

Fig. 10 shows measured responses of the converter and grid
currents, when a step of 10 A (0.4 p.u.) was applied in the
converter current reference icq,ref . Approximately, the power of
5 kW (0.4 p.u.) was transferred through the converter leading
to icd ≈ 10 A. It is to be noted that the grid currents were
measured for monitoring purposes only and they were not used
in the control.

As the results show, the resonant dynamics are poorly
damped in the case of the continuous-time design [10]. This
is because the resonance frequency of 1.47 kHz is relatively
high compared with the sampling frequency of 8 kHz, i.e.,
only a few samples are obtained during the period of the
resonance frequency that should be damped. The controller
designed in the continuous-time domain gives only an ap-
proximate mapping from the specified dynamics (the closed-
loop poles) to the controller gains and cannot fully treat the
delays in the system. Hence, the realized dynamics are much
worse than the desired dynamics. If the switching frequency
(i.e., the sampling frequency) were increased or the specified
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Fig. 10. Experimental comparison of the discrete-time (disc.) and continuous-
time (cont.) control designs. Measured step responses. (a) Converter current
components icd and icq. (b) Grid currents iga, igb, and igc.

bandwidth were lowered, the resonance damping of the
continuous-time design [10] would be closer to the desired
performance specifications.

As shown in Fig. 10, the damping of the resonance frequency
agrees well with the specified ratio ζcr = 0.2 in the case of
the proposed discrete-time design. Moreover, the experimental
results are in line with the corresponding analysis shown in
Fig. 5 and the simulated results shown in Fig. 9.

B. Operation During Grid Disturbances

Disturbance rejection of the proposed method under grid-
voltage harmonics and dips was experimentally evaluated. The
distorted grid voltage was supplied using a 50-kVA three-phase
four-quadrant power supply (Regatron TopCon TC.ACS).

1) Grid-Voltage Harmonics: The fifth and seventh harmonic
components (ug5 and ug7, respectively) were superimposed on
the grid voltage. Three different harmonic levels (0%, 3%, and
5%) were tested. The converter was rectifying a power of 1 p.u.
The grid currents iga, igb, and igc were monitored. In addition
to the measurements, the same harmonic levels were simu-
lated. The resulting harmonic currents ig5 and ig7 are given in
Table III.

TABLE III
HARMONIC COMPONENTS UNDER DISTURBANCES

Fig. 11. Measured (top) grid voltage, (middle) grid currents, and (bottom)
control errors of the converter current, when the grid voltage is distorted
(ug5 = ug7 = 3%).

The total harmonic distortion (THD) of the grid current
was calculated up to the 50th order. Without the harmonic
disturbances, the THD is 1.6%, which is well below the 5%
limit often given in standards (e.g., IEEE Std 519-2014 and
IEEE Std 1547). Fig. 11 shows the grid currents and the
control errors of the converter current in the case of the
distorted voltage ug5 = ug7 = 3%. The harmonic components
of the grid current conform to the aforementioned standards
(ig5 < 4%, ig7 < 4%, and THD < 5%). When the harmonic
level is increased to ug5 = ug7 = 5%, corresponding to the
recommended maximum level in IEEE Std 519-2014, the cur-
rent component ig7 is slightly over the 4% limit and THD
> 5%. The measured harmonic components are also in line
with the simulated components given in Table III. In order
to improve the harmonic-disturbance rejection, the proposed
control scheme could be augmented with resonant integrators
in parallel with the existing integrator (cf., e.g., [4], [19],
and [20]).

2) Grid-Voltage Dip: Disturbance rejection against the grid-
voltage dip of 0.5 p.u. was evaluated. The converter was supply-
ing the power of 0.4 p.u. to the grid. The measured responses
of the grid currents and control errors of the converter current
are shown in Fig. 12. As can be seen, the proposed method
can reject the voltage dip well, and the cross-coupling between
the error components is minor. Moreover, the measured error
dynamics correspond to the designed dynamics. The slower
mode in the dynamics of the grid currents originates from the
dc-voltage control that is giving the references for the current
controller.

VI. DISCUSSION

The proposed method was analytically tuned assuming the
lossless LCL filter. This assumption enables analytical control
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Fig. 12. Measured (top) grid voltage, (middle) grid currents, and (bottom)
control errors of the converter current, when a grid-voltage dip is applied.

tuning, and it represents the worst case scenario for the reso-
nance of the LCL filter. The experimental results were shown
for a low-power converter equipped with an LCL filter that
has relatively higher losses in comparison with filters designed
for higher power ratings (reaching megavoltampere ratings).
As shown by the results, the accuracy of the lossless model is
adequate in order to achieve desired dynamic performance. On
the other hand, the simulation models were lossless. Thus, it
can be concluded that the proposed method is valid for lossless
filters (or low-loss filters) as well. This is valuable in the case of
the higher power ratings, where both the losses and switching
frequencies tend to be lower.

The accurate parameter estimates and the stiff grid voltage
have been assumed in the control design. In these ideal condi-
tions, the current-control dynamics do not couple with the PLL
dynamics. Naturally, the stable current-control loop in the ideal
conditions is a practical precondition for the stability of the
entire control system. In weak grids, current control together
with the PLL may cause converter–grid or converter–converter
interactions leading to oscillations or instability [19], [21]–[24].
In order to mitigate the oscillations, the output impedance of
the converter has been shaped [21]. Since the current-control
bandwidth is typically high in comparison with outer control
loops, current control has an impact on the output impedance in
a wide range of frequencies.

Since the proposed control method is flexible, it could be
used to shape the converter output impedance via its design
parameters. Moreover, the degrees of freedom equal those of
the methods in [3] and [4], but less sensors are needed because
of the state observer. The number of the sensors could be
further decreased by replacing the grid-voltage measurement
with estimation as in [7], [8], and [25]–[27].

VII. CONCLUSION

This paper has presented a direct discrete-time design
method for an observer-based state-space current controller of
a grid converter equipped with an LCL filter. Model-based pole
placement in synchronous coordinates is used to derive an ana-
lytical control design. Contrary to LQ control, the proposed ap-

proach enables automatic tuning and real-time adaptation of the
controller, if the system parameters are known or estimated.
The effect of varying parameters on the stability is examined.
The results indicate that the proposed control scheme is less
sensitive to variation of the grid inductance than variation of
the LCL filter parameters. The method is validated by means
of simulations and experiments. The results show that higher
dynamic performance and better resonance damping can be
achieved with the proposed design in comparison with state-
space control designed in the continuous-time domain. The
results also show that the resonance of the LCL filter is well
damped, and the dynamic performance specified by direct pole
placement is obtained for the reference tracking and grid-
voltage disturbance rejection.

APPENDIX A
HOLD-EQUIVALENT DISCRETE-TIME MODEL

The state transition matrix Φ in (4) can be calculated, e.g.,
using eigendecomposition A = PΛP−1, where the eigenvec-
tor and eigenvalue matrices are

P =

⎡

⎣
−Lfg/Lfc 1 −Lfg/Lfc

−jωpLfg 0 jωpLfg

1 1 1

⎤

⎦ (23)

Λ = diag {−j(ωg + ωp),−jωg,−j(ωg − ωp)} .

With this decomposition, the matrix exponential is Φ =
eATs = PeΛTsP−1, where the exponential of the diagonal ma-
trix can be calculated elementwise. The result is

Φ =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

= γ

⎡

⎢⎢⎣

Lfc+Lfg cos(ωpTs)
Lt

− sin(ωpTs)
ωpLfc

Lfg[1−cos(ωpTs)]
Lt

sin(ωpTs)
ωpCf

cos(ωpTs) − sin(ωpTs)
ωpCf

Lfc[1−cos(ωpTs)]
Lt

sin(ωpTs)
ωpLfg

Lfg+Lfc cos(ωpTs)
Lt

⎤

⎥⎥⎦

(24)

where γ = e−jωgTs , and Lt = Lfc + Lfg. The input matrix for
the converter voltage (5) is

Γc = P

⎛

⎝
Ts∫

0

eΛτe−jωg(Ts−τ)dτ

⎞

⎠P−1Bc. (25)

The resulting input matrix for the converter voltage is

Γc =

⎡

⎣
bc1

bc2

bc3

⎤

⎦ = γ

⎡

⎢⎣

Ts
Lt

+ Lfg sin(ωpTs)
ωpLfcLt

Lfg[1−cos(ωpTs)]
Lt

Ts
Lt

− sin(ωpTs)
ωpLt

⎤

⎥⎦ . (26)
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Using similar calculations, coefficients of the input matrix
for the grid voltage Γg = [bg1, bg2, bg3]T in (5) become

bg1 =
γ
[
−ωgωp sin(ωpTs) + jω2

g cos(ωpTs) − jδ
]
− jω2

p

δωg(Lfc + Lfg)

bg2 =
γ [ωp cos(ωpTs) + jωg sin(ωpTs)] − ωp

δωpCfLfg

bg3 = γ
ωgωpLfc sin(ωpTs) − jδLfg − jω2

gLfc cos(ωpTs)

δωgLfg(Lfc + Lfg)

+
jδLfg + jω2

gLfc

δωgLfg(Lfc + Lfg)
(27)

where δ = ω2
g − ω2

p.

APPENDIX B
ANALYTICAL GAIN EXPRESSIONS

A. State-Feedback Gain

The desired characteristic polynomial (14) is expressed as

a(z) = z5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 (28)

where the coefficients as functions of the pole locations are

a0 = 0, a1 = α1α2α3α4

a2 = −α1α2α3 −α1α2α4 −α1α3α4 −α2α3α4

a3 =α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4

a4 = −α1 −α2 −α3 −α4. (29)

Analytical expressions for the state-feedback gain Ka as a func-
tion of the system parameters and the desired coefficients ai

are derived in the following. The discrete-time system param-
eters aij , bci, and bgi (i, j = 1, . . . , 3) are given in (24), (26),
and (27), respectively. The determinant in (13) is calculated,
leading to

a(z) = det(zI −Φa + ΓcaKa)

= z5 + (k4 − a22 − a33 − a11 − 1)z4

+ (p3k4 + q3k1 + r3k2 + s3k3 + p2)z
3

+ (p2k4 + q2k1 + r2k2 + s2k3 + t2kI + p1)z
2

+ (p1k4 + q1k1 + r1k2 + s1k3 + t1kI + p0)z

+ p0k4 + q0k1 + r0k2 + s0k3 + t0kI (30)

where pi, qi, ri, si, and ti (i = 0, . . . , 3) are functions of the
system parameters

p0 = f3a11 + f4a21 + f5a31

q0 = − f3bc1 − f4bc2 − f5bc3

r0 = f6bc1 − f2bc2 + (a11a23 − a13a21)bc3

s0 = f7bc1 + (a11a32 − a12a31)bc2 − f1bc3

t0 = f3bc1 + f4bc2 + f5bc3 (31)

p1 = − p0 − f1 − f2 − f3

q1 = − q0 + (a22 + a33)bc1 − a12bc2 − a13bc3

r1 = − r0 − a21bc1 + (a11 + a33)bc2 − a23bc3

s1 = − s0 − a31bc1 − a32bc2 + (a11 + a22)bc3

t1 = − (a22 + a33)bc1 + a12bc2 + a13bc3 (32)

p2 = a11 + a22 + a33 + f1 + f2 + f3

q2 = − (a22 + a33 + 1)bc1 + a12bc2 + a13bc3

r2 = − (a11 + a33 + 1)bc2 + a21bc1 + a23bc3

s2 = − (a11 + a22 + 1)bc3 + a31bc1 + a32bc2

t2 = bc1 (33)

p3 = − a11 − a22 − a33 − 1

q3 = bc1, r3 = bc2, s3 = bc3 (34)

where the auxiliary parameters are

f1 = a11a22 − a12a21, f2 = a11a33 − a13a31

f3 = a22a33 − a23a32, f4 = a13a32 − a12a33

f5 = a12a23 − a13a22, f6 = a21a33 − a23a31

f7 = a22a31 − a21a32. (35)

Equating (28) and (30) directly gives the gain

k4 = a4 + a11 + a22 + a33 + 1 (36)

and, furthermore, a system of four linear equations, i.e.,
⎡

⎢⎢⎣

q0 r0 s0 t0
q1 r1 s1 t1
q2 r2 s2 t2
q3 r3 s3 0

⎤

⎥⎥⎦

︸ ︷︷ ︸
M

⎡

⎢⎢⎣

k1

k2

k3

kI

⎤

⎥⎥⎦

︸ ︷︷ ︸
K′

=

⎡

⎢⎢⎣

a0 − p0k4

a1 − p1k4 − p0

a2 − p2k4 − p1

a3 − p3k4 − p2

⎤

⎥⎥⎦

︸ ︷︷ ︸
W

(37)

where (36) has been used. The remaining gains could be solved
using matrix inversion K′ = M−1W. In real-time systems, it
is more efficient to solve the gains using the following steps.

1) The mapping matrix M = LU is expressed using the LU
decomposition as

M=

⎡

⎢⎢⎣

1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

⎤

⎥⎥⎦

︸ ︷︷ ︸
L

⎡

⎢⎢⎣

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

⎤

⎥⎥⎦

︸ ︷︷ ︸
U

.

(38)
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2) Equating (37) and (38) gives the elements of the lower
diagonal matrix L, i.e.,

l21 = q1/q0 l31 = q2/q0, l32 = (r2 − l31r0)/u22

l41 = q3/q0, l42 = (r3 − l41r0)/u22

l43 = (s3 − l41s0 − l42u23)/u33 (39)

and of the upper diagonal matrix U, i.e.,

u11 = q0 u12 = r0, u22 = r1 − r0l21

u13 = s0, u23 = s1 − s0l21

u33 = s2 − l31s0 − l32u23, u14 = t0

u24 = t1 − t0l21, u34 = t2 − l31t0 − l32u24

u44 = − l41t0 − l42u24 − l43u34. (40)

3) The decomposition enables calculation of the gains from
LUK′ = W by solving two back-substitution problems:
LC = W and UK′ = C. The elements of the auxiliary
vector C = [c0, c1, c2, c3]T are obtained by solving the
first back-substitution problem C = L−1W, i.e.,

c0 = w0, c1 = w1 − l21c0

c2 = w2 − l31c0 − l32c1,

c3 = w3 − l41c0 − l42c1 − l43c2 (41)

where wi are the elements of W = [w0, w1, w2, w3]T

in (37).
4) The second back-substitution problem K′ = U−1C gives

the gains

kI = c3/u44

k3 = (c2 − u34kI)/u33

k2 = (c1 − u23k3 − u24kI)/u22

k1 = (c0 − u12k2 − u13k3 − u14kI)/u11.

(42)

These steps were also applied in the real-time implementation
in Section V. If the filter parameters and performance specifica-
tions are constant, these gains need to be calculated only once
(during the start-up of a converter).

B. Observer Gain

The desired coefficients of the characteristic polynomial (21)
as functions of the desired pole locations are

ao0 = −αo1αo2αo3

ao1 =αo1αo2 + αo1αo3 + αo2αo3

ao2 = −αo1 −αo2 −αo3. (43)

Analytical expressions for the observer gains as a function of
the system parameters and the desired coefficients are

ko1 = ao2 + a11 + a22 + a33

ko2 = [f5(ao1 − f1 − f2 − f3 + a22ko1 + a33ko1)
− a13(ao0 + a11f3 − a12f6 − a13f7 − f3ko1)]
/(a12f5 − a13f4)

ko3 = (ao0 + a11f3 − a12f6 − a13f7

− f3ko1 − f4ko2)/f5 (44)

where the auxiliary parameters f i are given in (35).
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