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Abstract. Superconducting coplanar-waveguide (CPW) resonators are one of the
key devices in circuit quantum electrodynamics (cQED). Their performance can be
limited by dielectric losses in the substrate and in the material interfaces. Reliable
modeling is required to aid in the design of low-loss CPW structures for cQED. We
analyze the geometric dependence of the dielectric losses in CPW structures using
finite-element modeling of the participation ratios of the lossy regions. In a practical
scenario, uncertainties in the the dielectric constants and loss tangents of these regions
introduce uncertainties in the theoretically predicted participation ratios. We present a
method for combining loss simulations with measurements of two-level-system-limited
quality factors and resonance frequencies of CPW resonators. Namely, we solve an
inverse problem to find model parameters producing the measured values. High
quality factors are obtainable by properly designing the cross-sectional geometries of
the CPW structures, but more accurate modeling and design methods for low-loss
CPW resonators are called for major future improvements. Our nonlinear optimization
methodology for solving the aforementioned inverse problem is a step in this direction.
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1. Introduction

Defects that can be modeled as two-level systems (TLSs) are a central source of loss in
circuit quantum electrodynamics (cQED), in devices such as superconducting coplanar-
waveguide (CPW) resonators and qubits [1–9]. The interactions between TLS defects
and the electric field present in dielectric materials gives rise to losses, consequently
reducing resonator quality factors and qubit lifetimes. In particular, the performance of
superconducting CPW resonators, essential in cQED [12,13], is thus limited by dielectric
losses in the substrate and in the material interfaces, where thin layers of amorphous
materials containing TLS defects are present. In terms of electromagnetic modeling,
these losses are manifested in the complex permittivity of the material. Reliable
numerical modeling and reliable material property data are required to mitigate losses
in such devices.

Dielectric losses in CPW resonators and qubits have recently been studied in several
works [4, 9, 14–18]. These rely on a common approach for estimating the TLS-limited
quality factor of a resonator, QTLS, by computing for each lossy region in the device
the participation ratio, i.e., the ratio of the electric field energy in the region to the
total electric field energy in the resonator. The amount of losses induced by a given
region is directly proportional to its participation ratio. Utilizing this approach, several
different methodologies have been used to investigate the sources of these losses. Both
two-dimensional (2D) [4,9,18] and three-dimensional (3D) [16,19] simulations have been
utilized extensively both in electrostatic [4,9,18] and high-frequency formulations [16,17].
Recently, in reference [19], Niepce et al. combined participation ratio simulations with
3D simulations of Maxwell-London equations to take also into account the magnetic-
field penetration in a disordered superconductor. Wang et al. on the other hand,
combined local electrostatic and global high-frequency simulations to study dielectric
loss in qubits [15].

For computing QTLS from participation ratio simulations, one also needs
information about the loss tangents of the lossy regions. One option is to simply
assume some literature values for the loss tangents and predict the resulting quality
factors accordingly [4]. In contrast, Calusine et al. [9] presented a method for finding
the loss tangents by combining participation ratio simulations with quality factor
measurements. Although etching into the substrate has been shown to be an effective
way to mitigate dielectric losses [4, 9–11], for typical anisotropically etched structures,
the relative changes in the interface participation ratios are almost equal with each other
for changes in the trench depth, which makes it difficult to differentiate between the
different interfaces using such data. This results in high uncertainties in the solved loss
tangents even for rather small uncertainty in the input values. In reference [18], isotropic
etching was utilized to produce a set of CPW structures, resulting in participation
ratio data with more distinguishable interfaces, and thus a more reliable loss tangent
prediction.

The participation ratios depend on the dielectric constants and on the thicknesses
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of the lossy interfaces. By considering infinitesimally thin interface layers, the
electromagnetic boundary conditions imply a simple dependence between these values
and participation ratios [4]. With some further assumptions, the simulated losses for
certain values for the dielectric constant and the thickness may be scaled for all other
values accordingly in a simple manner [9, 18].

In this paper, we investigate the significant geometric features of CPW structures
affecting the dielectric losses by carrying out 2D electrostatic finite-element simulations
to compute the participation ratios of the lossy regions. Furthermore, we study how
the dielectric constants of the lossy regions affect the resulting participation ratios,
without making further simplifying assumptions, in addition to those arising from
the discretization, about the field profile in the interfacial layers. In particular, our
simulations indicate that the above-discussed proportionality relationships connecting
participation ratios and dielectric constants do not hold in all cases for all interfacial
regions. This serves as a motivation for developing a method to solve the dielectric
constants of the lossy regions from resonance frequency measurement data. Combining
quality factor measurement data with the resonance frequency data, we formulate an
inverse problem to solve for the loss tangents and the dielectric constants. This is in
contrast to recent works, where either feasible values for loss tangents and dielectric
constants have been assumed [4], or approximate formulas have been utilized to account
for the dielectric constant values [9, 18]. This is a step toward a more accurate design
methodology for CPW resonators.

In section 2, we briefly present the theoretical approach to obtain the participation
ratios. In section 3, we carry out simulations on CPW resonator cross-sections to study
the influence the geometric and material-specific features have on the dielectric losses.
In section 4, we discuss how to computationally determine the dielectric constants
and loss tangents of the different regions in a set of CPW resonators, and utilize the
presented approaches in section 5 for a case study of four CPW resonator cross-sections,
demonstrating their feasibility. Finally, in section 6, we summarize this work and draw
conclusions.

2. Theoretical background

We model the 2D cross-sections of CPW resonators, assuming a field profile of a long
waveguide. Following reference [9], we solve the electrostatic problem in the scalar-
potential formulation to find out the electric potential in the modeling domain Ω.
To obtain the field solutions, we utilize the commercial finite-element method (FEM)
software Comsol Multiphysics [20]. To extract the dielectric losses, we compute the
participation ratios, exhibited by each lossy dielectric region in the cross-section of a
CPW resonator. In the case of weak dissipation, the participation ratio pi for a region
Ωi in the modeling domain Ω is defined as

pi =
1
2

∫
Ωi

E ·DdV
1
2

∫
Ω E ·DdV

, (1)
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where E is the electric field intensity and D is the electric displacement field obtained
from the static problem. That is, the participation ratio pi is the ratio of the electric
field energy stored in the region Ωi to the total electric field energy in Ω. We assume
linear and isotropic materials such that each material subdomain Ωi is characterized by
a real-valued dielectric constant εi, i.e., the real part of the relative permittivity. Since
our modeling domains consist merely of the CPW cross-sections, the volume integrals
in equation (1) reduce to surface integrals. Thus we obtain

pi =
1
2

∫
Ωi
εi‖E‖2dA

1
2

∫
Ω ε‖E‖2dA

, (2)

where ε is the real-valued subdomain-wise-constant spatially dependent dielectric
constant.

Along the lines of references [4,9,16,17], knowing the participation ratios, one can
compute the TLS-limited quality factor for a CPW resonator by

1
QTLS

=
∑

i

pitan(δi), (3)

where tan(δi) is the loss tangent associated with the region Ωi; the complex-valued
nature of permittivity is thus taken into account by the real-valued dielectric constant
and loss tangent together.

3. Simulations of dielectric losses in CPW resonators

In this section, we first investigate the dependence of dielectric losses on the geometric
properties of the cross-section of a CPW resonator. Then, we move on to simulate the
effects of variations in the dielectric constants of the lossy regions. Here, we pick a
set of experimentally feasible parameters and study the effects of uncertainties in these
parameters in the following sections.

We model the lossy dielectric interfaces as 5 nm thick flat regions at all the
material interfaces: metal-to-air (MA), metal-to-substrate (MS) and substrate-to-air
(SA). Because of these high-aspect-ratio structures, finite-element meshing needs to
be carried out with extra care. To ensure the high quality of the mesh, we initially
utilize a brief convergence analysis, refining the mesh until the relative changes in
the participation ratios remain within approximately 1% from one mesh to another.
With some geometry-to-geometry variation, our meshes result in roughly 106 degrees of
freedom to be solved for a given problem.

In this section, we use a dielectric constant εi = 10 and a loss tangent tan(δi) =
0.002 for all thin interface regions Ωi. These are rather typical values used in the
literature [4, 9, 15, 16]. Utilizing equal dielectric constants and loss tangents for all
interface layers helps us to extract and understand the trends in the participation ratios
with varying geometric parameters, and compare them with the reported literature
values. For the silicon substrate, we use εSi = 11.6 and tan(δSi) = 7.5 × 10−7. Note
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(a)

(b) (c)

Figure 1: (a) Three-dimensional view of a cut CPW resonator illustrating its cross-
section and the definitions of the parameters w, g, d, and φ. The figure is not to scale.
(b) Part of our modeling domain for the cross-section of the CPW. The bottom part
(blue color) contains the substrate, the top part the vacuum (grey color), and the white
regions represent the superconductors (SC). Here, the trench depth d = 1 µm, sidewall
angle φ = 90°, gap to ground g = 5 µm, and center conductor width w = 10 µm. For any
sidewall angle, w, g, and d are defined at the bottom surface of the superconductors as
shown here. In particular, d is the y-directional distance from the surface to the substrate
at the bottom of the trenched gap, including the interfaces. This suits our purposes,
even though it renders some (w,g,d,φ) combinations impossible. Note also, that different
sidewall angles result in different trench volumes. We simulate the cross-section for x ≥ 0
only, utilizing symmetry. The height of the superconductors is h = 200 nm. We assume
an identical sidewall angle for the superconductors as for the substrate. In principle, we
assume an infinite ground plane, but for practical simulations, we cut off the modeling
domain far away from the gap where fields are weak. At the symmetry boundary x = 0
and at the outer boundaries (generally x > w+2g, |y| > 4d, for this geometry x = 30 µm,
|y| = 20 µm), we set D · n = 0, where n is the vector normal to the boundary. At the
boundaries of the superconductors, we set Dirichlet boundary conditions and apply a
potential difference between the center conductor and the ground plane of the CPW.
(c) Mesh used in a simulation in the vicinity of a thin metal-to-air (MA) interface layer.
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that the used values of the loss tangents are somewhat conservative.‡ See figure 1 for a
depiction of the modeling domain used in the simulations and an illustration of the mesh
in a narrow region. Note that mesh quality in these narrow regions and corners is very
important for reliable simulations. To ensure the accuracy, the meshes are structured
so that equal mesh density is kept throughout the narrow interface regions, with finer
regions at the corners. In the straight parts of the interface regions, the height of each
element is approximately 1/4th of the thickness of the interface region, as shown in
figure 1. In the corners exhibiting a finer mesh, the size of the longest edge of the
smallest element can be as small as 1/10th of the thickness of the interface region.

3.1. Effect of the trench depth and sidewall angle

We compute the participation ratios and the resulting QTLS in a CPW structure with the
center conductor width w = 10 µm, gap to ground plane g = 5 µm with varying trench
depth d and sidewall angle φ (see figure 1 for definitions). Our results are summarized
in figures 2 and 3, and analyzed below.

We observe from figure 2 that the MA interface is the least significant in terms
of participation ratios. Whether this interface is significant in terms of losses, depends
of course on the loss tangent associated with it. The SA and MS participation ratios
are of the order of 10−3 as opposed to 10−5 for the MA interface. The participation
ratio of the silicon substrate is the highest, but with the values of loss tangents assumed
here, it is not a significant factor in terms of the resulting quality factor. However, if
the interfacial loss tangents were one order of magnitude lower than here, the silicon
participation would become significant with the assumed loss tangent for the substrate,
i.e., pitan(δi) would be within the same order of magnitude in the substrate as in the
MS and SA interfaces.

Figure 3 shows that trenching into the substrate can result in a higher two-
level-system-limited quality factor, QTLS, by lowering the interfacial and substrate
participation ratios significantly. As participation of these regions is decreased, a larger
portion of the electric field energy resides in the lossless vacuum, and hence, quality
factor is increased. In figure 2 however, the participation ratios show hints of saturation
with increasing trench depth, especially for large sidewall angles. Saturation of interface
participation with increasing trench depth was observed, e.g., in reference [9], as well.
Moreover, increasing the sidewall angle increases all shown participation ratios and
thus results in higher loss, although for the MA interface this is not yet evident for φ
between 90 to 115 degrees. The effects of increasing the sidewall angle from 90 degrees
onward are consistent with the analysis by Wenner et al. [4]. However, they considered
only slopes in the sidewalls of the metal conductors and did not consider the effect of
the slope on the effectiveness of trenching. Note also that given the definitions of the

‡ See references [4, 15]. In reference [9], loss tangents of the order of 5 × 10−4 are reported for the
SA and MS interfaces and 10−7 for the substrate, leading correspondingly to higher QTLS values than
estimated in the simulations of this section.
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Figure 2: Participation ratios (markers) of the (a) metal-to-air, (b) metal-to-substrate,
and (c) substrate-to-air interfaces and (d) of the silicon substrate as functions of the
trench depth d for different sidewall angles φ as indicated. The solid lines are guides for
the eye. Here, w = 10 µm, g = 5 µm, εSA = εMS = εMA = 10, and εSi = 11.6.

geometric parameters in figure 1, the value of φ has an effect on the trench volume,
which decreases with increasing φ. This is, however, a distinctively different way of
altering the trench volume from, e.g, simply adjusting g, due to the resulting differences
in the corresponding electric field profiles. Moreover, the sidewall angle has a relatively
large effect on the MA participation for small and even vanishing trench depths, because
the sidewall angle affects the shapes of the corners of the superconductors located at
the ends of the gap. Note that we do not expect the participation ratios and quality
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Figure 3: Quality factor QTLS as a function of the trench depth for different indicated
sidewall angles. The results are computed from the participation ratios of figure 2.
Here, w = 10 µm, g = 5 µm, tan(δSA) = tan(δMS) = tan(δMA) = 0.002, and
tan(δSi) = 7.5× 10−4.

factors in figure 2 and figure 3 to necessarily converge to equal values as d→ 0, because
even for d = 0 the shape of the MA interface is different for different values of φ.

To investigate also sidewall angles below 90 degrees, we simulate in figure 4 a CPW
resonator with φ ranging from 90 to 40 degrees. For this resonator d = 1 µm, g = 5 µm,
w = 10 µm, and the height of the superconductors h = 200 nm. The results indicate
that the MS and SA participation ratios, which are the most significant ones of the
interfaces in terms of participation, decrease with decreasing sidewall angle. The MA
interface exhibits an increasing participation ratio with decreasing angle. This can be
attributed to concentration of electric field in the resulting sharp corner. Furthermore,
as expected, the substrate participation ratio decreases with decreasing angle, since the
smaller the angle, the less we have substrate in the cross-section. Figure 4c shows that
the overall effect of decreasing φ below 90◦ down to 40◦ on QTLS is positive for small
trench depths, but not very significant with the used parameters. When the trench
depth is moderate, the sidewall is small as well, and hence the effect of the sidewall
angle is weak. In figure 4c, we also compute QTLS for sidewall angles of 2 and 4 µm.
For increasing trench depth, the effect of the increasing MA participation becomes more
significant, and the optimal angle is found in between 40 and 90 degrees.

In figure 5, we show the solved electric field for a part of a resonator cross-section.
As discussed above, much of the interfacial participation arises from the sharp corners
exhibiting high energy densities. Hence, the corners at the material interfaces should
be of particular interest in resonator design.



9

(a)

40°50°60°70°80°90°
0

0.2

0.4

0.6

0.8

1

1.2
10-3

MA participation
SA participation
MS participation

(b)

40°50°60°70°80°90°
0.82

0.83

0.84

0.85

0.86

0.87

0.88

(c)

40°50°60°70°80°90°
2

2.2

2.4

2.6

2.8

3

3.2
105

Figure 4: Participation ratios of (a) the interfaces as indicated and (b) the silicon
substrate as functions of decreasing sidewall angle. (c) The resulting quality factor
computed from the participation ratios. Here, d = 1 µm (or as indicated), g = 5 µm,
w = 10 µm, εSA = εMS = εMA = 10, εSi = 11.6, tan(δSA) = tan(δMS) = tan(δMA) =
0.002, and tan(δSi) = 7.5× 10−4.

(a) (b)

Figure 5: (a) Electric field intensity E and (b) electric displacement field D (D = εE)
shown by arrows in a part of the resonator cross-section with φ = 80°. The arrows show
the direction and relative strength of the fields. The color map represents the electric
field energy densityW = 1

2E·D normalized to a nominal valueWn < max(W ) for better
visibility of the relative change in W . The maxima are located at the dark corners.

.

3.2. Effect of the center conductor width and gap to ground

In this section, we simulate the effect of the width of the center conductor w and of the
gap to ground g together such that the ratio w/(w + 2g) is kept at a constant value
of 5/11, resulting in an approximately constant characteristic impedance of roughly
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Z0 = 50 Ω for the CPW [21]. In these simulations, the sidewall angle is φ = 90◦ and
we use two different trench depths, d = 25 nm and d = 5 µm, the first one representing
an almost planar structure, and the second one being an example of a deeply trenched
CPW.
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(c)
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(d)
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Figure 6: Participation ratios (markers) (a) and (c) at the interfaces as indicated and
(b) and (d) in the substrate as functions of the width of the center conductor w.
The gap between the center conductor and the ground plane g is adjusted such that
w/(w + 2g) = 5/11. The trench depth is d = 25 nm in (a) and (b), and d = 5 µm in
(c) and (d). The sidewall angle is 90◦ in all panels. The lines between the markers are
spline interpolations and merely guides for the eye. εSA = εMS = εMA = 10, εSi = 11.6.

From figure 6, we observe that widening the 50 Ω CPW structure significantly
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reduces participation at the interfaces: The SA and MS participation ratios are almost
halved by doubling the width of the structure from w = 5 µm to w = 10 µm. For even
further widening, this effect becomes less drastic but remains significant. On the other
hand, the substrate participation increases with increasing wideness: the increase in pSi

from w = 5 µm to w = 20 µm when d = 25 nm is 0.013. Thus the participation ratio of
the lossless vacuum is decreasing which is not in general desired. Fortunately, with the
assumed loss tangents, the resulting total effect on QTLS is positive, as shown figure 7.
Again, we observe that the deeper the trench, the lower the dielectric loss.
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(b)
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Figure 7: Quality factor QTLS (markers) as a function of the width of the center
conductor w such that w/(w + 2g) = 5/11 for (a) d = 250 nm and (b) d = 5 µm.
The sidewall angle is 90◦. The lines between the markers are spline interpolations
and merely guides for the eye. Here, tan(δSA) = tan(δMS) = tan(δMA) = 0.002, and
tan(δSi) = 7.5× 10−4.
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3.3. Effect of the dielectric constants

Next, we turn our attention to the effect of the dielectric constants of the lossy interface
regions on the resulting dielectric losses. Given participation ratios psim

i computed as
results of a finite-element simulation with given dielectric constants of the interface
regions εnom

i , the following assumption has been made in previous studies [9, 18]:
assuming constant thicknesses for the lossy interface regions and a fixed dielectric
constant for the substrate, losses can be essentially scaled by scaling the participation
ratios with the dielectric constants as§

pSA = εSA

εnom
SA

psim
SA , (4)

pMS = εnom
MS
εMS

psim
MS, (5)

pMA = εnom
MA
εMA

psim
MA. (6)

This assumption offers the opportunity to use the loss resulting from a simulation
obtained using εnom

i to estimate the loss for any other value of εi without additional
simulations. For this assumption to hold, however, the loss contribution in one region
has to be unaffected by the changes in loss contributions of the other regions. This is
an approximation and does not hold exactly, but let us investigate the validity of this
assumption in practice.

To study how variations in the dielectric constants affects the dielectric losses, and
to study the validity of equations (4)–(6), we simulate participation ratios for a CPW
resonator with the sidewall angle φ varying from 90◦ to 140◦ for different combinations
of the interfacial dielectric constants using εSi = 11.6 for the dielectric constant of the
substrate. In these simulations, d = 250 nm, g = 6 µm, and w = 10 µm. We assume
the thickness of each lossy dielectric interface to be 5 nm. We fix εSA = 10 and vary εMS

and εMA between values 5, 10, and 15.
The simulated participation ratios are shown in figure 8. We observe that relative

to the value of the participation ratio, those for SA, MS, and MA interfaces depend
on the dielectric constants of the other interfaces. The change is less than 10% for SA
and MS participation. For MA interface with εMA = 15, εSA = 10, however, the case of
εMS = 5 results in 87% higher participation than the case of εMS = 15 at sidewall angle
φ = 140°. Note that relative changes in the substrate participation arising from the
changes in the interfacial dielectric constants are negligible, which is expected since the
substrate participation is orders of magnitude larger than the interface participation.

The results in figure 8 also indicate, that equations (4)–(6) do not necessarily yield
the correct result for the participation ratios with changing dielectric constants. To
study this discrepancy in more detail, we computed the participation ratios pi for a

§ In references [9, 18] this scaling of the losses was essentially embedded in the concept of loss factor,
combining loss tangents and the scaling of participation ratios.
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Figure 8: Participation ratios of (a) substrate-to-air, (b) metal-to-substrate, and (c)
metal-to-air interfaces and (d) of the substrate for different dielectric constants as
functions of the sidewall angle. The legend denotes the dielectric constants in the
following order: εSA, εMS, εMA. Note that in (b) and in (d) the curves with equal εMS

overlap. Geometric parameters: d = 250 nm, g = 6 µm, and w = 10 µm.

changing εi while keeping the other εj constant. The results are compared with those
obtainable from equations (4)–(6) in table 1. It seems that equation (5) predicts the
scaling of pMS with εMS very well. The scaling with εSA shows slightly more deviation
from equation (4), which nonetheless seems to be a decent approximation. However,
equation (6) exhibits poor behavior as the sidewall angle φ is increased—it appears that
equation (6) cannot be used as a reliable approximation at all for φ = 140°.
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Table 1: Interface participation ratios for different dielectric constants. The values of
the changing εi are indicated, whereas the other dielectric constants equal 10. The
results in each cell are normalized to the value in the square brackets. The values in
parentheses are obtained using equations (4)–(6).

φ = 90° φ = 140°
εSA pSA [7.007 × 10−4] pSA [6.882 × 10−4]
5 1.00 (1.00) 1.00 (1.00)
10 1.88 (2.00) 1.94 (2.00)
15 2.75 (3.00) 2.87 (3.00)
εMS pMS [2.469 × 10−3] pMS [3.007 ×10−3]
5 1.00 (1.00) 1.00 (1.00)
10 0.51 (0.50) 0.53 (0.50)
15 0.34 (0.33) 0.37 (0.33)
εMA pMA [6.610 × 10−5] pMA [9.302 × 10−5]
5 1.00 (1.00) 1.00 (1.00)
10 0.57 (0.50) 1.02 (0.50)
15 0.41 (0.33) 1.03 (0.33)

3.4. Concluding remarks

Trenching into the substrate is an effective way to decrease the interfacial and bulk
substrate participation ratios in CPW structures. Furthermore, widening the CPW
structure while keeping the desired characteristic impedance can reduce losses. Sloped
sidewalls with a sidewall angle φ < 90° seem to decrease the dielectric loss. Sloped
sidewalls with φ > 90° in the trenched gap, however, not only increase losses, but
seem to decrease the effectiveness of trenching. It is thus advantageous to control the
slopes of the sidewalls in the fabrication phase. However, if the MA interface material
is inherently much more lossy than the rest of the lossy regions, as seems to be the case
in the devices analyzed in reference [9], fabricating sidewall angles below 90 degrees
may not be very effective, since the MA participation increases with decreasing sidewall
angle. Assuming equal thicknesses, loss tangents, and dielectric constants for SA, MS,
and MA interfaces, the MA interface is not a significant source of loss: most of the
interface loss comes from the SA and MS interfaces.

The dielectric constants affect the participation ratios of the lossy regions and thus
the dielectric losses. The participation ratio of a given region is not independent of the
dielectric constants of the other regions either. While simply scaling the losses of the SA
and MS interfaces using equations (4) and (5) as the dielectric constant of one interface
region is varied provides a good approximation, neglecting variation in the dielectric
constants of the other regions can introduce further errors. The MA participation,
on the other hand, is particularly sensitive to changes in the dielectric constants of
the SA and MS interfaces. Furthermore, the predictive capability of equations (4)–
(6) seems to depend on the sidewall angle of the CPW: the worst approximation is
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provided by equation (6) for large angles, likely due to the resulting sharp corners in
the superconductor. A partial remedy for this could be treating the resulting corners
separately.

Our observations in this paper thus far serve as a motivation for accurately finding
the dielectric constants for the different regions, such that the finite-element models
reproduce given measurement data. This is the topic of the following section.

4. Method to obtain dielectric constants and loss tangents

In this section, we present a method for solving for the dielectric constants and loss
tangents of the different regions of CPW resonator samples utilizing typically accessible
measurement data. This method serves as a tool for inferring these material parameters
of the devices, and as motivated in section 3, this information is necessary for accurate
estimation of the loss. We assume that the material properties are equal for a set of
different samples. Whether this is a justified assumption, depends of course, for example,
on the fabrication process. However, samples fabricated in the same batch or even on
the same chip, have typically reasonably small variations in their material properties.
Our techniques are similar to those utilized, e.g., in references [9, 18].

4.1. Finding dielectric constants from resonance frequency measurements

Ignoring coupling with transmission line, the fundamental resonance frequency of a
half-wave-length CPW resonator is given by

f0 = c
√
εeff2l , (7)

where c is the speed of light in vacuum, l is the length of the resonator, and εeff is
the effective dielectric constant. While analytical expressions for εeff exist in simple
geometries [21], we find it from our finite-element simulations using the definition

1
2εeff

∫
Ω
ε0‖E‖2dA = 1

2

∫
Ω
εε0‖E‖2dA, (8)

where ε0 is the permittivity of vacuum. Thus εeff is the dielectric constant of a
hypothetical homogeneous material filling the whole cross-section of the resonator and
resulting in an electric field energy equal to that of the actual spatially distributed
dielectric constant ε, under quasi-static approximation. With our assumptions of linear
materials we may rewrite equation (8) as

εeff =
∑n

i=1
∫

Ωi
εi‖E‖2dA∫

Ω ‖E‖2dA =
∑n

i=1 εi

∫
Ωi
‖E‖2dA∫

Ω ‖E‖2dA =:
n∑

i=1

εiFi, (9)

where we refer to Fi as the filling factor.‖ The definition of the filling factor
resembles that of the participation ratio, but there is a distinctive difference on how
the permittivity appears inside the integral.
‖ The terms filling factor and participation ratio are often used somewhat interchangeably in the
literature. Here, however, we make this distinction to differentiate between pi and Fi.
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Equations (7) and (9) yield a connection between the dielectric constants of the
different regions Ωi and the resonance frequency of the resonator:

n∑
i=1

εiFi = c2

f 2
0 4l2 . (10)

Assuming the dielectric constants of the SA, MS, and MA interfaces and of the substrate
were unknown but equal from device to device, we can potentially solve for εi given
resonance frequency measurements for four CPW resonator samples, by solving the
nonlinear matrix equation

Fεεε = εεεeff , (11)
where each row of F, which depends on εεε, represents the filling factors for all regions
Ωi for the sample corresponding to the row, obtained from field solutions, εεε is the
vector of dielectric constants, with the dielectric constant of vacuum εvac = 1 as one of
the components, and the components of the vector εεεeff are εi

eff = c2

f i
0

24l2
, and they are

obtained from measured resonance frequencies f i
0 of the samples. Thus in the case of

four samples and five regions with distinct dielectric constants, F is a 4-by-5 matrix, εεε
is a 5-by-1 vector and εεεeff is a 4-by-1 vector. Since εvac = 1 is known, this results in an
equal number of unknowns as equations.

4.2. Finding loss tangents from quality factor measurements

In brief, given measurement data of quality factors for n− 1 CPW resonators, one can
find the loss tangents of n − 1 lossy regions, in addition to the lossless vacuum, in a
similar manner as solving for the dielectric constants. Assuming equal loss tangents for
the different material regions from device to device, we can solve the matrix form of
equation (3)

Ptan(δδδ) = 1
QQQTLS

, (12)

where P is the participation matrix obtained from field solutions, each of its rows
representing the participation ratios for all regions Ωi for the corresponding sample,
tan(δδδ) is the vector of loss tangents, and the components of the vector 1

QQQTLS
are obtained

from the quality factor measurements for each sample. Thus, in the case of four samples
and four lossy dielectric regions, the size of P is 4-by-4, and both tan(δδδ) and 1

QQQTLS
are 4-

by-1 vectors. In this work, we define all functional operations on vectors componentwise.

4.3. Solving the inverse problem: series and parallel approaches

As discussed above, given measurement data for f0 and QTLS for a set of CPW
resonators, it is possible find the dielectric constants and loss tangents which reproduce
such data from simulations. However, the matrices P and F depend on the field solutions
and thus on the dielectric constants of the lossy regions. Hence, as the dielectric
constants are generally unknown, solving for these values is not simply a matter of
inverting P and F; we do not know their elements in advance.
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Consequently, we formulate the inverse problem of finding tan(δδδ) and εεε for a set of
CPW resonators, each of them having n − 1 lossy dielectric regions, in two ways. We
call these the series and parallel approaches to this problem.

Inverse problem 1 (Series approach). Let εεεeff and QQQTLS be vectors of effective
dielectric constants and quality factors for a set of CPW resonators, respectively,
obtained as measurement data. Let εεεsimeff and QQQsim

TLS be the corresponding vectors
computed from the field solutions using equations (11) and (12).

(i) Find εεε that minimizes ‖εεεeff−εεεsimeff ‖2, such that εLi ≤ εi ≤ εUi for all i ∈ {1, 2, .., , n−1}.
(ii) Using the found εεε, find tan(δδδ) that minimizes ‖QQQTLS−QQQsim

TLS‖2, such that tan(δi)L ≤
tan(δi) ≤ tan(δi)U for all i ∈ {1, 2, ..., n− 1}.

Here, εLi , εUi , tan(δi)L and tan(δi)U denote the lower and upper bounds for each dielectric
constant and loss tangent in the optimization, respectively.

In this approach, part (i) is the time-consuming one, since one needs to solve the field
problems at every objective function evaluation. Once part (i) has been solved, the
objective function in part (ii) is much less computationally expensive, and thus the
second step of the series approach is relatively fast, as only a single set of field solutions
is required. Note that within the quasistatic approach employed here, the loss tangents
do not affect the resonance frequencies and hence part (i) does not need input from part
(ii). In experiments, the small losses do not either have a strong effect on the resonance
frequencies.

However, in essence we are dealing with a multi-objective optimization problem:
we want to minimize the error with respect to quality factor measurements and
resonance frequency measurements. Instead of minimizing the objectives in series,
one can reformulate such a multi-objective optimization problem as a single-objective
optimization problem by, e.g., minimizing the weighted sum of the two objectives.
Another option is to reformulate the multi-objective optimization problem as a
constrained single-objective problem [22]. To avoid the question of choosing the weight
for each objective, we take the latter approach and minimize in terms of quality factors
but restrict the resonance frequencies as additional constraints in the optimization
problem.

Inverse problem 2 (Parallel approach). Let εεεeff and QQQTLS be vectors obtained as
measurement data. Let QQQsim

TLS be computed from the field solution using equation (12).

• Find εεε and tan(δδδ) that minimize ‖QQQTLS − QQQsim
TLS‖2 subject to the nonlinear

constraints | (Fεεε)i − εi
eff | ≤ τ , such that εLi ≤ εi ≤ εUi and tan(δi)L ≤ tan(δi) ≤

tan(δi)U for all i ∈ {1, 2, ..., n− 1},

where τ is a chosen tolerance for the constraints.

Hence, in the parallel approach, the vector of optimization variables consists of the
components of εεε and tan(δδδ).
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This approach has the advantage of simultaneously requiring the dielectric constants
to satisfy the quality factor data and the resonance frequency data, as they affect both
these values through simulations. The disadvantage is that the number of optimization
variables is increased compared to the individual steps of the series approach. Here
not only the objective function evaluations require solving the field problem for the
whole set of samples at every iteration, but also the evaluation of the constraint needs
this information. Fortunately, since the objective function evaluation yields the field
solutions for a given εεε, they can be reused whenever the solutions corresponding to an
indentical εεε are required.

5. Case study

Above, we presented the principle for solving the dielectric constants and loss tangents
of the different lossy regions utilizing a set of CPW resonators. However, in practice,
the matrices P and F can have very high condition numbers of the order of 105 to 106

if attention is not paid to this issue. This is the case, for example, for rather typical
sets of anisotropically etched samples: the relative changes in the interface participation
ratios are almost equal for changes in the device geometry, producing nearly linearly
dependent rows for the participation matrix [9, 18]. This behavior appears also for the
filling factors which essentially constitute a special case of participation ratios.

In practice, a high condition number κ (P) = ‖P−1‖‖P‖ translates to outputs of the
model being highly sensitive to the inputs. In terms of equation (12), this means that
even relatively small noise in the measurement data of QTLS, or small changes in P, can
cause high uncertainty in the resulting loss tangents. In reference [18], this problem was
addressed by forming a set of CPW resonators that produce a much lower condition
number of the order of 103 by utilizing isotropic etching.

In this section, we present a case study and solve the above-formulated inverse
problems for a set of CPW resonators. We design a set of cross-sections that produces
P and F with relatively low condition numbers.

5.1. The modeled cross-sections

Along the lines of reference [18], we model four CPW cross-sections that together
produce condition numbers falling below 104 for P and F. These cross-sections,
combining isotropic and anisotropic etching, are shown in figure 9. Each of these cross-
sectional geometries is designed to increase the participation ratio of a single lossy
region in comparison to the other regions and samples. The samples increasing the
participation of the SA and MS interfaces and of silicon utilize isotropic etching into the
substrate to produce the desired participation ratio characteristics. Mathematically,
Bezier curves are utilized to obtain the smooth shapes in the models. The sample
focusing the participation into the MA interface is chosen based on our initial geometric-
dependence studies of section 3. Due to the way Bezier curves are used for creating the
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smooth shapes in the CPW gaps, the thickness of the SA interface layer varies slightly,
but is approximately constant 1.5 nm when the thickness is mainly in the y-direction and
5 nm when the thickness is mainly in the x-direction, whereas the rest of the interface
layers are exactly 5 nm thick. With these samples and dielectric constant values of 10
for the interface regions, one obtains a participation matrix

P = 1
100

MS SA MA Si


0.030 0.090 0.0064 58.0 Sample SA
0.080 0.058 0.0028 87.0 Sample MS
0.046 0.099 0.049 65.0 Sample MA
0.062 0.0096 0.0015 89.0 Sample Si
,

(13)

which operates on the loss tangent vector to produce the reciprocals of quality factors
as described by equation (12). For this matrix κ (P) ≈ 7800.

5.2. Results

The optimization problems are solved using the interior-point optimization (IPOPT)
algorithm [23] implemented in the fmincon optimization tool of MATLAB [24].

Since these CPW resonators are not physically fabricated, we use simulations to
obtain representative measurement data for the optimization. We computed the effective
dielectric constants and quality factors from the field solutions using equations (11)
and (12). Then, normally distributed noise is added to the quality factor and resonance
frequency data using MATLAB’s randn function to mimic actual experiments. When
creating the data, the values listed in the row “Direct” in table 3 are used. For all the
samples, the resonator length is set to l = 30 mm. However, since our modeling domains
are two-dimensional, the length is merely a scaling factor for the resonance frequencies
and may be chosen arbitrarily.

To monitor how well we can reproduce the dielectric constants of the lossy interfaces,
we assumed εSi fixed at 11.6, by bounding it from above and below in the optimization.¶
This is justified in the sense that the dielectric constant of the substrate is usually the
one known with the least uncertainty (except for that of vacuum). With sufficiently low
noise levels, both approaches yield satisfactory results. Hence, in this case study, we
keep the noise related to the measurements high enough to observe differences in these
approaches, yet at a reasonably low level to study whether we can still reproduce the
noiseless values: table 2 describes the data we use as those for the measurements as
opposed to the originally obtained simulation data. Identical data are used in the series
and parallel approaches to ensure a fair comparison. Moreover, identical applicable
solver settings, initial values, and tolerances are utilized in both cases.
¶ This is not to say we could not solve for εSi simultaneously with the others. Note, however, that as
the Si filling factors are also considerably larger than those of the interfaces, εeff is more sensitive to
changes in εSi.
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(a) (b)

(c) (d)

Figure 9: Cross-sections of the modeled CPW resonators which are designed to exhibit
increased participation at (a) in the silicon substrate (blue color), at (b) substrate-to-
air, (c) metal-to-air, and (d) metal-to-substrate interfaces. Grey color denotes vacuum
and white the superconductor.

The results are shown in table 2 and table 3. Both approaches reproduce the quality
factor and resonance frequency data with small relative error. The most significant
difference in the predictions is that the parallel approach reproduces the noiseless f0

data almost perfectly, while the series approach shows larger yet still minor deviation.
The resonance frequency prediction of the parallel approach deviates from the noiseless
data at most 0.4 MHz, while the maximum deviation in the predictions of the series
approach is 0.8 MHz.

Comparing the data in table 3, one notices that the parallel approach performs
better in terms of predicting the dielectric constants and loss tangents. Whereas the
parallel approach overestimates εMS and εMA, the series approach underestimates them:
especially εMS is crudely underestimated by the series approach and εMA overestimated
by the parallel approach. Both approaches give a decent estimate for εSA. The maximum
absolute deviation from the dielectric constant values utilized to obtain the noiseless data
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Table 2: Resonance frequencies and quality factors used as measurement data for the
inverse problems. Here, M refers to values used as measurement data, and D refers
to those obtained directly from simulations, i.e., without added noise. The values are
compared with the predictions obtained from the inverse problem solutions. S refers to
series approach and P refers to parallel approach. The D columns show the absolute
values, whereas the rest of the columns denote deviations from those. The samples are
in the order of rising resonance frequency. Each “Sample i” refers to the sample designed
to exhibit pronounced participation in the material region Ωi. In the parallel approach,
the constraints were satisfied within tolerance τ = 7× 10−4.

f0 [GHz] QTLS [×106]
D M S P D M S P

1. Sample Si 2.1173 +0.0004 +0.0008 +0.0000 1.9136 +0.0134 +0.0130 +0.0209
2. Sample MS 2.2723 +0.0014 +0.0004 +0.0000 1.1857 +0.0459 +0.0458 +0.0275
3. Sample MA 3.1762 −0.0018 +0.0000 +0.0004 0.3379 −0.0564 −0.0304 −0.0394
4. Sample SA 3.4104 +0.0007 −0.0001 +0.0001 1.1925 +0.0215 +0.0186 +0.0278

Table 3: Utilized and computationally obtained material parameters. Direct
approach refers to the parameters used in the simulations for computationally creating
representative measurement data for the inverse problems. These values are similar
to those used and obtained in reference [9]. Series and parallel approaches refer to
those obtained as solutions to the inverse problems. The direct approach row shows the
absolute values, whereas the rest of the rows denote deviations from those. For Series∗

the noise amplitude for f0 was reduced with a factor of 1/10 and for Series∗∗ with a
factor of 1/100, otherwise utilizing the same data. Note that εSi was bounded from
above and below to yield exactly 11.6.

Approach εMS εSA εMA εSi tan(δMS) tan(δSA) tan(δMA) tan(δSi)
Direct 11.6 5 10 11.6 5.9× 10−4 7.1× 10−4 3.9× 10−3 1.2× 10−7

Parallel +3.4 −0.4 +5.0 +0.0 +1.7× 10−4 +0.3× 10−4 +1.1× 10−3 +0.1× 10−7

Series −6.2 +0.5 −3.8 +0.0 −2.7× 10−4 −4.0× 10−4 +1.1× 10−3 −1.1× 10−7

Series∗ −1.4 +3.9 +4.5 +0.0 −1.1× 10−4 −3.6× 10−4 +2.5× 10−3 +0.2× 10−7

Series∗∗ +0.3 +1.1 +3.0 +0.0 −0.1× 10−4 −2.3× 10−4 +2.1× 10−3 +0.0× 10−7

is 6.2 for the series approach and 5.0 for the parallel approach. Sum of the deviations in
the dielectric constants for the series approach is 10.5 and 8.8 for the parallel approach.
The fact that εMS and εMA are much larger than εSA is only conserved in the parallel
approach. In addition to the more accurate prediction of the dielectric constants by the
parallel approach, it yields also a much closer match for the loss tangents: especially
the substrate loss tangent is crudely underestimated by the series approach, whereas
the parallel approach predicts it almost perfectly. In both approaches, the relatively
low quality factor in the noisy case for the sample exhibiting increased participation in
the MA interface results in overestimation of tan(δMA). The predictions obtained using
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the series approach seem to be very sensitive to noise in the initial data: the effect of
the variations in the interfacial dielectric constants on resonance frequencies is much
smaller than their effect on losses. Hence, it may be essential to optimize the dielectric
constants against both QTLS and f0 measurement data.

There are at least two reasons for the reasonable reproduction of the quality factor
data by the series approach despite the discrepancies in the loss tangents. Firstly, with
the estimated values of tan(δSi), the losses at the interfaces, the loss tangents of which
are of the order of 10−4 to 10−3, still dominate the quality factors. Thus the prediction
of the quality factors is not very sensitive to the observed variation in tan(δSi). Secondly,
the participation matrices differ significantly between these cases because of the different
predictions for the dielectric constants. For example, the underestimation of εMS by the
series approach leads to overestimation of pMS, in line with equation (4). Consequently
to match the quality factor data, a lower tan(δMS) is predicted.

These results highlight that the series approach is especially prone to errors arising
from noisy resonance frequency data, and erroneous predictions of dielectric constants
propagate to erroneous loss tangent predictions. Consequently, within these noise levels,
only the parallel approach yields results accurate enough to serve as a starting point for
further optimization of the cross-sectional geometries of this set of samples.

In contrast, utilizing the same parameters in this case study, but decreasing the
amplitude of noise in the resonance frequencies with a factor of 1/100, the series
approach yields very good results. Decreasing the amplitude with only a factor of
1/10, the results are not quite as accurate, but already comparable to the results of
the parallel approach for noisier data. This supports using the simpler series approach
instead of the parallel approach for such resonance frequency noise levels.

5.3. Discussion: predictions for quality factor

The samples utilizing isotropic etching in this case study reach quality factors between
106 and 2× 106. These relatively wide or deeply trenched structures guarantee reduced
participation at the interfaces, in line with the trends of the geometric dependence
observed in section 3. Moreover, the utilization of isotropic etching gives the trenched
gap a rounder shape, eliminating sharp angles, such as those in figure 5. The fact that the
sample MA, on the other hand, exhibits a much lower quality factor is not very surprising
since it is designed to yield a high MA participation and the MA was chosen to have the
highest loss tangent. Of course, to optimize the cross-sectional geometries in terms of
the quality factors resulting from a given fabrication process, systematic measurements
with enough instances to obtain statistically meaningful results are required to find the
loss tangents and dielectric constants of the different materials present in the devices.
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6. Summary and conclusions

Dielectric loss due to TLS excitations is a typical hindering factor for the operation
of cQED devices. In particular, such losses in the thin dielectric layers at material
interfaces and in the silicon substrate may limit the quality factors of CPW resonators,
essential in cQED.

We modeled the dielectric losses in CPW resonators using finite-element modeling
by computing the electric-field participation ratios of the dielectric regions in such
devices. We considered the effects of the geometric features of the CPW cross-section
and of the dielectric constants of the different regions on the loss, and consequently, on
the TLS-limited quality factors of the CPW resonators. The results support the view
that increasing the physical footprint of the devices by trenching into the substrate
and widening the structure mitigates dielectric losses. Furthermore, our systematic
study indicates that designing optimally sloped sidewalls in the gap between the center
conductor and the ground plane of the CPW can play a role in reaching high quality
factors. Our results also show that variations in the dielectric constants of the lossy
interface regions can significantly affect the predictions for the dielectric losses. The
MA interface participation is particularly sensitive to uncertainties in the dielectric
constants of the other interfaces. For example, our results indicate an 87% difference in
pMA between εMS = 5 and εMS = 15 for two otherwise identical samples.

To minimize the electric-field participation in the lossy regions of the resonators, it
is essential to know the dielectric constants and loss tangents of the dielectrics with
reasonable accuracy. We presented a nonlinear optimization method to find these
quantities from quality factor and resonance frequency measurements. We considered
two approaches, the series approach and the parallel approach to solve this inverse
problem. In the series approach, the dielectric constants are first solved from resonance
frequency data, and this solution is then used to solve the loss tangents using the
measured quality factors. In the parallel approach, one finds the dielectric constants
and the loss tangents simultaneously, minimizing the error with respect to quality factor
data, whereas the resonance frequency data gives rise to a nonlinear constraint for the
dielectric constants. Both approaches yielded reasonable estimates for the measured
quality factors and resonance frequencies with reasonably noisy data, but the parallel
approach was more accurate in terms of finding the right dielectric constants and loss
tangents. In conclusion, for data with significant noise, e.g., with noise amplitude of
1 MHz for frequencies of the order of 1 to 5 GHz in the measured resonance frequencies,
it is important to match the resonance frequency and quality factor data simultaneously
to obtain reasonable estimates for dielectric constants and loss tangents. If the noise
amplitude in the resonance frequency data is approximately 1/10th of this or less, the
series approach is preferable due to its simplicity.

Utilization of our inverse-problem approach requires a set of CPW resonators that
result in well-conditioned participation and filling factor matrices. In general, the
condition numbers of these matrices for a set of CPWs can be as high as of the order
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of 106, if attention is not paid to this issue. In such cases, the uncertainties in the
predictions for the loss tangent and for the dielectric constant are excessively high, and
consequently the ability to predict dielectric losses and design low-loss cross-sectional
CPW geometries is crippled. In line with reference [18], we designed a set of CPW
resonator cross-sections that yield condition numbers falling below 104 for the matrices,
allowing us to find the loss tangents and dielectric constants with a reasonable accuracy.
Moreover, given realistic loss tangent values, quality factors exceeding 2 × 106 may be
attained, as shown previously, e.g., in references [9, 18]. Note also that as different
fabrication techniques can result in different interface qualities, samples fabricated in
the same batch should be analyzed when utilizing the presented techniques.

Our nonlinear optimization approach complements and is in contrast to recent
works, where, e.g., experimentally feasible values for loss tangents and dielectric
constants have been assumed [4], or approximate scaling laws have been utilized to
account for the variation in dielectric constants [9, 18]. Even though the measurement
data we used to benchmark our approaches were fictional in the sense that they were
created by adding noise to simulation data, this scheme represents a realistic model
for possible experiments and importantly, it allowed us to conveniently investigate the
robustness of our approaches against different noise levels. According to the results, our
methodology is very promising in resolving the material parameters of the devices and
provides new tools for driving improvements in superconducting CPW resonators. Thus
it is a step toward more reliable modeling, and consequently more accurate design, of
low-loss cQED devices.

Accurate measurement data are required to further validate and develop our
approach. To minimize the resulting uncertainties, multiple measurements on nominally
identical devices should be carried out. To extend the methodology to situations where
coupling to the transmission line is significant, appropriate correction terms should be
considered [25]. Furthermore, our approach would benefit from highly accurate cross-
sectional scans, since the thicknesses of the lossy interface layers play also a role in the
prediction of the dielectric losses. Finally, we note that other loss mechanisms in cQED
devices should be investigated as well: the total loss in a device with negligible dielectric
loss may be dominated by, e.g., losses related to vortices [26–28], radiation [5, 29], or
quasi-particle excitations [30–33].
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