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Abstract—Time-Sensitive Networking (TSN) and Deterministic
Networking (DetNet) standards come to satisfy the needs of many
industries for deterministic network services. That is the ability
to establish a multi-hop path over an IP network for a given
flow with deterministic Quality of Service (QoS) guarantees in
terms of latency, jitter, packet loss, and reliability. In this work, we
propose a reinforcement learning-based solution, which is dubbed
LEARNET, for the flow scheduling in deterministic asynchronous
networks. The solution leverages predictive data analytics and re-
inforcement learning to maximize the network operator’s revenue.
We evaluate the performance of LEARNET through simulation
in a fifth-generation (5G) asynchronous deterministic backhaul
network where incoming flows have characteristics similar to the
four critical 5G QoS Identifiers (5QIs) defined in Third Generation
Partnership Project (3GPP) TS 23.501 V16.1.0. Also, we compared
the performance of LEARNET with a baseline solution that
respects the 5QIs priorities for allocating the incoming flows. The
obtained results show that, for the scenario considered, LEARNET
achieves a gain in the revenue of up to 45% compared to the
baseline solution.

I. INTRODUCTION

Time-Sensitive Networking (TSN) and Deterministic Net-

working (DetNet) are emerging and promising paradigms that

come to satisfy the needs of many industries such as professional

audio/video, electrical utilities, building automation systems,

wireless industrial applications, and cellular transport networks,

among others, for deterministic network services [1]–[3]. In

other words, TSN and DetNet can establish a multi-hop path for

a given flow over the network with deterministic Quality of Ser-

vice (QoS) guarantees in terms of latency, jitter, congestion loss,

and reliability, regardless of the other ongoing flows competing

for the same resources [2]. To achieve that, these standards

rely on the following functionalities: i) frame/packet sequencing,

ii) flow replication/merging, iii) packet encoding/decoding, iv)

explicit routes and v) resource reservation. Besides, the network

devices considered in these standards for realizing the forward-

ing plane implement queuing algorithms that are mathematically

analyzable. Then, we can derive analytical expressions for

predicting the worst-case performance experienced by any flow

given the current state of the network (e.g., ongoing flows).

This work addresses the online flow allocation problem

(OFAP) in DetNet asynchronous networks. The OFAP consists

of finding the optimal configuration for allocating each incoming

flow to the network, given an optimization objective. Here, we

focus on a DetNet network with an underlying IEEE 802.1 TSN

network consisting of IEEE 802.1Qcr Asynchronous Traffic

Shaper (ATS) based bridges [4]. The ATS is based on the

Urgency-Based Scheduler (UBS) [5], which is an asynchronous

queuing algorithm that combines interleaved shaping and strict

priority queues to realize per-flow deterministic QoS guarantees

(e.g., zero packet loss and bounded latency) in a practical way.

In contrast to synchronous queuing algorithms such as Cyclic

Queuing and Forwarding (CQF) and Time-Aware Shaper (TAS),

asynchronous ones do not depend on network-wide coordinated

time (higher scalability) and utilize network bandwidth more

efficiently by leveraging statistical multiplexing [1].

Several works address the performance guarantees analysis

for an ATS-based network [5]–[7]. However, we believe that the

flow allocation problem for ATS-based networks is only tackled

in [8] by Specht and Samii. Specifically, they deal with the

allocation of a set of flows, considering the path between every

source-destination pair is predefined. This process involves de-

termining the assignment of flow-to-queue and queue-to-priority

for each involved ATS, i.e., every ATS to be traversed by at least

one flow. They employ two approaches to solve the problem:

i) a pure Satisfiability Modulo Theories (SMT) solver, and ii)

a heuristic method dubbed Topology Rank Solver (TRS) to

cope with the combinatorial complexity of the problem. For

the latter, they consider the maximization of the delay slack as

the optimization goal.

In this work, we propose a Reinforcement Learning (RL)-

based solution, which is dubbed LEARNET, for the OFAP

in TSN asynchronous networks. The solution leverages data

analytics, RL, and ATS performance models to maximize the

long-term network operator’s revenue. RL is envisioned as a

promising approach for handling the complexity of the future

networks [9]. We identify the main inputs (observations), po-

tential actions, and reward for the RL agent. We also detail

its environment that includes a flow admission control relying

on the ATS analytical performance bounds. To the best of the

authors’ knowledge, this is the first paper proposing a RL-based

solution for optimizing the operation of a TSN asynchronous

forwarding plane.

The contribution of this article is twofold. First, we define

a novel solution for the OFAP in asynchronous TSNs that

integrates RL and the performance models of the ATS. Some

authors have reported and highlighted a drastic reduction in

the amount of data required to train the ML-based models

by using approaches that combine data-driven techniques and



Fig. 1: SDN-like DetNet network architecture considered in this work.

analytical models [10]. Our solution includes a flow admission

control process, which relies on the ATS performance models,

to check the feasibility of the actions issued by the agent. The

flow admission control rejects the invalid actions, i.e., those

that entail the violation of any constraint of the OFAP such

as the fulfillment of the QoS requirements of both the ongoing

flows and the incoming flow. In this way, the information of

the analytical models is transferred to the agent, and, most

importantly, the flow allocation process becomes fully reliable.

Second, we show the feasibility and the potential benefits of

applying RL for fully exploiting the flexibility offered by TSN

asynchronous forwarding planes. We evaluate the performance

of LEARNET in terms of the operator’s revenue through

simulation. The considered scenario is a fifth generation (5G)

asynchronous deterministic backhaul network where incoming

flows have characteristics similar to the four critical 5G QoS

Identifiers (5QIs) defined in [11]. TSN and DetNet are appealing

technologies for supporting network slicing [12], [13] at the

transport network domain. Also, we compared the performance

of LEARNET with a baseline solution that respects the 5QIs

priorities. The results show that LEARNET achieves a gain in

the revenue of up to 45% compared to the baseline solution.

The rest of the article is organized as follows. Section II

describes the abstraction considered in this work for a determin-

istic network whose data plane consists of ATS-based network

devices. Section III defines the online flow allocation problem

(OFAP) considered in this work. Section IV details the RL-

based flow scheduling solution proposed in this work. Section V

includes the methods and the discussion of the obtained results.

Last, Section VI concludes the paper.

II. SYSTEM MODEL

A. DetNet Network Architecture

Let us consider a DetNet network with a Software-Defined

Networking (SDN)-like architecture [14] where the Control

Plane (CP) and Forwarding Plane (FP) are fully separated, see

Fig. 1.

The FP comprises a set of V IEEE 802.1 TSN network

devices that include an ATS at each of their interfaces. We will

Fig. 2: UBS-based switch model. The illustrated UBS has four shaped queues
and two priority levels and receives traffic from two ingress ports.

detail the operation of the ATS in the next subsection. There is a

total of E/2 full-duplex point-to-point links interconnecting the

asynchronous TSN nodes. In order to distinguish the different

nodes and ATSs in the subsequent notation, we model the

FP of the network as a directed graph G = (V, E), where

V = {v1, v2, . . . , vV } and E = {e1, e2, . . . , eE} denote the

vertices (representing the nodes) and the edges (representing

the ATSs or simplex links) of the graph, respectively.

Here, we will distinguish between two types of FP nodes: i)

DetNet Edge Node (DEN), and ii) DetNet Transit Node (DTN).

The DEN might act as either the starting or the termination

point of the deterministic flows. The main functionalities of the

DEN include the addition or the removal of packet sequencing,

and packet replication and combination. The DTNs will only

implement the DetNet forwarding sub-layer, and are responsible

for routing the packets from the DEN source to the DEN

destination.

The CP consists of a logically centralized SDN controller that

is responsible for controlling and monitoring the network de-

vices through the southbound interface. The controller provides

the upper application layer with an abstraction of the forwarding

plane through the northbound interface.

Three main applications are running on top of the controller:

i) the Monitoring Engine (ME), ii) the Data Analytics Engine

(DAE), and iii) the Flow Scheduling Application (FSA). The

ME is responsible for collecting relevant network statistics such

as flow characteristics (e.g., delay constraint, rate demand, and

holding time), flow arrival process to each DEN (as source and

destination), and times-to-failure of the links, among others.

Later, the DAE consumes and analyzes that information for

prediction (e.g., estimation of the temporal workload profile).

Finally, the FSA leverages that analyzed data for optimizing the

flow scheduling process. Particularly, here, we consider the use

of Machine Learning (ML) at the FSA to exploit the high degree

of flexibility potentially offered by an ATS-based FP.

B. ATS-based Forwarding Plane

As mentioned in the previous subsection, the FP of the DetNet

network consists of a set of TSN devices that implement an



IEEE 802.1 Qcr ATS [4] at each of their egress ports. The

ATS relies on the UBS proposed by Specht and Samii [5], [8].

In this work, we assume that the ATS follows the operation

described in [5], [8]. Then, an ATS consists of two levels

queuing hierarchy (see Fig. 2) [5]: i) a set of shaped queues

for interleaved shaping, and ii) one queue per priority level

in the scheduler. All these queues follow a First Come, First

Served (FCFS) discipline. The assignment of flows to shaped

queues is subject to the following rules [5]: each shaped queue is

associated with only one ingress port (QAR1 rule), one priority

level in the previous ATS (QAR2 rule), and one internal priority

level (QAR3 rule) at a given time. QAR2 and QAR3 rules are

required to provide deterministic QoS, whereas QAR1 isolates

the flows from different nodes, avoiding the propagation of non-

conformant traffic overloads. These rules also determine the

required number of shaped queues to realize P priority levels.

The second stage in the queuing hierarchy includes one

pseudo-queue per priority level in the scheduler. Each pseudo-

queue merges the output of all shaped queues of the same

priority level. The combining form pseudo points out that it

is not required to implement them physically when there are

few shaped queues [5]. Instead, the packets can be directly and

efficiently transmitted from the shaped queues.

The decision on which packet to transmit relies on strict

priority levels and the interleaved shaping algorithm considered.

Here we will assume the Length Rate Quotient (LRQ) algorithm

which enforces an upper bound on the flows of the form

Af (t) ≤ rf ·t+bf [5], [8], [15]. Where Af (t) is the accumulated

amount of transmitted data until the instant t for the flow f ,

and rf and bf are the enforced sustainable rate and burstiness,

respectively. LRQ algorithm computes the eligibility time tf for

the next packet of a given flow f as tf = lf/rf , where lf is

the length of the head-of-line (HOL) packet of the flow. Then,

the HOL packet of the flow f will be eligible for transmission

after tf time units have elapsed.

Under the considerations exposed above, the delay experi-

enced by a packet D
(el)
f,p of a given flow f when pass through

an ATS-based link el and it has priority p is upper-bounded as

[5]:

D
(el)
f,p ≤

∑p

z=1 bz +
∨Pel

z=p+1 lz

Cel −
∑p−1

z=1 rz
+

lf
Cel

(1)

Where bz , lz , and rz are the aggregated burstiness, maximum

packet size, and aggregated data rate at priority level z, respec-

tively. And Cel denotes the link capacity.

III. PROBLEM STATEMENT

Let us consider the DetNet network with an ATS-based

forwarding plane described in the previous section. Each FP

node has an ATS at each interface e with N
(e)
SBs shaping buffers.

Consequently, the interface e will have P
(e)
max = N

(e)
SBs priority

levels at most. Let us also assume that the allocation of each

incoming flow f , hereinafter referred as to flow of interest (foi),

has an associated income αf for the network operator. That

income might be different for each flow depending on the type

of flow or the flow characteristics, e.g., mean sustainable rate

rf , burstiness bf , maximum packet length lf , and maximum

end-to-end (E2E) delay budget Df,max. Besides, as in [8], we

Fig. 3: Two flows are allocated in a network comprising four ATS-based nodes.
All ATSs have four shaping queues, and, consequently, four priority levels at
most.

suppose that explicit routes between every pair of DENs source

and destination in the network is predefined.

The OFAP in an ATS-based FP considered here is defined as

the process of choosing the allocation configuration for every

incoming flow at every hop all along the predefined path from

its source to its destination in order to maximize the network

operator’s revenue. The flow allocation configuration at every

ATS implies to decide the flow to shaping buffer, priority level,

and delay budget assignments.

As mentioned previously, the goal is to maximize the long-

term operator benefit, which will mainly depend on the flow

arrival process, the flow characteristics, pricing, and network

setup. Observe that the flow arrival process and the stochastic

characterization of the flow will likely vary over time. In this

regard, predictive data analytics are ideally suitable for this

problem.

A given flow allocation configuration for the foi is valid if

only if the following constraints are met:

C1 The E2E delay D experienced by the foi has to be lower

than its E2E delay budget Df,max.

C2 The ongoing flows must keep experiencing an E2E delay

lower than their respective E2E delay budgets.

C3 The aggregated rate allocated to any link must be lower

than its capacity.

C4 The aggregated burstiness allocated to any shaping buffer

has to be lower than its size.

C5 The QAR1, QAR2, and QAR3 rules have to be met, i.e.,

every shaping queue must be either idle or assigned to

an only one priority level, only one priority level in the

previous hop, and an input port at a given instant.

IV. LEARNET

In this section, we detail the proposed RL-based solution,

which is dubbed LEARNET, for the flow scheduling in DetNet

asynchronous networks. Figure 4 sketches the operation of

LEARNET.

A. Observations

A flow allocation request arrives at the system (step 1 in

Fig. 4). Then, the request is parsed in order to identify the foi



Fig. 4: LEARNET operation.

characteristics, resources demanded, and latency requirements.

Specifically, LEARNET needs to know the sustainable rate

r(foi), burstiness b(foi), maximum packet size l(foi), and E2E

delay budget of the foi. The flow scheduling agent is fed with

this information along with predictive analytics, related to the

flow arrival and holding time processes, and the current FP

network state (step 3 in Fig. 4).

Regarding the required data analytics, LEARNET requires: i)

the expected foi lifetime duration τ (foi), ii) the foreseen arrival

rate λ during the next temporal interval of length τ (foi), and

iii) the predicted mean and standard deviation for the different

features of the future incoming flows (r, σr, b, σb, Dmax, and

σDmax
). The derivation of those predictive analytics might also

require the flow request information extracted during the parsing

process. Please note that the employed predictive analytics

reveal three main assumptions taken into account for designing

LEARNET: i) the flow lifetime duration obeys an exponential

distribution, ii) the flow arrival process is Poissonian, and iii)

the flow arrival process and the features of the future incoming

flows to the system are stationary. We might consider high-order

statistics for the involved stochastic processes as well as their

temporal dependence. In this way, we could remove the previous

assumptions and improve the generality of the solution.

On the other hand, LEARNET needs the following network

information: i) link capacities Cel ∀ el ∈ P; ii) current state of

the shaping buffers at the different ATSs P in the foi path; and

iii) the allocated rate r
(el)
p , allocated burstiness b

(el)
p , minimum

delay budget D
(el)
p,max, and maximum packet length l

(el)
p at each

priority level of every ATS in the foi path.

B. Actions

The flow scheduling agent takes the information described

in the previous subsection as input and produces an action

specifying the flow allocation configuration for every ATS in

the foi path (step 4 in Fig. 4). Next, we describe the format of

the actions.

Let us suppose the predefined path for the foi has NH hops.

Then, the action generated by the agent is an NH dimensional

vector of real numbers u, where each component includes two

data: i) the chosen priority level p
(el)
a for the foi at the respective

hop (ATS) el, ii) the percentage of the total foi E2E delay

budget η(el) = D
(el)
p,max/D

(foi)
max to be spent at the respective

hop. Deciding the maximum delay budget to be spent at erery

ATS makes scalable the actions feasibility checking, which is

described in the next subsection. The former is included in the

integer part of the component, whereas the latter is contained

in the decimal part. More precisely, each component of u

takes values from a finite set of real values in the interval
[

1, P
(el)
max + 1

)

. The P
(el)
max is set to the number of shaping

queues in the ATS el. The decimal part is discretized according

to a given granularity. For instance, a granularity of 0.1 means

the percentage of the foi E2E delay budget assigned to each hop

is 10% or a multiple of it.

Last, it is noteworthy that the set of actions is filtered in order

to reduce its size. Specifically, we only consider the actions

that meet the following constraints: c.1) the sum of the decimal

parts of all components of u has to equal one, and c.2) the

decimal part of every component of u has to be greater than

zero. Constraint c.1 enforces that the foi E2E delay budget is

fully consumed along the path. This constraint helps to improve

the flow acceptance ratio and, hence, the operator’s revenue. By

way of illustration, let us assume a path with three hops and

P
(el)
max = 3 for every ATS. The action vectors u = (1.5, 3.5, 1.0)

and u = (1.2, 3.5, 1.2) would be removed from the action set,

whereas u = (2.2, 3.5, 1.3) would be valid.

C. Flow Admission Control

The action generated by the agent, along with the foi charac-

teristics, are forwarded to the flow admission control. This block

is responsible for accepting or rejecting the flow given the action

provided by the agent. To that end, it checks the fulfillment of

the constraints listed in Section III (C1-C5). The constraints

C1-C3 are checked evaluating the following set of inequalities

(please refer to Table I to look up the notation employed):

∑pel

z=1 b
(el)
z + b(foi) +

∨P
(el)
max

z=p+1 l
(el)
z

Cel −
∑pel

−1

z=1 r
(el)
z

≤

(

D(foi)
max −

l(foi)

Cel

)

∧

(

D(el)
pel

,max −
l
(el)
pel

Cel

)

; ∀ el ∈ P & pel = pa;

(2)

∑pel

z=1 b
(el)
z + b(foi) +

∨P
(el)
max

z=p+1 l
(el)
z

Cel −
∑pel

−1

z=1 r
(el)
z − r(foi)

+
lpel

Cel

≤ D(el)
pel

,max;

∀ el ∈ P & pel > pa;

(3)

∑pel

z=1 b
(el)
z +

(

∨P
(el)
max

z=p+1 l
(el)
z

)

∨

l(foi)

Cel −
∑pel

−1

z=1 r
(el)
z

+
l
(el)
pel

Cel

≤ D(el)
pel

,max; ∀ el ∈ P & pel < pa;

(4)

P
(el)
max
∑

z=1

r(el)z + r(foi) ≤ Cel ; ∀ el ∈ P; (5)

Please note that, in the constraints listed above, we are

considering that lower indexes correspond to higher priority

levels. It is also noteworthy that thanks to deciding and recording

the maximum delay budget spent at every ATS for every



TABLE I: Notation used for describing the operation of LEARNET.

Notation Description

Variables

r(foi), b(foi),

l(foi), D
(foi)
max

foi characteristics: Sustainable rate, burstiness,
maximum packet length, and delay budget.

r
(el)
p , b

(el)
p ,

l
(el)
p , D

(el)
p,max

Aggregated rate, aggregated burstiness, maximum
packet length, and the lowest delay budget to be
met in the priority level p at ATS el.

Cel Link capacity at the ATS el.

Bs Size of the shaping buffer s.

I
(el)
foi

Ingress port of the foi at the node that includes
the ATS el.

p
(el)
a Chosen priority level for the foi at the ATS el.

Sets

E Set of all ATSs of the DetNet network FP.

P ⊆ E Subset of ATSs the foi has to pass through from
its DEN source to its DEN destination

Sel Pool of shaping buffers at ATS el.

Operators
∨N

n=1 an The greatest value of the set of elements {an}
N
n=1

(an ∈ R ∀n ∈ [1, N ]).
a
∧

b Minimum of a and b (a, b ∈ R).

incoming flow, the checking of the constraints C1-C3 is scalable.

Otherwise, we will have to check that the network will keep

guaranteeing the performance requirements for all the affected

ongoing flows after the potential foi allocation.

Algorithm 1 performs the verification of constraints C4-C5

at a given ATS el and the foi to shaping buffer assignment at

each hop. The algorithm looks for a busy shaping buffer with

enough capacity and a valid state. In other words, the shaping

buffer is assigned to the same input port, internal priority level

p
(el)
a , and priority level p

(el−1)
a in the previous hop el−1 as the

foi allocation configuration commanded by the action. If not,

the algorithm checks whether there is any idle shaping buffer

to allocate the flow.

Algorithm 1 Shaping buffers related constraints verification and

allocation process for the foi.

Input: I
(el)
foi and p

(el)
a ∀ p, i ∈ [1, · · · , Ph] , j ∈

[1, · · · , Ph−1] , &h ∈ P .

Output: selc and d ∈ [ ACCEPTED, REJECTED ].
1: if there is any busy s ∈ Sel such that its input port equals

I
(el)
foi , its priority level equals p

(el)
a , its previous priority level

equals p
(el−1)
a , and Bs is enough to accommodate b(foi)

then

2: d = ACCEPTED;

3: selc = ChooseBusyBuffer();

4: else

5: if there is any idle s ∈ Sel then

6: d = ACCEPTED;

7: selc = ChooseIdleBuffer();

8: else

9: d = REJECTED;

10: end if

11: end if

If any of the constraints C1-C5 is not met, the admission

control block will decline the flow allocation request and will

penalize the agent with a negative reward. Otherwise, the flow

Fig. 5: Simulated Scenario.

will have granted access, and a positive reward will be awarded

to the agent.

D. Reward

If the flow is accepted, the agent will receive an award

1/τ (foi) times the income α(foi) that the operator will obtain

for allocating the foi. If the flow is rejected, the agent will be

penalized with a reward of −1/τ (foi) · α(foi). Observe that, if

we set α(foi) = 1 for all the incoming flows, we will maximize

the flow acceptance ratio (flow rejection ratio minimization).

E. Network State Update

Finally, if the flow gets granted access, the allocation setup

will take place and the state of the network FP will be updated

accordingly (step 6 in Fig. 4). Specifically, ∀ el ∈ P & p =

p
(el)
a , r

(el)
p ← r

(el)
p + r(foi); b

(el)
p ← b

(el)
p + b(foi); D

(el)
p,max ←

D
(el)
p,max ∧ η(el) ·D

(foi)
max ; and l

(el)
p ← l

(el)
p ∨ l(foi). Besides, the

state of the chosen shaping buffers whose state were idle when

the foi arrived will be modified from idle to busy, and the buffer

will be associated with the respective input port, internal priority

level, and priority level in the previous hop.

One last remark, a kind of flow information base is required

to keep track of the allocation configuration and characteristics

of every ongoing flow in order to properly update the network

FP state when the flow leaves the network.

V. RESULTS

A. Experimental Setup

The performance evaluation of LEARNET was carried out

by using an event-driven simulator of a 5G DetNet Backhaul

Network (BN) with three hops (ATSs) between the source

DEN and the destination DENs (see Fig. 5). We considered

the flow characteristics of the critical 5QIs defined by Third

Generation Partnership Project (3GPP) (see Table II). The actual

data rate demanded by each simulated incoming flow follows a

Gaussian distribution. The mean of that distribution for each

5QI is included in the third column of Table II, and the

standard deviation was set to 15% of the respective mean. The

flow lifetime and flows inter-arrival times obey an exponential

distribution. The link capacities were set to 100 Gbps, 10 Gbps,

and 1 Gbps for the first, second, and third hop, respectively. Like

the scenario depicted in Fig. 3, every ATS in the FP includes

four shaping buffers and, then, four potential priority levels.

We compared the performance achieved by LEARNET with

a baseline solution that respects at every ATS the 5QIs priorities

defined by 3GPP in [11]. Then, the fois of 5QIs 82, 85, 83, and

84 will be assigned at every ATS to priority level 1, 2, 3, and



TABLE II: Flow types characteristics. Most of the data included in this table were extracted from [11].

5QI Prio Rate (Mbps) Burstiness (bits) Dmax (ms) Income Avg. Dur. (s) Lmax (bits) Ex. service

82 19 0.1 2040 10 2.5 1200 2040 Discrete Automation

83 22 0.2 10832 10 2.5 1200 10832 Discrete Automation

84 24 0.3 10832 30 4 1200 10832 Intelligent transport systems

85 21 0.3 2040 5 3 1200 2040 Electricity distribution HV
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Fig. 6: Percentage of the maximum benefit achieved versus the link utilization
of the destination DEN.

4, respectively. Besides, the baseline solution allocates 33% of

the E2E delay budget to each hop in the path.

B. LEARNET Performance

Figure 6 shows the percentage of the maximum attainable

profit achieved for each solution as a function of the demanded

link utilization at the edge. We considered that the aggregated

demanded data rate for each 5QI is the same on average as

a simple criterion to generate the 5QI of each simulated flow.

Moreover, we used a discrete uniform distribution to choose

the destination DEN for each simulated flow in the scenario

depicted in Fig. 5. In every simulation (every point represented

in Fig. 6), we simulated the arrival and departure of one million

of flows. As observed, LEARNET outperforms the baseline

solution for every destination DEN link utilization considered.

Specifically, it achieves a gain in operator benefit up to 45%

compared to the baseline solution (see Fig. 6). It shall be

noted that we checked out that LEARNET met all the time the

delay constraints of all the flows. The flow admission control

of LEARNET enforces the fulfillment of the flow performance

requirements (see Fig. 4). This block enhances the reliability of

the LEARNET, which is crucial for supporting critical flows.

VI. CONCLUSION

In this article, we have proposed a reinforcement learning-

based solution, which is dubbed LEARNET, for the online flow

allocation in deterministic asynchronous networks. The solution

combines data-driven and analytical model-based approaches to

maximize the network operator’s revenue. We have evaluated

the performance of LEARNET through simulation in terms of

operator’s achieved income. The considered scenario is a 5G

deterministic backhaul where incoming flows have character-

istics similar to the four critical 5G QoS Identifiers (5QIs)

defined by 3GPP. In addition, we compared the performance

of LEARNET with a baseline solution that preserves the 5QIs

priorities. The obtained results show that LEARNET achieves

a gain in the revenue of up to 45% compared to the baseline

solution. These results motivate the investigation of machine-

learning approaches to exploit the flexibility offered by TSN

and DetNet networks fully.
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