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Consensus of General Linear Multi-Agent Systems
with Heterogeneous Input and Communication

Delays
Wei Jiang, Member, IEEE, Yiyang Chen and Themistoklis Charalambous, Senior Member, IEEE

Abstract—This paper studies the consensus tracking control
for multi-agent systems (MASs) of general linear dynamics con-
sidering heterogeneous constant known input and communication
delays under a directed communication graph containing a
spanning tree. First, for open-loop stable MASs, a distributed
predictive observer is proposed to estimate the consensus tracking
error and to construct the control input that does not involve any
integral term (which is time-efficient in calculation). Then, using
the generalized Nyquist criterion, we derive the conditions for
asymptotic convergence of the closed-loop system and show that
is delay-independent. Subsequently, another observer is designed
that allows the MASs to be open-loop unstable. Next, we use
the generalized Nyquist criterion to compute the observer’s gain
matrix. Towards this end, we choose a specific structure with
which the problem boils down to computing a single parameter,
herein called the predictive observer parameter. Two algorithms
are proposed for choosing this parameter: one for general linear
systems and one for monotone systems. To the best of the
authors’ knowledge, this is the first work for which asymptotic
convergence of consensus is proven for general linear MASs with
arbitrary heterogeneous delays. Finally, the validity of our results
is demonstrated via a vehicle platooning example.

Index Terms—Consensus, heterogeneous delays, delay-
independent stability, generalized Nyquist criterion.

I. INTRODUCTION

CONSENSUS problems appear in many disciplines, such
as biology, engineering, computer science and physics.

Typical applications are vehicle formations, distributed op-
timization, flocking of animals or robots, sensor networks,
distributed estimation/filtering, and social networks. Multi-
agent consensus tracking control, which aims at controlling
followers’ states to track the leader’s state, has been investi-
gated for decades (see, e.g., [1], [2] and references therein).

A fundamental challenge in designing feedback controllers
to be implemented over communication networks is to cope
with time-delays [3]. There are two types of time-delays in
multi-agent consensus: input delay and communication delay.
Input delays are related to connecting and processing times for
packets arriving at an agent and they also occur when actuators
and controllers are connected by networks. Communication
delays occur when agents receive delayed information from
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neighboring agents via the underlying communication net-
work. Both types of delays play a vital role in the stability of
the whole system. For instance, for unstable systems with fast
dynamics, like flying robots, even small input delays from the
controller to actuator could still destabilize the whole system.

Many consensus controllers have been proposed to tackle
homogeneous communication delays, e.g., in [1], [4]. One
key advantage of addressing the problem of having homoge-
neous communication delays is the easiness to put the MAS
dynamics into a compact mathematical form related to the
Laplacian matrix of the communication graph. For heteroge-
neous communication delays, however, the above advantage
disappears and linear matrix inequality (LMI) conditions are
often proposed for consensus in MASs, e.g., in [5]. However,
these LMI conditions are not scalable to arbitrarily large
networks as the size of the LMI increases with the number
of delays and the number of agents. Alternatively, the hetero-
geneous delays can be transformed into the Laplace domain
and approaches in the frequency domain (e.g., generalized
Nyquist criterion [6]) can be utilized to design controllers
for specific dynamics of MASs, i.e., single-input-single-output
(SISO) [7]–[10], first order [11], and double integrator [12].
It should be noted here that all the above agent dynamics
are quite simple, which can deliver the advantage of forming
the multiple transfer functions in the compact diagonal matrix
format (off-diagonal elements being zero) and thus calculating
each heterogeneous delay related to the corresponding single
agent dynamics independently. However, when dealing with
MASs of general linear dynamics, the aforementioned results
are no longer feasible since the compact diagonal matrix
cannot be constructed any more, which is the main challenge
and also one motivation of this work. To the authors’ best
knowledge, this is the first time asymptotic convergence of
consensus related to arbitrary heterogeneous communication
delays can be achieved for the general linear MASs.

In addition to communication delays, heterogeneous input
delays are challenging to deal with as Kronecker format
dynamics for MASs cannot be constructed like in the case
of homogeneous ones; see, e.g., in [4], [13]. To solve this
challenging problem, Xu et al. in [14] use the output regulation
approach in the time domain to transform the consensus
problem into studying a single system with its own input delay.
However, this method cannot apply to homogeneous MASs
with heterogeneous input delays and the output regulation
equation has constraints on leader’s dynamics. Following the
research line in [7], [10], [15], a frequency analysis approach



is utilized in [16] with single/double integrator dynamics.
However, the controller gain is delay-dependent (inverse pro-
portional to the upper bound of delays) meaning delays
cannot be large (gain would be very small). To author’s best
knowledge, to deal with arbitrary heterogeneous input delays
without strong constraints on the leader’s dynamics for general
linear MASs is still an open challenge, which is the other
motivation of this work.

In this paper, first, for open-loop stable MASs, a distributed
predictive observer is proposed that does not involve any
integral term (which is time-efficient in calculation). By ignor-
ing the effects of delays, we extract the necessary conditions
for stability of MASs. Then, using frequency domain argu-
ments (specifically, the generalized Nyquist stability criterion)
we derive the conditions with which consensus tracking is
achieved, showing at the same time that these conditions are
independent of the size of the delay, unlike [10], [12], [14],
[16]. Subsequently, another observer is designed that allows
the MASs to be open-loop unstable, thus broadening the range
of possible applications. Last, we use the stability conditions
to compute the observer’s gain matrix. Towards this end, we
choose a specific structure with which the problem boils down
to computing a single parameter, herein called the predictive
observer parameter. For a general linear system, a numerical
blind search algorithm is proposed. For monotone1 systems,
a simpler and more efficient algorithm is designed, which
guarantees the existence of the parameter.

The main contributions are as follows. (i) This is the
first result that shows consensus with arbitrary heterogeneous
input or communication delays for agents with general lin-
ear dynamics. (ii) The predictive observers for open-loop
stable/unstable dynamics are designed. (iii) We propose a
specific structure for the predictive observer parameter. Then,
a blind search algorithm for the corresponding parameter is
proposed. We also find out that the existence of the parameter
is guaranteed for monotone systems.

Notation: Throughout this letter, Rm×n and Rn are respec-
tively the m×n real matrix space and n-dimensional Euclidean
vector space. The set of real (positive integer) numbers is
denoted by R (N). I denotes the identity matrix (of appropriate
dimensions) and ⊗ is the Kronecker product. For the square
matrix A, λmin(A), λmax(A) and Re(λ(A)) represent the
minimal, maximal and the real part of eigenvalues of A,
respectively. det(A) and ρ(A) are respectively the determinant
and spectral radius of A. diag{a1, . . . , an} represents a diago-
nal matrix with diagonal elements being a1, . . . , an. Matrices
are assumed to have compatible dimensions if not explicitly
stated. |x| denote its absolute value. For any integer a ≤ b,
denote Iba = {a, a+ 1, . . . , b}.

II. PROBLEM SETUP

A. Graph theory

In a weighted graph G = (N , E ,A), N = {1, 2, . . . , N}
and E ⊆ N ×N are the nodes and edges, respectively. A =
[aij ] ∈ RN×N is the weighted adjacency matrix, where aij =

1The system ẋ = f(x) is called monotone if a ≤ b ⇒ x(t, a) ≤
x(t, b), ∀t ≥ 0.

1, (i, j) ∈ E and aij = 0 otherwise. An edge (j, i) ∈ E means
agent j can get information from agent i but not necessarily
conversely. A directed path from node i to j is a sequence
of nodes i = l1, l2, . . . , lt = j such that link (lm+1, lm) ∈ E
for all m = 1, 2, . . . , t− 1. The Laplacian matrix L = [lij ] ∈
RN×N is defined as lij = −aij , i 6= j and lii =

∑
j 6=i aij .

All nodes that can transmit information to node i directly are
said to be in-neighbors of node i and belong to the set N−i =
{i ∈ N | (i, j) ∈ E}. The nodes that receive information from
node i belong to the set of out-neighbors of node i, denoted
by N+

i = {j ∈ N | (j, i) ∈ E}. A directed graph contains a
directed spanning tree if there is a node from which a directed
path exists to each other node.

B. System model

Consider a group of N followers as

ẋi(t) =Axi(t) +Bui(t− τui
),

yi(t) =Cxi(t), i ∈ IN1 ,
(1)

where xi(t) = [xi1(t), . . . , xin(t)]T ∈ Rn, ui (t) ∈ Rp and
yi (t) ∈ Rq are respectively the state, input and measured out-
put of the i-th follower. τui

is a known constant heterogeneous
input delay. The dynamics of leader indexed by 0 is

ẋ0 (t) = Ax0 (t) , y0 (t) = Cx0(t), (2)

where x0(t) ∈ Rn and y0 (t) ∈ Rq . It is reasonable to have
the leader without neighbors or input, i.e., u0(t) = 0.

Assumption 1. All the eigenvalues of A are in the open left-
half plane.

Assumption 2. Graph G contains a directed spanning tree in
which the leader acts as the root node.

Assumption 1 is needed for the deployment of generalized
Nyquist criterion and also appears in [4], [7]. From Assump-
tion 2, the Laplacian matrix of G can be partitioned as L =[

0 01×N
L2 L1

]
, where L2 ∈ RN×1 and L1 ∈ RN×N . Under

Assumption 2, L1 is a nonsingular M -matrix. Therefore, all
the eigenvalues of L1 have positive real parts.

As followers can receive the output information from the
in-neighbors, the measurement at a node i can be synthesized
as a single signal as

ȳi(t) =
∑
j∈N−

i

aij [yi(t− τcij )− yj(t− τcij )], i ∈ IN1 , (3)

where aij is the ij-th entry of the adjacent matrix A of graph
G and τcij is the known constant communication delays from
agent j to agent i.

Remark 1. In applications where only relative information
can be measured (e.g., yi(t) is not directly measured but
only yi(t)− yj(t) is measured) and the communication delay
is involved in the measurement, taking the same commu-
nication delay for node i and node j is inevitable, i.e.,
yi(t−τcij )−yj(t−τcij ) in (3); see, for example in platooning.
In applications where absolute output rather than relative
output is available, by using timestamps at the transmitted
packets of node j, the receiving node i is able to measure



the delay τcij . Then, the output signal is delayed before being
applied (see, e.g., [17]).

We denote the largest communication delay to agent i from
all its neighbors by τci , i.e., τci , maxj∈N−

i
τcij . Also, τi,

denotes the total delay of node i, i.e.,

τi ,τui
+ τci , i ∈ IN1 . (4)

Then, the initial conditions for followers (1) is xi(t) = φi(t)
when t ∈ [−τi, 0]. Similarly, define x0(t) = φ0(t), t ∈ [−τ0, 0]
where τ0 = maxj∈N+

0
(τuj

+ τcj0).
Based on (1) and (2), denote the state consensus tracking

error for follower i as x̃i(t) = xi(t)− x0(t) and we have

˙̃xi(t) =Ax̃i(t) +Bui(t− τui
), i ∈ IN1 . (5)

Problem 1. Considering arbitrarily large known constant
heterogeneous input and communication delays, for any given
initial states xi(0)∪x0(0), design a distributed controller such
that the consensus tracking error x̃i(t), i ∈ IN1 in (5) converges
to zero asymptotically.

III. MAIN RESULTS

A. Distributed predictive observer

The idea is to design a predictive observer as x̂i(t) ∈ Rn
with x̂i(t) = 0,∀t ∈ [−τi, 0] to estimate x̃i(t) in (5).
To achieve prediction, the classic Artstein’s model reduction
technique [18] involves the integral term whose calculation
is very time-consuming. Therefore, designing an observer
without any integral term is preferred. Based on (3), x̂i(t)
is proposed as follows:

˙̂xi(t) = Ax̂i(t) +Bui(t) + L
{
ȳi(t)

+

N∑
j=1,j 6=i

aijC
[
x̂j(t− τuj

− τcij )− x̂i(t− τui
− τcij )

]
− ai0Cx̂i(t− τui

− τci0)
}
, (6)

where L ∈ Rn×q will be designed later.

Remark 2. x̂j(t− τuj − τcij ) means the neighbor’s observer
x̂j(t) needs to be self delayed by its own input delay τuj

first, and then, send this delayed information x̂j(t − τuj
) to

agent i via communication topology edge (i, j) which has
communication delay τcij . x̂i(t − τui

− τcij ) represents the
observer x̂i(t) of agent i should be self delayed by τui + τcij .

There exists τcij to agent i from its neighbor j in commu-
nication link (i, j). Hence, based on the definition of τci , we
can even retard the communicated value as follows:

˙̂xi(t) = Ax̂i(t) +Bui(t) + L
{ N∑
j=1,j 6=i

aij
[
yi(t− τci) (7)

− yj(t− τci)− Cx̂i(t− τui
− τci) + Cx̂j(t− τuj

− τci)
]

+ ai0[yi(t− τci)− y0(t− τci)− Cx̂i(t− τui
− τci)]

}
.

Remark 3. Compared to error dynamics (5), there exists no
input delay in predictive observer (7). As there is no integral
term inside (7), the predictive observer calculation is not time-
consuming. Thanks to the adoption of stored historical values,

this predictive observer x̂i(t) can predict x̃i(t) with τui delay
in advance, i.e., x̂i(t)→ x̃i(t+ τui

).

Inspired by [19], denote the observer estimating error
ξi(t) ∈ Rn as

ξi(t) = x̃i(t)− x̂i(t− τui), i ∈ IN1 . (8)

Then, (7) changes to ˙̂xi(t) = Ax̂i(t) + Bui(t) +
LC

∑N
j=1 lijξj(t− τci), where ξj(t) = x̃j(t)− x̂j(t− τuj

) is
used in the middle of calculation. Combining the above x̂i(t)
dynamics with Eqs. (4) and (5), the dynamics ξi(t) is

ξ̇i(t) = Aξi(t)− LC
N∑
j=1

lijξj(t− τi). (9)

Now, the control input is chosen to be of the form as

ui(t) = −Kx̂i(t), i ∈ IN1 , (10)

where matrix K ∈ Rp×n will be designed later.
Based on ξi(t) in (8), integrating input (10) into consensus

tracking error dynamics (5) gives

˙̃xi(t) = (A−BK)x̃i(t) +BKξi(t). (11)

B. Necessary conditions for stability
When there is no delays, error dynamics (9) changes to

ξ̇i(t) = Aξi(t)− LC
N∑
j=1

lijξj(t). (12)

Denote ξ(t) = [ξT1 (t), . . . , ξTN (t)]T . The Kronecker format
of (12) is ξ̇(t) = (IN ⊗ A − L1 ⊗ (LC))ξ(t). So in order to
get limt→∞ ξ(t) = 0, the observer parameter L should satisfy
that all eigenvalues of IN ⊗A−L1⊗ (LC) have negative real
parts, i.e.,

Re(λ(IN ⊗A− L1 ⊗ (LC))) < 0. (13)

Hence, limt→∞ x̃i(t) = 0 in (11) if parameter K satisfies

Re(λ(A−BK)) < 0. (14)

Remark 4. Eqs. (13) and (14) are necessary conditions for
the asymptotic convergence of consensus tracking error.

The following sections will focus on proving the stability
of observer error dynamics (9) and parameter L design.

C. Observer parameter law for stability
Due to the heterogeneous nature of delays considered in this

paper, ξ̇i(t) in (9) cannot have the Kronecker form as in [1],
[4] in the time domain. We, therefore, switch to the use of
a frequency domain method to deal with τi. After taking the
Laplace transform of both sides of (9), we have

sξi(s)− ξi(0) = Aξi(s)− LC
N∑
j=1

lije
−sτiξj(s), (15)

where ξi(s) denotes the Laplace transform of ξi(t) for all
i ∈ IN1 . From Assumption 1, (sI−A) is invertible. Therefore,
(15) can be written as

ξi(s) + e−sτi(sI −A)−1LC

N∑
j=1

lijξj(s) = (sI −A)−1ξi(0).



In (4), τi = τui
+ τci means each agent can have its own

input and communication delays. Here, the largest delay (i.e.,
τ̄ = maxi∈IN1

τi) that every agent can tolerate is of interest in
this work. Thus, the above equation can change to

(INn + L1⊗ (e−sτ̄ (sI −A)−1LC)︸ ︷︷ ︸
Q(s)

)ξ(s)

= (IN ⊗ (sI −A)−1)ξ(0). (16)

The above closed-loop system is stable if det(INn+L1⊗Q(s))
has no zero in the closed right-half plane. From (16) one has
ξ(s) = (INn + L1 ⊗ Q(s))−1(IN ⊗ (sI − A)−1)ξ(0). To
achieve ξ(s)→ 0, due to ξ(0) 6= 0, the right hand side of (16)
is the reason for Assumption 1 (Re(λ(A)) < 0) which will be
relaxed in the next section.

The computation of the roots of (16) is extremely difficult
because matrix Q(s) depends on s. Instead of computing these
roots, we use the generalized Nyquist stability criterion to de-
termine the stability of ξ(t) and then, asymptotic convergence
of x̃(t).
Theorem 1. Under Assumptions 1-2, Problem 1 is solved by
controller (10) and observer (7) if A − BK is Hurwitz, L
satisfies Re(λ(IN ⊗A− L1 ⊗ (LC))) < 0 and

ρ((jωI −A)−1LC︸ ︷︷ ︸
Ĝ(jω)

) <
1

λmax(L1)
, ω ∈ R. (17)

Proof. From the generalized Nyquist criterion, based on As-
sumption 1, it is sufficient to verify that the eigenvalues of
L1⊗Q(jω),2 ω ∈ R, do not encircle the point −1 to guarantee
the stability of the closed-loop system (16), which means (16)
is stable if

ρ(L1 ⊗Q(jω)) = max |λ(L1 ⊗Q(jω))| < 1, ω ∈ R. (18)

Note that L1 is a nonsingular M -matrix based on Assump-
tion 2 with Re(λ(L1)) > 0. Recall the eigenvalue property
that if the eigenvalues of S ∈ Rn×n and R ∈ Rm×m are
λ1, . . . , λn and µ1, . . . , µm, respectively, then the eigenvalues
of S ⊗ R are λiµk, i ∈ In1 , k ∈ Im1 . As a consequence, we
have

ρ(L1 ⊗Q(jω)) =λmax(L1) max |λ(Q(jω))|
=λmax(L1)ρ(Q(jω)), w ∈ R.

(19)

Due to |e−jωτ̄ |ω∈R = 1,∀τ̄ > 0, based on (18), the closed-
loop system ξi(t) (9) is stable for arbitrary delay τ̄ under
condition (17).

From the result in Section III-B, one can see that zero
is the equilibrium of ξi(t) dynamics if condition (13) is
satisfied. As a result, limt→∞ ξi(t) = 0 can be achieved under
conditions (13) and (17). In addition to that, from (11), one
can prove limt→∞ x̃i(t) = 0 with condition (14). �

Remark 5. Controller parameters in Theorem 1 are delay-
independent under directed communication graphs. However,
parameters in [10], [12], [14], [16] are delay-dependent, e.g.,
they are inverse proportional to the upper bound of delays
in [10], [16] meaning delays cannot be arbitrarily large.
Besides, works in [7], [8], [11] require undirected graphs.

2We denote the imaginary unit j2 = −1 for distinguishing j from the
index j of the agents.

D. Relaxation of Assumption 1

Our results so far required that the state matrix A is already
stable (Assumption 1), which is restrictive. However, for
relaxing this assumption, we need the following assumptions:

Assumption 3. The output matrix C is full rank.

Assumption 4. (A,B) is controllable.

Based on Assumption 3 (i.e., C is full rank), Assumption 1
can be relaxed to Assumption 4 now. The motivation behind
this is that several real-world scenarios may involve system
dynamics A that are open-loop unstable (e.g., fight aircrafts).

The methodology is to replace matrix A in (16) by (A −
BK) which is Hurwitz. By adding a state predictor xi(t+τui)
in the following, the observer (7) is modified as follows:

˙̂xi(t) = Ax̂i(t) +Bui(t) + L{
N∑

j=1,j 6=i

aij [yi(t− τci)

− yj(t− τci)− Cx̂i(t− τui
− τci) + Cx̂j(t− τuj

− τci)]
+ ai0[yi(t− τci)− y0(t− τci)− Cx̂i(t− τui

− τci)]}
+BK[xi(t+ τui

)− eAτuix0(t)− x̂i(t)], (20)

where xi(t+ τui
) can be computed by

xi(t+ τui) = eAτuixi(t) +

∫ t

t−τui

eA(t−s)Bui(s)ds.

Since the input delay τui
is known to agent i, the de-

signed observer (20) is available with historical values of
input ui(t), t ∈ [t − τui , t]. Assumption 3 can guarantee the
feasibility of observer (20) in which both state and output
measurements are used.

By designing the same input ui(t) in (10), based on
eAτuix0(t − τui

) = x0(t) from (2), Eqs. (4), (5) and (20),
one can calculate that ξi(t) in (9) will change to

ξ̇i(t) = (A−BK)ξi(t)− LC
N∑
j=1

lijξj(t− τi). (21)

Consequentely, necessary conditions for the asymptotic con-
vergence of consensus tracking error x̃(t) will be (14) and

Re(λ(IN ⊗ (A−BK)− L1 ⊗ (LC))) < 0. (22)

Similarly, (16) turns to(
INn + L1⊗(e−sτ̄ (sI − (A−BK))−1LC)

)
ξ(s)

= (IN ⊗ (sI − (A−BK))−1)ξ(0). (23)

Theorem 2. Under Assumptions 2-4, Problem 1 is solved by
controller (10) and observer (20) if A − BK is Hurwitz, L
satisfies Re(λ(IN ⊗ (A−BK)− L1 ⊗ (LC))) < 0 and

ρ((jωI − (A−BK))−1LC) <
1

λmax(L1)
, ω ∈ R. (24)

Proof. In Theorem 1, Re(λ(A)) < 0, which is guaranteed by
Assumption 1, is needed. In Theorem 2, similarly, A − BK
needs to be Hurwitz, i.e., Re(λ(A − BK)) < 0, which is
guaranteed by Assumption 4. Other calculations are the same
as in the proof of Theorem 1 and, thus, omitted here. �



E. Algorithms to design observer parameter L

Theorems 1 and 2 guarantee that the consensus tracking
can be achieved if conditions (17) and (24) are satisfied.
However, it is not easy to design L to satisfy conditions (17)
or (24) since the value space for ω is [−∞,+∞]. From
the necessary condition (13) for stability of ξ(t), since A is
negative definite from Assumption 1 and L1 is positive definite
from Assumption 2, the intuition is that if we design the term
LC being non-negative definite, then condition (13) has high
possibility to be satisfied. So here, we propose one solution
of L as

L = αCT , α > 0. (25)

Thus, the objective is simplified to design α.
1) Design L by blind search: We take condition (17) for

designing L first. By intuition, when ω →∞, ρ((jωI−A)−1)
will go to zero. Let ωs be a relatively small sample frequency
and ε a sufficiently small non-negative scalar. We propose
Algorithm 1 to find α by blind search.

Algorithm 1 Choice of parameter α using blind search
Input: A, C, ∆ω and ε

1: initialization Set i = 0 and k = 0
2: ωs = ∆ω, ρ0 = ρ((−A)−1CTC) and ρ+

1 = ρ((jωsI −
A)−1CTC)

3: while not |ρi+1 − ρi| 6 ε do
4: ρ+

i+2 = ρ((j(i+ 2)ωsI −A)−1CTC)
5: i = i+ 1
6: end while
7: ωs = −∆ω and ρ−1 = ρ((jωsI −A)−1CTC)
8: while not |ρk+1 − ρk| 6 ε do
9: ρ−k+2 = ρ((j(k + 2)ωsI −A)−1CTC)

10: k = k + 1
11: end while
12: i∗ = i+ 1 and k∗ = k + 1
13: ρ∗ = max(ρ−k∗ , ..., ρ

−
1 , ρ0, ρ

+
1 , ..., ρ

+
i∗)

14: return α < 1/(ρ∗λmax(L1))

Algorithm 1 uses a numerical blind search method to obtain
the maximum value ρ∗ of ρ((jωI − A)−1CTC) over the
frequency domain from ω = 0 until its convergence at i∗∆ω
and −k∗∆ω. Note that when ωs > 0, ω goes from 0 to +∞;
when ωs < 0, ω goes from 0 to −∞. In such way, ω ∈ R is
searched. Since L = αCT , the choice α < 1/(ρ∗λmax(L1))
should be made to satisfy the condition (13). To design L for
condition (24), we replace matrix A as A−BK in Algorithm
1.

2) Design L for a monotone system: In (17), Ĝ(jω) :=
(jωI − A)−1LC is the complex matrix valued function of
G := (sI − A)−1LC. One can see that G is the Laplacian
transform function of

ż(t) = Az(t) + LCuz(t), ŷ(t) = z(t), (26)

where z(t) ∈ Rn, uz(t) ∈ Rn and ŷ(t) ∈ Rn are the
corresponding state, input and output. Now, before we cite
some lemmas related to dynamics (26), the following notations
are presented. Lp(a, b), p ∈ N represents the space of functions
φ : (a, b) → Rn with the norm ‖φ‖Lp

= [
∫ b
a
|φ(θ)|pdθ]1/p.

Let K ⊆ Rn be a proper cone3 and H∞ be the Hardy space.
LK2 [0,∞) is a cone in Lebesgue 2-space L2[0,∞) as

LK2 [0,∞) := {v ∈ L2[0,∞) : v(t) ∈ K}.

Define a space of maps preserving LK2 [0,∞) by
HK∞ := {G ∈ H∞ : Gu ∈ LK2 [0,∞), ∀ u ∈ LK2 [0,∞)}.

More explanations about above notations can refer to [20].
Note any system operator G ∈ HK∞ is considered as a cone-
preserving operator, i.e., it maps any input signal in the cone
space LK2 [0,∞) to obtain the system state in the same space.

Lemma 1 ([20]). Let K ⊆ Rn be a proper cone. If G ∈ HK∞,
then ρ(Ĝ(jω)) ≤ ρ(Ĝ(0)),∀ω ∈ R.

Lemma 2 ([20]). The class of monotone dynamic systems has
cone-preserving property, i.e., G ∈ HK∞.

Using the above lemmas, the following theorem provides
the choice of α for specific class of systems.

Theorem 3. Under Assumptions 1-2, if A is a Metzler4 matrix
and L is set as (25), dynamics (26) constitutes a monotone
system. To satisfy law (17), α is designed as

α <
1

λmax(L1) max |λ(A−1CTC)|
. (27)

Proof. Since A is a Metzler matrix and LC = αCTC is a
square entry-wise nonnegative matrix, the system is a positive
system (see the mathematical definition in Introduction Section
of [20]), which is a special monotone system. According to
Lemmas 1 and 2, we can furthermore have
ρ(Ĝ(jω)) = ρ(Ĝ(0)) = max |λ(A−1LC)|,∀ω ∈ R, (28)

from condition (17), which hence yields the choice (27). �
Proposition 1. Under Assumptions 2-4, if A−BK is Hurwitz
and is a Metzler matrix and L is set as (25), then, to satisfy
condition (24), α is designed as

α <
1

λmax(L1) max |λ((A−BK)−1CTC)|
. (29)

Theorem 3 and Proposition 1 can guarantee the existence of
L. To sum up, the following algorithm is proposed to design
parameters K and L to solve Problem 1.

Algorithm 2 Parameters design procedure
1: Design K to satisfy Re(λ(A−BK)) < 0 (14).
2: Design L = αCT with α satisfying the choice obtained

by Algorithm 1 or for monotone systems, by (27) for
Theorem 1 and by (29) for Theorem 2.

3: Verify L to satisfy (13) for Theorem 1 or to satisfy (22)
for Theorem 2.

IV. NUMERICAL EXAMPLE

The vehicle platooning scenario is considered here.
From [21], the linearized vehicle platooning dynamics is

A =

[
02×1 I2

0
[
0 −1/τpt

]] , B =

[
02×1

1/τpt

]
, where xi(t) =

[pi(t), vi(t), ai(t)]
T ∈ R3 are the position, velocity, and

acceleration, respectively; τpt = 0.5s is the inertial time lag in

3A cone K is said to be proper if it is convex (x, y ∈ K;β, γ ≥ 0 ⇒
βx+ γy ∈ K), pointed (K ∩ (−K) = {0}), closed and solid [20].

4A matrix A ∈ Rn×n is called Metzler if every off-diagonal entry of A
is non-negative.



the powertrain. A is a Metzler matrix with eigenvalues λ(A) =
0, 0,−1/τpt, which means Assumption 1 is not satisfied. By
setting C = I3, Assumptions 3 and 4 are satisfied. Therefore,
this example verifies the results for open-loop unstable sys-
tems. The string stability in platooning is not discussed here
due to the page limit and research topic. So the time headway
is set as zero and the average distance between vehicles is
set as D = 10m. Correspondingly, the observer (20) for
Theorem 2 is changed, i.e., replacing yi(t − τci) as yi(t −
τci) + C[iD, 0, 0]T , yj(t− τci) as yj(t− τci) + C[jD, 0, 0]T

and xi(t+τui
) as xi(t+τui

)+[iD, 0, 0]T . The line formation
error is pi(t) − p0(t) + iD. The communication graph is
shown in Fig. 1 (a). Design K = [0.4843, 1.5205,−0.3790]
such that A − BK is Hurwitz. Parameters in Algorithm
1 for condition (24) are shown in Fig. 1 (b) with α <
1/(2.814 × ρ(L1)) = 0.1425. Set the input/communication
delays as [τu1

, τu2
, τu3

, τu4
] = [0.55s, 0.65s, 0.75s, 0.85s]

and [τc1 , τc2 , τc3 , τc4 ] = [1.5s, 20s, 30s, 40s]. Fig 2 shows
performance of different values of α to the line formation
of vehicle platooning, which verifies the results in this paper.
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(a) (b) ρ((jωI −A)−1CTC), ω ∈ R.
Fig. 1. (a) Directed communication graph; (b) Algorithm 1: ∆ω = 0.1, ε =
0.00001, i∗ = 1017, k∗ = 1017.

Fig. 2. (a) and (d) are the distance between vehicle i, i ∈ I41 and the leader
vehicle with different values of α and (b) and (e) are their corresponding
inputs. (c) is the position trajectories of five vehicles. One can see when
α = 0.13 < 0.1425, pi − p0 = −iD, i.e., the line formation of vehicle
platooning is achieved and stable while α = 0.19 > 0.1425 is not.

V. CONCLUSIONS

In this work, we proposed a distributed observer which
can handle arbitrary heterogeneous (input and communication)
delays during consensus tracking in multi-agent systems with
general linear dynamics and under a directed graph represent-
ing the communication topology. The design of this observer

was transformed to a single parameter design which is chosen
such that the stability of the close-loop system is guaranteed.
Two algorithms were proposed for choosing this parameter:
one for general linear systems and one for monotone systems.

Ongoing research focuses on relaxing the constraint requir-
ing each follower to possess the leader’s state for designing
its observer for open-loop unstable systems with/without un-
certainties.
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