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Discrete-Time Observer Design for Sensorless
Synchronous Motor Drives

Hafiz Asad Ali Awan, Toni Tuovinen, Seppo E. Saarakkala, and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper deals with the speed and position estima-
tion of interior permanent-magnet synchronous motor (IPM) and
synchronous reluctance motor (SyRM) drives. A speed-adaptive
full-order observer is designed and analyzed in the discrete-time
domain. The observer design is based on the exact discrete-time
motor model, which inherently takes the delays in the control
system into account. The proposed observer is experimentally
evaluated using a 6.7-kW SyRM drive. The analysis and exper-
imental results indicate that major performance improvements
can be obtained with the direct discrete-time design, especially
if the sampling frequency is relatively low compared to the
fundamental frequency. The ratio below 10 between the sampling
and fundamental frequencies is achieved in experiments with the
proposed discrete-time design.

Index Terms—Modeling errors, observer, speed sensorless,
stability conditions.

I. INTRODUCTION

Synchronous motors with a magnetically anisotropic rotor—
such as the interior permanent-magnet synchronous motor
(IPM) and the synchronous reluctance motor (SyRM)—are
becoming competitors to the induction motor in hybrid and
electric vehicles [1], heavy-duty working machines, and indus-
trial applications. In these applications, the maximum speeds
and, consequently, the maximum operating frequencies can be
very high, while the switching frequency is limited. Hence, the
resulting ratio between the switching (sampling) frequency and
the maximum fundamental frequency can be even below ten.

Motion-sensorless operation is commonly preferred [2]–
[19]. At high speeds, methods based on the back electromo-
tive force (EMF) are favourable. Since the back-EMF-based
methods may fail to estimate the rotor position at low speeds
and standstill, they could be combined with signal-injection
methods [3], [6], [11], [18]. If operation under the load torque
at low speeds or position control is required, signal-injection
based methods are mandatory. This paper focuses on operation
at high fundamental frequencies, and only the back-EMF-
based methods will be considered.

Usually, a speed and position observer is first designed in
the continuous-time domain and then discretized for a digital
processor by means of the forward Euler, symplectic Euler,
or Tustin approximations. A drawback of this approach is that
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the sampling frequency has to be at least 10–20 times higher
than the desired maximum fundamental frequency.

Higher fundamental frequencies and improved robustness at
a given sampling frequency can be achieved by designing the
control system directly in the discrete-time domain [19]–[25].
For the direct discrete-time control design, a hold-equivalent
discrete model—including the effects of the zero-order hold
(ZOH) and sampler—of the motor drive is needed. The exact
closed-form model for surface permanent-magnet synchronous
motor (SPM) drives can be found in [20], [21]. For the IPM
drives, an approximate discrete model has been proposed in
[22], [23] and the exact closed-form model has been recently
reported in [25].

A continuous-time gain design [16] for a speed-adaptive
full-order observer guarantees the local stability of the
estimation-error dynamics at every operating point (except at
zero speed) in ideal conditions. However, the effects of the
digital implementation were not considered. If the ratio be-
tween the sampling frequency and the fundamental frequency
is low, the stability conditions derived in [16] are not valid
and the system can become unstable.

In this paper, a speed-adaptive full-order observer for sen-
sorless IPM and SyRM drives is designed directly in the
discrete-time domain. First, the motor model and the observer
design in the continuous-time domain are reviewed in Section
II. Then, the main contributions of the paper are presented in
Section III:
• A linearized model for the discrete-time estimation-error

dynamics is derived.
• A stabilizing observer gain is proposed based on the lin-

earized model. The proposed design decouples the speed-
estimation dynamics from the flux-estimation dynamics,
which simplifies the tuning procedure.

Section IV describes an example design. In Section V, the
proposed discrete-time observer design is evaluated by means
of the stability analysis, simulations, and experiments using
a 6.7-kW SyRM drive. Furthermore, the discrete-time design
is compared to its continuous-time counterpart, which is
discretized using the forward Euler approximation.

II. REVIEW: CONTINUOUS-TIME MODEL AND OBSERVER

Real space vectors will be used. For example, the stator-
current vector is is = [id, iq]T, where id and iq are the
components of the vector. The identity matrix is I = [ 1 0

0 1 ]
and the orthogonal rotation matrix is J = [ 0 −11 0 ]. Vectors
are denoted using boldface lowercase letters and matrices
using boldface uppercase letters. Space vectors in stator and
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rotor coordinates are marked with the superscripts s and
r, respectively. No superscript is used for space vectors in
estimated rotor coordinates.

A. Model

The electrical rotor angle is ϑm and the electrical angular
rotor speed is ωm = dϑm/dt. The electrical radians are used
throughout the paper. In rotor coordinates, the state-space
representation corresponding to the standard model of the IPM
is

dψr
s(t)

dt
= A(t)ψr

s(t) +Bur
s(t) + bψf (1a)

irs(t) = Cψr
s(t) + dψf (1b)

where ψs is the stator flux vector, us is the stator voltage
vector, and ψf is the permanent-magnet (PM) flux. The system
matrices are

A(t) =

[
−Rs/Ld ωm(t)
−ωm(t) −Rs/Lq

]
, B = I, b =

[
Rs/Ld

0

]
C =

[
1/Ld 0

0 1/Lq

]
, d =

[
−1/Ld

0

]
(2)

where Rs is the stator resistance, Ld is the direct-axis induc-
tance, and Lq is the quadrature-axis inductance. The state-
space representation in (1) has two inputs: the stator voltage
us and the PM flux ψf (which is constant). If Ld = Lq, the
model represents the SPM. If ψf = 0, the model of the SyRM
is obtained. In the following equations, the time dependency
is not explicitly written in order to simplify the notation.

B. Observer Structure

The speed-adaptive full-order observer in estimated rotor
coordinates is defined by [9], [16]

dψ̂s

dt
= Âψ̂s +Bus + bψf +Kcĩs (3a)

îs = Cψ̂s + dψf (3b)

where the estimates are marked by the hat, ĩs = îs− is is the
estimation error of the stator current, and Kc is the 2×2 gain
matrix. Further, the motor parameter estimates are assumed to
be accurate in order to simplify the notation. The electrical
rotor angle is estimated using

dϑ̂m
dt

= ω̂m. (4)

The proportional-integral (PI) speed-adaptation law is

dω̂mi

dt
= kicĩs, ω̂m = ω̂mi + kpcĩs (5)

where ω̂mi is the integral state. The gain vectors are kic =
[0, kic] and kpc = [0, kpc], i.e., only the estimation error in
the estimated q-axis direction is used for speed estimation. It
is worth noticing that the matrix Â in (3a) depends on the
estimated speed ω̂m.

ω̃m(s)ωm(s)
Gc(s)

ĩs(s) ω̂m(s)
Hc(s)

1

s

ϑ̃m(s)

Fig. 1. Linearized estimation-error dynamics for the continuous-time observer
design.

C. Estimation-Error Dynamics

1) Nonlinear Dynamics: For analyzing the estimation-error
dynamics, the model (1) is first transformed to estimated rotor
coordinates as

dψs

dt
= A′ψs +Bus + b′ψf (6a)

is = C ′ψs + d′ψf (6b)

where ψs = e−ϑ̃mJψr
s and ϑ̃m = ϑ̂m − ϑm. Other space

vectors are transformed similarly. The matrices become

A′ = e−ϑ̃mJAeϑ̃mJ − ω̃mJ, b′ = e−ϑ̃mJb

C ′ = e−ϑ̃mJCeϑ̃mJ, d′ = e−ϑ̃mJd. (7)

The estimation error of the stator flux is ψ̃s = ψ̂s − ψs and
the estimation errors of other variables are defined similarly.
The nonlinear estimation-error dynamics are

dψ̃s

dt
= (Â+KcC)ψ̃s + (Ã+KcC̃)ψs

+ (b̃+Kcd̃)ψf

(8a)

ĩs = Cψ̃s + d̃ψf + C̃ψs (8b)

where Ã = Â−A′, b̃ = b−b′, C̃ = C−C ′, and d̃ = d−d′.
2) Linearized Dynamics: The nonlinear dynamics in (8)

can be linearized for analysis purposes, leading to [10]

dψ̃s

dt
= Aψcψ̃s + bϑcϑ̃m (9a)

ĩs = Cψ̃s + dϑcϑ̃m. (9b)

The system matrices are

Aψc = A0 +KcC, bϑc = (Aψc + ωm0J)C−1dϑc

dϑc = (JC −CJ)ψs0 + Jdψf (10)

where the operating-point quantities are marked with the
subscript 0. The system (9) can be represented by the transfer-
function matrix

Gc(s) = C(sI−Aψc)
−1bϑc + dϑc (11)

from ϑ̃m(s) to ĩs(s). Further, the speed-adaptation law (5)
corresponds to the transfer-function matrix Hc(s) = kpc +
kic/s from ĩs(s) to ω̂m(s). Fig. 1 shows the block diagram
of the linearized estimation-error dynamics. The closed-loop
transfer function from the actual speed to the estimated speed
is

ω̂m(s)

ωm(s)
=

Hc(s)Gc(s)

s+Hc(s)Gc(s)
. (12)
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ψs,ref

ϑ̂m

iss
e−ϑ̂mJ

e(ϑ̂m+ω̂mTs)J z−1

M

u′s,ref

Flux
controller

Observer
ω̂mi

is

z−1

us

PWM

us
s,ref

qabcψ̂s

Udc

Fig. 2. Sensorless control system. The discrete-time plant model includes
the gray blocks: motor, PWM, and computational time delay z−1. The
white blocks represent the discrete-time control algorithm. For discrete-time
modeling, the PWM is replaced with the ZOH and the gate signals qabc are
replaced with the duty ratios dabc.

D. Gain Selection

First, to simplify the notation in the following, an auxiliary
variable

β = (Ld − Lq)
iq
ψ′f

(13)

is defined, where the denominator ψ′f = ψf + (Ld−Lq)id can
be interpreted as a fictitious flux [5], [15]. As special cases,
β = 0 holds for SPMs and β = iq/id for SyRMs.

The fourth-order system shown in Fig. 1 is complicated
and the gains can be difficult to tune. In order to simplify
the tuning procedure, the speed-estimation dynamics and the
flux-estimation dynamics can be decoupled by zeroing bϑc,
leading to Gc(s) = dϑc. From (10), the observer gain yielding
bϑc = 0 can be solved as [16]

Kc =

[
Rs + Ldk1c −βLqk1c
Ldk2c Rs − βLqk2c

]
(14)

where

k1c = −bc + β(cc/ω̂m − ω̂m)

β2 + 1
, k2c =

βbc − cc/ω̂m + ω̂m

β2 + 1
.

(15)
The speed-adaptation gains are kpc = Lqdc/ψ

′
f and kic =

Lqec/ψ
′
f . With this gain selection, the characteristic polyno-

mial of the estimation-error dynamics becomes (s2 + bcs +
cc)(s

2 + dcs + ec), where the design parameters are bc > 0,
cc > 0, dc > 0, and ec > 0, which may depend on the
operating point.

The design parameters bc and cc determine the flux-
estimation error dynamics. In order to keep the observer gains
(15) within reasonable limits, the design parameters should be
selected in such a way that the closed-loop poles of the flux
estimator remain in the vicinity of the open-loop system poles,
i.e., the eigenvalues of the system matrix A(t) in (1).

The design parameters dc and ec determine the speed-
adaptation dynamics. The resulting closed-loop transfer func-
tion from the actual speed to the estimated speed is

ω̂m(s)

ωm(s)
=

dcs+ ec
s2 + dcs+ ec

. (16)

With accurate model parameters, the estimation-error dy-
namics are locally stable in every operating point (marginally

Tsw

t/Ts

da(k)

carrier

t/Ts

k

k k+1 k+2 k+3

k+1 k+2

k+4

sample

update

(a)

(b)

references
update

references

currents
sample
currents

sample
currents

qa

da(k)

carrier

qa

Tsw

Fig. 3. PWM update and sampling schemes: (a) single-update PWM with
sampling at the start of the switching period Tsw; (b) double-update PWM
with sampling twice per the switching period. The triangular carrier signal,
a-phase duty ratio da(k), and resulting a-phase gate signal qa are illustrated.
The duty ratios db(k) and dc(k) (not shown) of the other two phases are
updated simultaneously with da(k) and compared to the same carrier signal.

stable at zero speed). This observer design is a subset of
all possible stable designs. However, it is easier to tune two
second-order systems than one fourth-order system, which is
a clear advantage of this gain selection.

III. DISCRETE-TIME MODEL AND OBSERVER

Fig. 2 shows a sensorless control system, which is the
framework for the discrete-time observer. In this paper, the
flux-linkage controller is used, but the proposed observer could
also be used together with the current controller. It was found
out that controlling the fluxes instead of the currents makes
the system more robust against noise, originating mainly from
spatial harmonics and nonlinear saturation characteritics of
the motor. Similar observations have been made in [26]. In
the following, the pulse-width modulator (PWM) update and
sampling scheme is briefly introduced. Then, the discrete-time
model and the observer design are presented.

A. PWM Update and Sampling

Sampling of the stator currents is synchronized with the
PWM. Fig. 3 illustrates two common PWM update and sam-
pling schemes [27], [28], which both are directly compatible
with the proposed discrete-time design.1 The sampling period
is denoted by Ts and the discrete-time index by k. At every
time step, the duty ratios dabc = [da, db, dc]

T for each phase

1The single-update PWM with sampling in the middle of the switching
period is the third commonly used PWM update and sampling scheme. Some
modifications in the discrete-time model would be needed for this sampling
scheme.



4

are calculated from the stator voltage reference us
s,ref by

means of the space-vector PWM algorithm. The gate signals
qabc = [qa, qb, qc]

T are obtained by comparing the duty ratios
dabc with the carrier signal.

As illustrated in Fig. 3, the PWM update has one-sampling-
period time delay due to the finite computation time. The gray
block z−1 in Fig. 2 models this computational delay. The effect
of the time delay on the voltage angle is compensated for in
the coordinate transformation of the reference voltage.

In the following discrete-time model, the average of the
stator voltage over the sampling period Ts is considered, i.e.,

us
s(k) =

2Udc

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
dabc(k) (17)

where Udc is the DC-link voltage. The stator voltage in stator
coordinates is assumed to be piecewise constant between two
consecutive sampling instants, which corresponds to the ZOH
in stator coordinates. In other words, the stator voltage us

s(t)
is constant during kTs < t < (k + 1)Ts.

B. Exact Discrete Hold-Equivalent Model

The exact discrete-time state-space representation of (1) in
rotor coordinates is given by

ψr
s(k + 1) = Φψr

s(k) + Γur
s(k) + γψf (18a)

irs(k) = Cψr
s(k) + dψf (18b)

where the system matrices are [25]

Φ = eATs =

[
φ11 −φ21
φ21 φ22

]
, γ =

∫ Ts

0

eAτdτ · b =

[
γ1
γ2

]
Γ =

∫ Ts

0

eAτeωmτJdτ · e−ωmTsJ =

[
γ11 γ12
γ21 γ22

]
. (19)

In the above equation for Γ , the ZOH of the stator voltage
is modeled in stationary coordinates, where it physically is.
Hence, the model inherently takes the ZOH delay properly into
account. The closed-form expressions of the matrix elements
are given in Appendix A. If the exact expressions are com-
putationally too demanding, approximate expressions (series
expansions) could be used instead.

C. Observer Structure

The discrete-time observer in estimated rotor coordinates is
defined by

ψ̂s(k + 1) = Φ̂ψ̂s(k) + Γ̂ us(k) + γ̂ψf +Kĩs(k) (20a)

îs(k) = Cψ̂s(k) + dψf (20b)

where K is the gain matrix. It is worth noticing that the ma-
trices Φ̂, Γ̂ , and γ̂ in the discrete-time observer are functions
of the estimated speed ω̂m. This differs from the continuous-
time case, where only the system matrix Â depends on
the estimated speed. As shown in Fig. 2, the effect of the
computational delay on the stator voltage is compensated for
by intentionally delaying the voltage input of the observer, i.e.,
us(k) = us,ref(k− 1). As mentioned before, the effect of the

ZOH is inherently included in the exact discrete-time plant
model. A discrete-time rotor-position estimator is

ϑ̂m(k + 1) = ϑ̂m(k) + Tsω̂m(k) (21)

and the speed-adaptation law is

ω̂mi(k + 1) = ω̂mi(k) + Tskiĩs(k) (22a)

ω̂m(k) = ω̂mi(k) + kpĩs(k) (22b)

where kp = [0, kp] and ki = [0, ki] are the gain vectors.
The integral state ω̂mi can be used as an input signal in outer
control loops (e.g., in the speed controller), while the observer
state matrices in (20) and the rotor position estimation in (21)
depend on ω̂m.

D. Estimation-Error Dynamics

1) Nonlinear Dynamics: For analyzing the estimation-error
dynamics, the model (18) is transformed to estimated rotor
coordinates as

ψs(k + 1) = Φ′ψs(k) + Γ ′us(k) + γ′ψf (23a)
is(k) = C ′ψs(k) + d′ψf (23b)

where

Φ′ = e−ϑ̃m(k+1)JΦeϑ̃m(k)J

Γ ′ = e−ϑ̃m(k+1)JΓ eϑ̃m(k)J, γ′ = e−ϑ̃m(k+1)Jγ

C ′ = e−ϑ̃m(k)JCeϑ̃m(k)J, d′ = e−ϑ̃m(k)Jd. (24)

The nonlinear estimation-error dynamics become

ψ̃s(k + 1) = (Φ̂+KC)ψ̃s(k) + (Φ̃+KC̃)ψs(k)

+ (γ̃ +Kd̃)ψf + Γ̃ us(k)
(25a)

ĩs(k) = Cψ̃s(k) + d̃ψf + C̃ψs(k) (25b)

where Φ̃ = Φ̂−Φ′ and other matrices are defined similarly.
2) Linearized Dynamics: Linearization of (25) leads to

ψ̃s(k + 1) = Aψψ̃s(k) + bϑϑ̃m(k) + bωω̃m(k) (26a)

ĩs(k) = Cψ̃s(k) + dϑϑ̃m(k) (26b)

where the system matrices are

Aψ = Φ0 +KC, dϑ = (JC −CJ)ψs0 + Jdψf

bω =

(
∂Φ

∂ωm

∣∣∣∣
0

+ TsJΦ0

)
ψs0 +

(
∂γ

∂ωm

∣∣∣∣
0

+ TsJγ0

)
ψf

+

(
∂Γ

∂ωm

∣∣∣∣
0

+ TsJΓ 0

)
us0

bϑ = (JΦ0 −Φ0J)ψs0 + Jγ0ψf +Kdϑ

+ (JΓ 0 − Γ 0J)us0.
(27)

The elements of bω approach zero as the sampling period Ts
approaches zero. The transfer-function matrix from ϑ̃m(z) to
ĩs(z) is

G(z) = C(zI−Aψ)−1bϑ + dϑ (28)

and the transfer-function matrix from ω̃m(z) to ĩs(z) is

Gω(z) = C(zI−Aψ)−1bω. (29)
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ω̃m(z)

ωm(z)
G(z)

ĩs(z)

ω̂m(z)
H(z)

Ts

z − 1

ϑ̃m(z)

Gω(z)

Fig. 4. Linearized estimation-error dynamics for the discrete-time observer
design. The dashed line disappears if bω = 0 is assumed.

The transfer-function matrix from ĩs(z) to ω̂m(z), correspond-
ing to the adaptation law (22), is H(z) = kp + Tski/(z− 1).
Fig. 4 presents the block diagram of the linearized estimation-
error dynamics.

E. Gain Selection

The linearized system in Fig. 4 is of the fourth order, and
in general, explicit expressions for the gain selection may not
exist. In order to obtain an approximate solution, bω = 0 is
assumed. It is also worth noticing that bω does not depend
on the observer gain, i.e., it cannot be affected by the gain
selection. On the other hand, bϑ = 0 can be forced, if the
observer gain

K =

[
Ldk1 Lq(v − βk1)
Ldk2 Lq(w − βk2)

]
(30)

with

v =
[
uq(γ11 − γ22)− ud(γ12 + γ21)

+ (φ11 − φ22)ψ̂q − γ2ψf

]
/ψ′f (31a)

w =
[
ud(γ11 − γ22) + uq(γ12 + γ21)

+ (φ11 − φ22)ψ̂d + γ1ψf

]
/ψ′f (31b)

is selected. This design principle is analogous to the
continuous-time case presented in Section II-D.

The fourth-order characteristic polynomial is expressed as
a product of two second-order polynomials (z2 +bz+c)(z2 +
dz+e), where the first part corresponds to the flux estimation
and the second part corresponds to the speed adaptation. The
resulting stabilizing gain selection is

k1 = −
[
(φ211 + bφ11 − φ221 + φ21v + c)β

+ (φ11 + φ22 + b+ w)(v − φ21)
]
/D (32a)

k2 =
[
φ221 − φ21v − c− (φ22 + w)(φ22 + b+ w)

− (φ11 + φ22 + b+ w)φ21β
]
/D (32b)

where D = v − φ21(1 + β2) + (φ11 − φ22 − w)β. It is to be
noted that as the speed and torque approach zero, the gains
k1 and k2 approach the following values:

k1 =
φ211 + bφ11 + c

φ22 − φ11 + w
, k2 = 0. (33)

The speed-adaptation gains are

kp =
Lq(d+ 2)

Tsψ′f
, ki =

Lq(d+ e+ 1)

T 2
s ψ
′
f

. (34)

In order to guarantee stable operation, the discrete-time
design parameters b, c, d, and e have to be selected so that

Te,ref

ψmax

ω̂mi

min

ψMTPA

ψs,ref

TMTPV

ψs,ref

us,max

|Te,ref |

sign(Te,ref)

ψd=
√
ψ2
s −ψ2

q

ψq=f(ψs, Te)

min

Fig. 5. Calculation of the flux reference. The torque reference Te,ref comes
from the speed controller, whose feedback signal is the speed estimate ω̂mi.
The maximum available voltage us,max depends on the measured DC-link
voltage. The stator flux corresponding to the MTPA condition is denoted
by ψMTPA and the torque limit corresponding to the MTPV condition by
TMTPV.

the roots of the corresponding polynomials, z2 + bz + c and
z2 + dz + e, remain inside the unit circle in every operating
point. This condition is fulfilled, when the continuous-time
parameters bc and cc are mapped to their discrete-time equiv-
alents as

b = −2e−bcTs/2 cosh
(
Ts
√
b2c/4− cc

)
, c = e−bcTs . (35)

The parameters d and e are obtained from dc and ec in
a similar manner. Assuming bω = 0 and accurate model
parameters, this gain selection yields locally stable position
estimation in every operating point except zero speed (where
the system is only marginally stable). Due to the assumption
bω = 0, the actual poles of the linearized closed-loop system
are slightly misplaced from the desired values even with exact
parameter estimates.

IV. EXPERIMENTAL SETUP AND PARAMETERS

A 6.7-kW four-pole SyRM drive is considered. The rated
values are: speed 3175 r/min; frequency 105.8 Hz; line-to-
line rms voltage 370 V; rms current 15.5 A; and torque 20.1
Nm. A servo motor was used as a loading machine. The total
moment of inertia is 0.015 kgm2 (2.7 times the inertia of the
SyRM rotor). The actual rotor speed ωm and position ϑm
are measured using an incremental encoder for monitoring
purposes.

The sensorless control method was implemented in an
OPAL-RT OP5600 rapid prototyping system. It is equipped
with a Xilinx Virtex-6 FPGA, which is used for the single-
update PWM and sampling scheme shown in Fig. 3(a), i.e.,
the switching frequency equals the sampling frequency. The
stator currents and the DC-link voltage are measured for
feedback according to Fig. 2. A simple current feedforward
compensation for dead times and power device voltage drops
is applied. In the observer and control system, the magnetic
saturation of the SyRM is modeled according to [29].

The flux controller and its tuning is based on the discrete-
time controller presented in [25]. Compared to [25], only the
state variable to be controlled has been changed from the
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Fig. 6. Stability regions in the design parameter space: (a) continuous-time design at the operating point ωm = 0.1 p.u., id = 0.55 p.u., and iq = 0.90
p.u.; (b) direct discrete-time design at ωm = 0.1 p.u., id = 0.55 p.u., and iq = 0.90 p.u.; (c) continuous-time design at ωm = 2 p.u. and id = iq = 0.15
p.u.; (d) discrete-time design at ωm = 2 p.u. and id = iq = 0.15 p.u. In all the cases, the sampling frequency is 2 kHz. The filled blue area defines the
stability region for accurate parameter estimates. The dashed lines define the stability boundaries for R̂s = 0.7Rs in (a, b) and for L̂q = 0.7Lq in (c, d).
The parameter selection (36) is shown by the dotted line and the red circles mark its value at the considered operating-point speed.

current to the flux. The controller gains have been scaled
accordingly, so that the closed-loop dynamics remain the
same. The flux-controller bandwidth is 2π · 200 rad/s. It
is worth noticing that the performance and the stability of
the control system would be significantly deteriorated, if the
flux (or current) controller were designed in the continuous-
time domain and then discretized, e.g., by using the forward
Euler approximation. The control system shown in Fig. 2 is
augmented with a PI-type speed controller, whose feedback
signal is the speed estimate ω̂mi obtained from the observer.

Fig. 5 shows the flux-reference calculation scheme applied
in this paper. A similar scheme for calculation of the current
references has been proposed in [30]. One-dimensional look-
up tables for the maximum-torque-per-ampere (MTPA) and
maximum-torque-per-volt (MTPV) conditions as well as a
two-dimensional look-up table ψq = f(ψs, Te) were calculated
off-line using the same magnetic model [29], which is used in
the observer. The fictitious flux ψ′f should always be nonzero
in sensorless back-EMF-based control methods. A minimum
value for the stator flux is needed in the case of SyRMs, since
very low values of ψ′f also tend to decrease the robustness of
back-EMF based methods. Here, the minimum value of the d-
axis flux reference is ψd,ref = 0.35 Vs. The maximum value
of the reference torque is limited to 150% of the rated torque.
It is to be noted that the proposed observer design could be
used also with different flux-reference (or current-reference)
calculation methods.

The discrete-time flux observer (20)–(22) has been imple-
mented using the proposed gains (30) and (34). The design
parameters are selected in a similar manner as in [16],

bc = bc0 + 0.75|ω̂m|, cc = 1.5bc|ω̂m| (36)

where bc0 = 2π · 20 rad/s. The coefficient cc is selected to
keep the undamped natural frequency of the closed-loop flux-
observer poles in the vicinity of the undamped natural fre-
quency of the open-loop system poles. However, the damping
of the open-loop system poles is poor at higher speeds. Thus,
the coefficient bc is selected to increase the damping of the
closed-loop flux-observer poles in this region.

The poles of the speed-adaptation loop are placed according
to the characteristic equation s2 + 2ζωns+ω2

n, where ζ is the
damping ratio and ωn is the undamped natural frequency. In
order to have fast speed-adaptation dynamics, ωn should have
a sufficiently high value. However, selecting too high value for
ωn may deteriorate the robustness of the speed-adaptation loop
against noise and parameter errors. In this paper, ωn = 2π ·100
rad/s and ζ = 1 are selected, i.e., dc = 2ωn and ec = ω2

n. The
continuous-time design parameters are then mapped to their
discrete-time equivalents by using (35).

V. RESULTS

The sensorless control method with the proposed discrete-
time observer design is evaluated by means of the stability
analysis, simulations, and experiments. The stability analysis
and simulation results corresponding to the continuous-time
design with the forward Euler discretization are also presented
for comparison.

A. Stability Analysis

The local stability of the nonlinear estimation-error dynam-
ics is analyzed via linearized model shown in Fig. 4. Nonzero
bω in (27) is included in this numerical analysis, unlike in
the analytical gain design in Section III-E. A state-space
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Fig. 7. Simulation results of a speed-reference step from 0 to 2 p.u. (2π ·211.6 rad/s): (a) continuous-time observer design, discretized using the forward Euler
approximation at the sampling frequency of 6 kHz; (b) discrete-time design at the sampling frequency of 2 kHz. The first subplot shows the reference speed
ωm,ref , actual speed ωm, and estimated speed ω̂mi. The second subplot shows the reference and estimated flux components in estimated rotor coordinates
(overlapping). The third subplot shows the measured current components, also in estimated rotor coordinates. The last subplot shows the estimation error
ϑ̃m = ϑ̂m − ϑm of the rotor position (in electrical degrees).

representation corresponding to Fig. 4 is given in Appendix
B, including the effects of the parameter errors. The linearized
system is stable, if all the eigenvalues of the closed-loop
system matrix [cf. Acl in (42) in Appendix B] are inside
the unit circle. Otherwise, the linearized system is unstable.
The sampling frequency is 2 kHz, i.e., the sampling period
is Ts = 500 µs. The actual parameters are: Rs = 0.54 Ω,
Ld = 41.5 mH, and Lq = 6.2 mH. Parameter estimates are
marked with the hat. To simplify notation, the subscript 0 is
dropped from the operating-point quantities in the following.

Fig. 6 illustrates the stability regions in the design parameter
space at the speeds of 0.1 p.u. and 2 p.u. The design parameter
cc is scaled by the operating-point rotor speed, enabling the
same axis scaling to be used in all the figures. Furthermore,
the design parameter selection (36), which is used in the
simulations and experiments, becomes a straight line in these
coordinates. The values of (36) at the given speeds are marked
by the red circles in the figures. Without discretization and
parameter errors, the whole quadrant (where bc > 0 and
cc > 0) would be stable.

First, the stability at the speed of 0.1 p.u. is considered in
Figs. 6(a) and (b). The operating-point current components are
id = 0.55 p.u. and iq = 0.90 p.u., which correspond to 125%
of the rated torque. The filled blue area defines the stability
region in the design parameter space for accurate parameter
estimates. Fig. 6(a) shows the results for the continuous-time
design with the forward Euler approximation and Fig. 6(b) for
the direct discrete-time design. It can be seen that the stability

region of the discrete-time design is slightly larger than that
of the continuous-time design. The dashed lines define the
stability boundaries for R̂s = 0.7Rs; it can be seen that the
stability regions in Figs. 6(a) and (b) are practically identical
in this case. The parameter selection (36) is stable in the case
of both the continuous-time and discrete-time designs.

Next, the speed of 2 p.u. is considered in Figs. 6(c) and (d).
The operating-point current components are id = iq = 0.15
p.u. Fig. 6(c) shows the results for the continuous-time design
with the forward Euler discretization. It can be seen that there
are no stable design parameter combinations if bc < 2π · 260
rad/s, rendering the selection (36) unstable. Choosing a too
large value for bc would make the system highly sensitive to
the noise. In the case of the discrete-time design shown in
Fig. 6(d), almost the entire quadrant is stable, giving much
freedom in the gain selection. The small unstable region near
bc = 0 originates from nonzero bω , which was omitted in the
gain selection. The areas bounded by the dashed lines show
the stability regions for L̂q = 0.7Lq. For the discrete-time
design, the parameter selection (36) is located clearly in the
stable region, despite the parameter error.

B. Simulations
The focus on the following simulation and experimental

results will be in the operation at higher speeds, where
the differences between the two design approaches become
prominent. The magnetic saturation in the motor model and
the controller is modelled using the model in [29].
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Fig. 8. Experimental results for the discrete-time design: speed reversals at
low speeds. The sampling frequency is 2 kHz.

First, the continuous-time observer design, discretized using
the forward Euler approximation, is considered. An example
of simulation results at the sampling frequency of 6 kHz is
shown in Fig. 7(a). The motor is accelerated from zero to
the speed of 2 p.u. (2π · 211.6 rad/s), resulting in the ratio of
almost 30 between the sampling and fundamental frequencies.
It can be seen that the system becomes unstable after t = 1.6
s. Further, it can be noticed that the error ϑ̃m = ϑ̂m − ϑm in
the rotor position estimate increases with the rotor speed.

Fig. 7(b) shows the results for the proposed direct discrete-
time design at the sampling frequency of 2 kHz. In this case,
the ratio between the sampling and fundamental frequencies
is below 10. It can be seen that the speed estimate follows
the actual speed very well. The position estimation error is
small during transient and converges quickly to zero. With
the discrete-time design, the sampling frequency could still be
lowered, even much below 1 kHz in the ideal case.

C. Experiments

The proposed discrete-time observer design is experimen-
tally evaluated at the sampling frequency of 2 kHz. Before
starting the motor, a constant current vector was fed to the
direction of the a-phase magnetic axis—causing the rotor to
rotate into this direction—and the rotor position estimate ϑ̂m
was reset to zero. Alternatively, the initial rotor position could
be found using signal injection, without causing the rotor to
move.

In the following, the rotor speed and position are estimated
solely using the proposed observer and no additional starting
algorithms are used. In theory, the estimation-error dynamics
are only marginally stable at zero speed. In practice, the

drive system remains stable and starting the motor is possible
(with both the continuous and discrete-time designs), but the
system does not tolerate the load torque at zero speed. If the
motor parameter estimates are poorly known or the inverter
nonlinearities are not compensated for, it is necessary to apply
some low-speed starting algorithm, e.g., [31], or a signal-
injection method. It is also to be noted that the speed estimate
ω̂mi comes directly from (22) without any low-pass filtering.

Fig. 8 shows example results at low speeds: the speed
reference is stepped between −0.1 p.u. and 0.1 p.u. It can
be seen that the speed estimate follows closely the actual
measured speed. Generally, the low-speed performance of
the discrete-time design is quite similar to the corresponding
continuous-time design, cf. the results in [16] without signal
injection and the results in [18] with signal injection. Fig. 9
shows an acceleration to the rated speed, a speed reversal, and
a load torque step. It can be seen that the estimated speed ω̂mi

follows the actual speed very well and the estimation error
ϑ̃m is also small (less than 5 electrical degrees in the steady
state).

Fig. 10 shows the experimental results at high speeds,
corresponding to the simulation case shown in Fig. 7(b). The
motor is accelerated from zero to the speed of 2 p.u., resulting
in the ratio below 10 between the sampling and fundamental
frequencies. It can be seen that the estimated quantities are
very smooth and the estimation error of the rotor position is
small (about 6 electrical degrees in the steady state). Compared
to the simulation results, there is more noise in the current
waveforms. This noise consists mainly of low-order (sixth and
lower orders) harmonics, which result from highly nonlinear
saturation characteristics and spatial inductance harmonics of
the prototype SyRM. However, despite these harmonics, the
observer and control system works well.

VI. CONCLUSIONS

A speed-adaptive full-order observer for motion-sensorless
IPM and SyRM drives was designed directly in the discrete-
time domain. The hold-equivalent model applied in the design
can be either the exact model or a series expansion. The
design takes the effects of the ZOH and time delays inherently
into account. The closed-loop estimation-error dynamics were
linearized and the stabilizing gains were derived using the
small-signal model. The stability of the proposed discrete-
time design was compared with the continuous-time design
using eigenvalue analysis and simulations. The performance
of the proposed design was also evaluated using experiments
on a 6.7-kW SyRM drive. Based on the results, performance
improvements obtained via the direct discrete-time design—
compared to the corresponding continuous-time designs—are
significant, if the ratio between the sampling frequency and the
fundamental frequency is low. For low-frequency operation,
the system can be augmented with a signal-injection method.

APPENDIX A
EXACT DISCRETE-TIME MODEL

In the derivation of the model [25], the rotor speed and the
motor parameters have been assumed to be constant during the
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Fig. 9. Experimental results for the discrete-time design: (a) speed-reference step from 0 to 1 p.u.; (b) speed reversal; (c) load torque step. The sampling
frequency is 2 kHz.

sampling period. The closed-form solutions for the elements
of Φ in (19) are

φ11 = e−σTs

[
cosh(λTs)− δ

sinh(λTs)

λ

]
φ22 = e−σTs

[
cosh(λTs) + δ

sinh(λTs)

λ

]
φ21 = −ωme−σTs

sinh(λTs)

λ
(37)

where λ =
√
δ2 − ω2

m and2

σ =
Rs

2

(
1

Ld
+

1

Lq

)
, δ =

Rs

2

(
1

Ld
− 1

Lq

)
. (38)

The closed-form solutions for the elements of Γ in (19) are

γ11 = G
[
g11 cos(ωmTs)− g12 sin(ωmTs)− g11φ11

+ (σ + δ)ω2
m(φ11 − φ22)

]
γ12 = G

[
g12 cos(ωmTs) + g11 sin(ωmTs)− g12φ11 + g22φ21

]
γ21 = G

[
g21 cos(ωmTs)− g22 sin(ωmTs)− g21φ22 − g11φ21

]
γ22 = G

[
g22 cos(ωmTs) + g21 sin(ωmTs)− g22φ22

+ (σ − δ)ω2
m(φ22 − φ11)

] (39)

2If ω2
m > δ2, then λ = jλim = j

√
ω2
m − δ2 is imaginary. All

the matrix elements remain real since cosh(jλimTs) = cos(λimTs) and
sinh(jλimTs)/(jλim) = sin(λimTs)/λim hold due to the properties of
hyperbolic functions. Furthermore, for λ = 0, these functions reduce to
cosh(λTs) = sinh(λTs)/λ = 1.

where G = 1/[(σ2 − δ2)2 + 4σ2ω2
m] and

g11 = (σ − δ)2(σ + δ) + 4σω2
m, g12 = 2(σ − δ)δωm

g21 = 2(σ + δ)δωm, g22 = (σ + δ)2(σ − δ)+4σω2
m. (40)

In the previous derivations, it is important to notice that
ex+y = exey does not hold for matrix exponentials in general.
The elements of γ in (19) are given by

γ1 = H [(σ − δ)(1− φ11)− ωmφ21]

γ2 = H

[
−σφ21 + ωm

(
φ11 + φ22

2
− 1

)]
(41)

where H = (σ + δ)/[(σ + δ)(σ − δ) + ω2
m].

APPENDIX B
DYNAMICS WITH ERRONEOUS SYSTEM MATRICES

With modeling errors included, the state-space representa-
tion of the linearized (autonomous) closed-loop system con-
sisting of (20)–(23) is ψ̃s(k+1)

ϑ̃m(k+1)
ω̃mi(k+1)

=

Aψ+bωkpĈ bϑ+bωkpdϑ bω
TskpĈ 1+Tskpdϑ Ts
TskiĈ Tskidϑ 1


︸ ︷︷ ︸

Acl

 ψ̃s(k)

ϑ̃m(k)
ω̃mi(k)


(42)
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Fig. 10. Experimental results for the discrete-time design: speed reference
is stepped from zero to the speed of 2 p.u. (2π · 211.6 rad/s). The sampling
frequency is 2 kHz.

where Ĉ is the inverse of the inductance matrix estimate and
the system matrices are

Aψ = Φ̂0 +KĈ

bω =

(
∂Φ̂

∂ω̂m

∣∣∣∣
0

+ TsJΦ0

)
ψs0 +

(
∂γ̂

∂ω̂m

∣∣∣∣
0

+ TsJγ0

)
ψf

+

(
∂Γ̂

∂ω̂m

∣∣∣∣
0

+ TsJΓ 0

)
us0 +

∂γ̂

∂ω̂m

∣∣∣∣
0

ψ̃f +
∂Φ̂0

∂ω̂m

∣∣∣∣
0

ψ̃s0

bϑ = (JΦ0 −Φ0J)ψs0 + Jγ0ψf + (Φ̃Ĉ
−1

+K)dϑ

+ (JΓ 0 − Γ 0J)us0

dϑ =
(
ĈC−1JC − ĈJ

)
ψs0 + ĈC−1Jdψf . (43)

The stability of the closed-loop system is determined by the
eigenvalues of Acl in (42). Discretization errors and parameter
errors affect the stability via erroneous Φ̂, Γ̂ , γ̂, Ĉ, and their
derivatives with respect to the estimated speed.

The steady-state estimation errors in the operating point
are generally nonzero, if there are discretization errors or
parameter errors in the system. In order to be able to calculate
the elements of the matrix Acl, the operating point has to be
first solved. It can be solved numerically from the following
equations: (22) by setting ω̂mi(k+1) = ω̂mi(k); (23) by setting
ψs(k + 1) = ψs(k); and (25) by setting ψ̃s(k + 1) = ψ̃s(k),
with the parameter errors included.
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building the experimental setup and W. Khan for help in
calculating look-up tables for the flux-reference calculation.

REFERENCES

[1] G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, “Performance
comparison between surface-mounted and interior PM motor drives for
electric vehicle application,” IEEE Trans. Ind. Electron., vol. 59, no. 2,
pp. 803–811, Feb. 2012.

[2] J.-I. Ha, S.-J. Kang, and S.-K. Sul, “Position-controlled synchronous
reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl.,
vol. 35, no. 6, pp. 1393–1398, Nov./Dec. 1999.

[3] E. Capecchi, P. Guglielmo, M. Pastorelli, and A. Vagati, “Position-
sensorless control of the transverse-laminated synchronous reluctance
motor,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1768–1776, Nov./Dec.
2001.

[4] H. F. Hofmann, S. R. Sanders, and A. EL-Antably, “Stator-flux-oriented
vector control of synchronous reluctance machines with maximized
efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066–1072,
Oct. 2004.

[5] S. Koonlaboon and S. Sangwongwanich, “Sensorless control of interior
permanent-magnet synchronous motors based on a fictitious permanent-
magnet flux model,” in Conf. Rec. IEEE-IAS Annu. Meeting, Hong Kong,
Oct. 2005, pp. 1111–1118.

[6] O. Wallmark, L. Harnefors, and O. Carlson, “An improved speed and
position estimator for salient permanent-magnet synchronous motors,”
IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 255–262, Feb. 2005.

[7] A. Consoli, G. Scarcella, G. Scelba, A. Testa, and D. A. Triolo,
“Sensorless rotor position estimation in synchronous reluctance motors
exploiting a flux deviation approach,” IEEE Trans. Ind. Appl., vol. 43,
no. 5, pp. 1266–1273, Sep./Oct. 2007.

[8] R. Morales-Caporal and M. Pacas, “Encoderless predictive direct torque
control for synchronous reluctance machines at very low and zero
speed,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4408–4416,
Dec. 2008.

[9] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive ob-
server for sensorless control of interior permanent magnet synchronous
motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570–576, Feb.
2008.

[10] ——, “Adaptation of motor parameters in sensorless PMSM drives,”
IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 203–212, Jan./Feb. 2009.

[11] W. Hammel and R. M. Kennel, “Position sensorless control of PMSM by
synchronous injection and demodulation of alternating carrier voltage,”
in Proc. IEEE SLED 2010, Padova, Italy, July 2010, pp. 56–63.

[12] P. Landsmann, R. Kennel, H. de Kock, and M. Kamper, “Funda-
mental saliency based encoderless control for reluctance synchronous
machines,” in Proc. ICEM’10, Rome, Italy, Sept. 2010.

[13] A. Ghaderi and T. Hanamoto, “Wide-speed-range sensorless vector con-
trol of synchronous reluctance motors based on extended programmable
cascaded low-pass filters,” IEEE Trans. Ind. Electron., vol. 58, no. 6,
pp. 2322–2333, June 2011.

[14] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma, and S. Kato,
“Position and velocity sensorless control of synchronous reluctance
motor at low speed using disturbance observer for high-frequency
extended EMF,” in Proc. IEEE IECON’11, vol. 1, Melbourne, Australia,
Nov. 2011, pp. 1971–1976.
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[23] W. Peters and J. Böcker, “Discrete-time design of adaptive current
controller for interior permanent magnet synchronous motors (IPMSM)
with high magnetic saturation,” in Proc. IEEE IECON’13, Vienna,
Austria, Nov. 2013, pp. 6608–6613.

[24] J. S. Lee, C.-H. Choi, J.-K. Seok, and R. D. Lorenz, “Deadbeat-direct
torque and flux control of interior permanent magnet synchronous ma-
chines with discrete time stator current and stator flux linkage observer,”
IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1749–1758, July/Aug. 2011.

[25] M. Hinkkanen, H. A. A. Awan, Z. Qu, T. Tuovinen, and F. Briz,
“Current control for synchronous motor drives: direct discrete-time pole-
placement design,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1530–
1541, Mar./Apr. 2016.

[26] A. Vagati, M. Pastorelli, G. Fanceschini, and V. Drogoreanu, “Flux-
observer-based high-performance control of synchronous reluctance
motors by including cross saturation,” IEEE Trans. Ind. Appl., vol. 35,
no. 3, pp. 597–605, May/June 1999.
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