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Parameter Estimation of an LCL Filter for Control
of Grid Converters

Jussi Koppinen, Jarno Kukkola, and Marko Hinkkanen
Aalto University School of Electrical Engineering
P.O. Box 13000, FI-00076 Aalto, Helsinki, Finland

Abstract—Model-based control techniques are frequently used

with grid-connected converters. This paper proposes a method for

identifying model parameters of an LCL filter connected to a grid

converter for control purposes. In identification, a discrete-time

autoregressive moving average with exogenous input (ARMAX)

model structure is used and closed-loop current control is consid-

ered. The resulting discrete-time model parameters are translated

into the continuous-time physical parameters (inductance and

capacitance values of the filter) by comparing the estimated

discrete-time model with the analytical discrete-time model.

Simulation and experimental results show that the proposed

method yields good parameter estimates that are suitable for

control tuning.

Index Terms—Identification, LCL filter, physical parameters,

self commissioning.

I. INTRODUCTION

LCL filters are increasingly used in connection with grid-
connected converters due to their effective attenuation of
switching harmonics. The resonance caused by the LCL filters
makes control of these converters more challenging. The res-
onance should be damped sufficiently, preferably with active
methods, so that additional losses can be avoided. In order to
apply model-based control techniques in converter control or
active damping the parameters of the LCL-filter model must
be known [1]–[3].

Fig. 1 shows a space-vector model of the lossless LCL
filter. If the model parameters (inductance and capacitance
values) are unknown, they could be either measured or esti-
mated. The estimation methods are usually preferred, since the
measuring methods require additional equipment. Generally,
the estimation methods can be divided into two subclasses:
nonparametric and parametric estimation methods [4]. The
nonparametric methods estimate the frequency response of a
system while the parametric methods estimate parameters from
a predefined model structure. From control point of view, the
parametric methods are more interesting since the parameters
can be used in control tuning.

Various methods have been proposed for estimating the grid
impedance [5]–[14], the converter-side impedance [15], and
the DC-side capacitance [16]. However, only a small number
of studies have considered the whole LCL filter [17], [18].
Further, adaptive control methods have been proposed for the
grid converters, taking into account the variation of the grid
inductance [19], [20] and the grid frequency [21].

In [5], the grid impedance is measured using sinusoidal
current signal injection. However, additional equipment is
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Fig. 1. Space-vector circuit model of the LCL filter connected to the inductive
grid in stationary coordinates (denoted by the superscript s).

required and the procedure takes several minutes to complete.
In [6], the grid inductance is estimated using the knowledge
of the LCL-filter resonance frequency. However, the method
[6] requires a look-up table in which the relationship between
the resonance frequency and the LCL-filter parameters is
precalculated in various situations if the ratio between the
converter-side inductance and the grid-side inductance is less
than ten. In practical LCL-filter designs, the ratio between the
converter-side inductance and the grid-side inductance can be
less than ten [22]. In [7], an extended Kalman filter (EKF) is
used to estimate the inductive and resistive parts of the grid
impedance. However, perhaps the most serious disadvantage
of this method is that the tuning of the covariance matrices
of the EKF is based on a trial-and-error procedure. In [8],
the estimated grid impedance is used for active islanding
detection.

In [14], the frequency response of an LC circuit is mea-
sured using a pseudo-random binary sequence (PRBS) as the
excitation signal which enables fast estimation procedure. In
[10], the grid inductance is solved from the estimated LC-
circuit frequency response excited by an impulse signal. Both
methods [10] and [14] require a high sampling frequency as
well as measurements of the capacitor voltages and converter-
side currents. In [19], an adaptive state-feedback controller is
proposed for a grid converter with an LCL filter. However,
the LCL-filter parameters are assumed to be known in initial-
ization. In [17], a discrete-time state-space model of the LCL
filter is estimated in open loop. However, the method does not
provide the physical parameters of the LCL filter.

In this paper, we propose a method for estimating the
physical parameters (the two inductances and the capacitance)
of the LCL filter by comparing the estimated discrete-time
model with an analytical discrete-time model. The PRBS is
used as an excitation signal and injected into the reference
voltage of the converter. In identification, a discrete-time au-
toregressive moving average with exogenous input (ARMAX)
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Fig. 2. (a) Grid-converter system during identification. Sampling of the measured signals and the computational delay z�1 are shown. The sampling of the
converter currents and the grid voltages is synchronized with the PWM. The effect of the computational delay z�1 on the angle of the converter voltage
us
c is compensated for in the coordinate transformation. The DC-link voltage udc is measured for the PWM, which calculates the duty cycles for the power

switches. The grid-voltage angle #g is calculated from the measured grid voltages using a phase-locked loop (PLL). (b) Equivalent block diagram from the
controller point of view. In both subfigures, the gray blocks represent the plant model.

model structure is used. Identification is performed using the
indirect method [23], i.e., the effect of the current controller is
taken into account. The proposed method: 1) requires neither
an injection circuit nor additional sensors; 2) provides the
desired parameters of the lossless LCL-filter model needed
in the controller [3]; and 3) gives insight into the physical
system due to obtained physical parameters [24].

II. SYSTEM MODEL

A. Continuous-Time Model
The LCL filter is modeled as the converter-side inductance

Lfc, the capacitance Cf , and the grid-side inductance Lfg as
shown in Fig. 1. The grid-voltage vector is denoted by ug.
Complex-valued space vectors and switching-cycle averaged
quantities are used. In synchronous coordinates rotating at the
grid angular frequency !g, the converter current ic can be
expressed as

ic = Y 0
(s)uc + Y 0

g(s)ug (1)

where the transfer operators Y 0
(s) and Y 0

g(s) are marked with
the prime in order to separate them from their discrete-time
counterparts. The transfer operator from the converter voltage
uc to the converter current ic is

Y 0
(s) =

1

(s+ j!g)Lfc

(s+ j!g)
2
+ !2

z

(s+ j!g)
2
+ !2

p

(2)

where

!p =

s
Lfc + Lfg

LfcLfgCf
and !z =

s
1

LfgCf
(3)

are the resonance frequency and the anti-resonance frequency
of the filter, respectively. The transfer operator Y 0

g(s) from
the grid voltage ug to the converter current ic could be easily
derived from Fig. 1.

B. Hold-Equivalent Discrete-Time Model

Fig. 2(a) shows the block diagram of the grid-converter
system equipped with the LCL filter. A discrete-time model of
the lossless LCL filter in synchronous coordinates is presented
in the following (cf. Appendix A). In the derivation of the
model, the pulse-width modulator (PWM) is modeled as the
zero-order hold (ZOH) in stationary coordinates. The sam-
pling synchronized to the ZOH is assumed. Further, the one-
sampling-period time delay z�1 due to the finite computation
time of the digital control system is included in the model.
Under these assumptions, the converter current ic(k) depends
on the converter voltage reference uc,ref(k) and the grid
voltage ug(k) according to

ic(k) = Y (z)uc,ref(k) + Y g(z)ug(k) (4)

where k is the discrete-time index, z is the forward shift
operator, and Y g(z) is the pulse-transfer operator from the
grid voltage ug(k) to the converter current ic(k). The pulse-
transfer operator from the voltage reference uc,ref(k) to the
converter current ic(k) can be expressed as

Y (z) = z�1 �1�z�1
+ �2�2z�2

+ �1�3z�3

1 + ↵1�z�1 � ↵1�2z�2
+ �3z�3

(5)

where � = e

�j!gTs and Ts is the sampling period. The
parameters are

↵1 = �1� 2 cos(!pTs)

�1 =

1

Lt

✓
Ts +

Lfg sin(!pTs)

!pLfc

◆

�2 = � 2

Lt

✓
Ts cos(!pTs) +

Lfg sin(!pTs)

!pLfc

◆
(6)

where Lt = Lfc + Lfg is the total inductance.
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Fig. 3. ARMAX model structure.

III. IDENTIFICATION PROCEDURE

As shown in Fig. 2(a), the current controller K(z) operates
in synchronous coordinates, whose d-axis is fixed to the
measured grid voltage, i.e., ug = ug+j0. The current reference
is ic,ref = icd,ref + jicq,ref , where icd,ref is the output of
the DC-voltage controller and icq,ref determines the reactive
power.

A. Closed-Loop Identification

The PRBS vector v is superimposed on the voltage refer-
ence u0

c,ref obtained from the current controller, i.e., uc,ref =

u0
c,ref + v. The PRBS has many desirable properties for

identification including the wide power spectrum and the
lowest possible peak factor [4]. It can be implemented using
feedback shift register circuits comprising a deterministic and
repeatable signal. The PRBS can have only two possible values
(e.g., �1 and 1). The duration of the PRBS is (2

m � 1)Ts,
where m is the number of shift registers. The duration should
be longer than the rise time of the system. The direction of the
PRBS vector v can be chosen perpendicular to the direction of
u0
c,ref in order to minimize the maximum amplitude of uc,ref

and to reduce the risk of the converter-voltage saturation.
Closed-loop identification could either be performed using

a direct method or an indirect method [23]. In this paper,
the closed-loop identification is performed using an indirect
method, i.e., the effect of the current controller on the regres-
sors is taken into account. In this way, the correlation between
the identification input and noise signal can be avoided, and
less biased parameter estimates are obtained. From Fig. 2(b),
the pulse-transfer operator from v(k) to ic(k) can be solved,
resulting

ic(k) =
Y (z)

1 +K(z)Y (z)
v(k) =

B(z)

A(z)
v(k) (7)

For simplicity, the proportional current controller is assumed
to be used during identification,

K(z) = kp (8)

where kp is the (known) gain. Hence, the polynomials in (7)
become

A(z) = 1 + ↵1�z
�1

+ (�1kp� � ↵1�
2
)z�2

+ (�3
+ �2kp�

2
)z�3

+ �1kp�
3z�4

B(z) = �1�z
�2

+ �2�
2z�3

+ �1�
3z�4 (9)

B. Model Structure
The selection of a model structure is essential for successful

identification. A discrete-time ARMAX model structure shown
in Fig. 3 is considered [4]. This structure gives enough
freedom to describe the properties of the disturbances affecting
the converter current. The system (7) is augmented with the
noise polynomial C(z), giving

A(z)ic(k) = B(z)v(k) +C(z)e(k) (10)

where e is the Gaussian noise component. The second-order
noise polynomial

C(z) = 1 + c1z
�1

+ c2z
�2 (11)

is chosen.
In order to be able to estimate the parameters ↵1, �1, and �2

effectively, the system (10) is reformulated in such a way that
all known linear dependencies are taken into account, leading
to the minimal realization

y(k) = ↵1'↵1(k)+�1'�1(k)+�2'�2(k)+C(z)e(k) (12)

where the regressed variable is

y(k) = (1� �3z�3
)ic(k) (13)

and the regressors are

'↵1(k) =
�
�2z�2 � �z�1

�
ic(k)

'�1(k) =
�
�z�2

+ �3z�4
�
[v(k)� kpic(k)]

'�2(k) = �2z�3
[v(k)� kpic(k)] (14)

C. Data Acquisition and Preprocessing
The DC components are removed from the samples in

order to improve the accuracy of the estimated models [4].
The output and the regressors are constructed at each time
step according to (13) and (14) using the measured values of
the converter current ic(k) and the PRBS v(k). The output
samples are packed into the vector

Y =

⇥
y(5) y(6) . . . y(N)

⇤T (15)

where N is the number of samples used in the algorithm.
Similarly, the vectors including the regressor samples are

U↵1 =

⇥
'↵1(5) '↵1(6) . . . '↵1(N)

⇤T

U�1 =

⇥
'�1(5) '�1(6) . . . '�1(N)

⇤T

U�2 =

⇥
'�2(5) '�2(6) . . . '�2(N)

⇤T (16)

The parameter estimates ↵̂1, ˆ�1, and ˆ�2 could now be
computed using, e.g., the armax command of the System
Identification Toolbox of the MATLAB software [25].1 As
a side product, the estimates ˆc1 and ˆc2 for the parameters
of the noise polynomial are also obtained. An alternative
Gauss-Newton-based algorithm [4] for parameter computation

1Create a data object to encapsulate the input/output data and their prop-
erties: data = iddata(Y, [U↵1 U�1 U�2],Ts). Estimate the AR-
MAX polynomial model using time domain data: model = armax(data,

[0 [1 1 1] 2 [0 0 0]]).
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TABLE I
DATAHEET PARAMETERS AND ESTIMATED PARAMETERS FROM

SIMULATIONS

Parameter Datasheet Estimated Case 1 Case 2
value parameter

Lfc 2.94 mH L̂fc 2.93 mH 2.95 mH
Cf 10.0 µF Ĉf 9.96 µF 10.6 µF
Lfg 1.96 mH L̂fg 1.98 mH 1.79 mH

is presented in Appendix B. The algorithm is independent of
the software and it could be implemented, e.g., in a real-time
processor.

D. Continuous-Time Parameters
The continuous-time parameter estimates !̂p, ˆLfc, and ˆLfg

can be solved from (6) as functions of the discrete-time
parameter estimates ↵̂1, ˆ�1, and ˆ�2:

!̂p =

1

Ts
arccos

✓
� ↵̂1 + 1

2

◆

ˆLfc =

2

sin(!̂pTs)
!̂p

[cos(!̂pTs)� 1]

2

ˆ�1

h
cos(!̂pTs)� sin(!̂pTs)

!̂pTs

i
+

ˆ�2

h
1� sin(!̂pTs)

!̂pTs

i

ˆLfg = � !̂p
ˆLfc[

ˆLfc
ˆ�2 + 2Ts cos(!̂pTs)]

!̂p
ˆLfc

ˆ�2 + 2 sin(!̂pTs)
(17)

From (3), the filter capacitance becomes

ˆCf =

ˆLfc +
ˆLfg

!̂2
p
ˆLfc

ˆLfg

(18)

IV. RESULTS

The proposed method was evaluated by means of simu-
lations and experiments. A 12.5-kVA grid-converter system
equipped with the LCL filter is considered. The rms line-to-
line grid voltage was 400 V and the grid frequency 50 Hz. The
switching frequency was 6 kHz and the sampling frequency
was 12 kHz. The approximate bandwidths of the DC-voltage
control and the PLL were 20 Hz.

For better regulation of the operating-point currents, the
current controller was augmented with an integral action,

K(z) = kp +

Tski
z � 1

(19)

where the proportional gain was kp = 1 ⌦ and the integral
gain ki = 0.01 ⌦/s was very small in order to diminish the
effect of the controller on the identification.

Fig. 5. Experimental setup.

The PRBS having an amplitude of ±32.5 V (±0.1 p.u.) was
generated using a 10-bit-length shift register. The PRBS was
injected into the q-component of the voltage reference. Two
periods of the PRBS were used for the identification, i.e., the
number of collected samples is N = 2046. The parameter
estimates were computed using the algorithm presented in
Appendix B.

A. Simulations
Two simulation cases are considered. In Case 1, the sim-

ulation model of the LCL filter is lossless and no additional
disturbances are used. The parameters of the modeled filter
are given in Table I. In Case 2, the simulation model includes
measurement noise, grid harmonics, and inductor losses. The
measurement noise n, having a standard deviation of 0.25 A
(0.01 p.u.), is added according to Fig. 4(a). Further, the grid
disturbance w, composed of the 5th and 7th harmonics of the
grid voltage, is added. Both harmonics have an amplitude of
6.5 V (0.02 p.u.). As shown in Fig. 4(b), the series resistor
Rfc,s = 102 m⌦ and the parallel resistor Rfc,p = 420 ⌦ of
the converter-side inductor are included in order to model the
DC resistance and the eddy-current effects. The series resistor
Rfg,s = 68 m⌦ and the paraller resistor Rfg,p = 630 ⌦ of the
grid-side inductor are modeled similarly.

The simulation results are given in Table I. In Case 1, the
proposed method estimates the parameters with good accuracy.
In Case 2, the estimated parameters become a bit biased,
mainly due to the parallel resistances and the grid harmonics.
The series resistances of the inductors have only negligible
effect on parameter estimates. The estimated resonance fre-
quency !̂p still almost equals the real value.

B. Experiments
The experiments were carried out using the setup shown

in Fig. 5. It consists of two back-to-back connected 12.5-



TABLE II
EXPERIMENTALLY ESTIMATED PARAMETERS

Estimated icd ⇡ 0 A icd ⇡ 0 A icd ⇡ 0 A
parameter icq = 5 A icq = 0 A icq = �5 A

L̂fc 3.2 mH 3.3 mH 3.2 mH
Ĉf 8.1 µF 7.9 µF 8.2 µF
L̂fg 3.2 mH 3.2 mH 3.1 mH
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Fig. 6. Frequency responses plotted using the estimated parameters: the
proposed lossless model Y (z) (solid blue line) and the six-parameter lossy
model Y 6(z) (dashed red line).

kVA 50-Hz converters equipped with LCL filters. Data-sheet
parameters for the LCL filters are given in Table I. An isolation
transformer was used for the loading converter. Control and
data acquisition of the converter under test was implemented
on the dSPACE DS1006 board. The DC-bus voltage, two
phase-to-phase grid voltages, and three converter phase cur-
rents were measured.

1) Estimated Parameters: The parameters were estimated
in three operating points. In all three cases, the DC voltage
was 650 V and the d-axis current icd was approximately zero
in order to demonstrate a self commissioning: the converter is
connected to the grid, the converter is controlling the DC-bus
voltage, and no active power for the load is transmitted. The
operating-point values of the q-axis currents were icq = 5 A,
icq = 0 A, and icq = �5 A. The measurement was repeated
ten times in each operating point in order to study the deviation
of the parameter estimates.

Approximately 20 iteration rounds are needed for the
parameters to converge to the final values. The estimated
parameters ↵̂1, ˆ�1, and ˆ�2 have small imaginary parts (less
than 3%) compared to their real parts [theoretically ↵̂1, ˆ�1,
and ˆ�2 should be real according to (6)]. Table II provides
the estimated values of the physical parameters. The standard
deviations of the estimated physical parameters are small
compared to the expected values in all operating points, i.e.,
less than 2% for all parameter estimates. It can also be seen
that the operating point has only a modest impact on the
estimates. The estimated resonance frequency !̂p is almost
the same in all operating points (2⇡·1400 rad/s).
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Fig. 7. Measured frequency response of the input admittance of the LCL-
filter isc(j!)/us

c(j!) (dashed red line) and the calculated frequency response
of the admittance using the estimated parameters (solid blue line).

2) Comparison With a Lossy Model: The proposed lossless
model (5) is constructed using the estimated parameter values
(ˆLfc = 3.2 mH, ˆCf = 8.1 µF, ˆLfg = 3.2 mH). Further, a more
general six-parameter lossy model is estimated:

Y 6(z) = z�1 b1z�1
+ b2z�2

+ b3z�3

1 + a1z�1
+ a2z�2

+ a3z�3
(20)

where a1. . .a3 and b1. . .b3 are independent parameters. Fig.
6 shows the estimated frequency responses for both the pro-
posed model and for the six-parameter model in synchronous
coordinates. As can be seen, the frequency responses resemble
each other below the antiresonance frequency and above the
resonance frequency. The resonance frequency is 2⇡·1350
rad/s for the six-parameter model and 2⇡·1350 rad/s for the
proposed model. The antiresonance frequency is 2⇡·950 rad/s
for the six-parameter model and 2⇡·910 rad/s for the proposed
model. This indicates that the lossless model of the LCL filter
is sufficient for control purposes.

3) Validation in Frequency Domain: The estimation result
is validated in the frequency domain. The frequency response
of the converter-side input admittance, isc(j!)/us

c(j!), cf. Fig.
1, of the LCL filter was measured with the frequency-response
analyzer NF FRA5097 when the grid-side terminals of the
filter were short circuited. The measured response is compared
with the calculated frequency response for the lossless filter
using the estimated parameter values (ˆLfc = 3.2 mH, ˆCf = 8.1
µF, ˆLfg = 3.2 mH). Fig. 7 shows the measured and calculated
responses in stator coordinates. As the figure shows, the
calculated frequency response match well with the measured
response, i.e., the estimated lossless model predicts well the
resonance and the anti-resonance frequencies as well as the
slopes at high and low frequencies.

4) Comparison in Controller Tuning: A two-degree-of-
freedom (2DOF) state-feedback current controller [3] was
tuned using the datasheet parameter values given in Table I and
the estimated parameter values (ˆLfc = 3.2 mH, ˆCf = 8.1 µF,
ˆLfg = 3.2 mH). The closed-loop dominant dynamics for the
current-reference tracking were specified to correspond to the
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first-order system with the bandwidth of 600 Hz. Fig. 8 shows
the measured waveforms of the converter current components
in synchronous coordinates, when the q-axis current reference
steps from zero to 10 A at t = 0.01 s. During the step the
converter was supplying the power of 5 kW to the grid yielding
icd = 10 A. As the figure shows, the step response corresponds
well the designed dynamics (5-% settling time is 1 ms and
there is no overshoot) when the identified parameters are used.
This indicates that the estimated values are more accurate from
the controller point of view in comparison with the data-sheet
values.

V. CONCLUSION

This paper proposes a method to identify the discrete-time
transfer-function parameters and the corresponding physical
parameters of an LCL filter from a controller point of view.
The physical parameters were obtained by comparing the
estimated discrete-time model with the analytical discrete-
time model. According to the simulation and experimental
results, the proposed method can be used to find the physical
parameter values of the LCL filter. A control system of the
grid converters is typically based on the lossless model of an
LCL filter. Since the proposed method estimates the desired
parameters of the lossless model directly, the method enables
self-commissioning of a grid converter.

APPENDIX A
DISCRETE-TIME MODEL

A discrete-time model of the lossless LCL filter in syn-
chronous coordinates is presented in the following. The PWM
is modeled as the zero-order hold (ZOH) in stationary coor-
dinates. The sampling of the converter currents and the grid
voltages are synchronized with the PWM. Under these as-
sumptions, the hold-equivalent discrete-time state-space model

of the LCL filter becomes [3]

x(k + 1) = Ax(k) +Bcuc(k) +Bgug(k)

ic(k) = Cx(k) (21)

where the state vector is selected as x = [ic,uf , ig]T. The
system matrices are

A = �

2

664

Lfc+Lfg cos(!pTs)
Lt

� sin(!pTs)
!pLfc

Lfg[1�cos(!pTs)]
Lt

sin(!pTs)
!pCf

cos(!pTs) � sin(!pTs)
!pCf

Lfc[1�cos(!pTs)]
Lt

sin(!pTs)
!pLfg

Lfg+Lfc cos(!pTs)
Lt

3

775

Bc =
�

Lt

2

64
Ts +

Lfg sin(!pTs)
!pLfc

Lfg[1� cos(!pTs)]

Ts � sin(!pTs)
!p

3

75 , C =

⇥
1 0 0

⇤
(22)

The closed-form expression for the input matrix Bg in (21)
can be found in [3].

The converter current ic(k) can be solved as

ic(k) = C(zI�A)

�1
Bcuc(k)

=

�1�z�1
+ �2�2z�2

+ �1�3z�3

1 + ↵1�z�1 � ↵1�2z�2
+ �3z�3

uc(k) (23)

where the parameters ↵1, �1, and �2 are given in (6). The
actual converter voltage uc is produced based on the voltage
reference uc,ref . Due to the finite computational time of the
control algorithm, the converter-voltage reference calculated
at the present time step becomes active at the next time step

uc(k) = z�1uc,ref(k) (24)

where the angular compensation is assumed to be embedded
in the coordinate transformation according to Fig. 2(a). Com-
bining (23) and (24) gives the pulse-transfer operator in (5).

APPENDIX B
PARAMETER COMPUTATION ALGORITHM

The predictor ˆy(k) can be constructed by taking the ex-
pected value of y in (12), yielding

ˆy(k) =

✓
1� 1

C(z)

◆
y(k)

+

1

C(z)

⇥
↵1'↵1(k) + �1'�1(k) + �2'�2(k)

⇤
(25)

The prediction error

"(k) = y(k)� ˆy(k) (26)

=

1

C(z)

⇥
y(k)� ↵1'↵1(k)� �1'�1(k)� �2'�2(k)

⇤

describes the part that cannot be predicted with the model.
The aim is to find the parameter vector

ˆ✓ =

⇥
↵̂1

ˆ�1
ˆ�2 ˆc1 ˆc2

⇤
(27)

that minimizes the prediction errors.
The parameter computation is a three-stage procedure hav-

ing the following order: 1) the ordinary least squares (OLS)
method; 2) the iterative extended least squares (ELS) method;



and 3) the iterative Gauss-Newton method. The ELS method
gives the first estimate of ˆ✓ for the Gauss-Newton algorithm.
Further, the ELS method requires some knowledge about the
prediction errors, for which the OLS method is performed first.

Before computation, the regressor vectors U↵1, U�1, U�2

and the output vector Y are constructed as described in Section
III-C. The computation starts from the OLS stage, where the
autoregressive with exogenous input (ARX) model structure
is assumed, i.e., ˆc1 =

ˆc2 = 0. The parameter vector ˆ✓ARX =

[↵̂1, ˆ�1, ˆ�2]
T is solved as [4]

ˆ✓ARX = (�

H
ARX�ARX)

�1
�

H
ARXY (28)

where �ARX = [U↵1,U�1,U�2] is the regressor matrix for
the ARX model and the conjugate transpose is marked with
H.

In the following stages, the ARMAX-model structure is
used. Using the ELS method, the parameter vector ˆ✓ is solved
iteratively:

ˆ✓v+1 = (�

H
v �v)

�1
�

H
v Y (29)

where v is the iteration round. The regressor matrix � is
extended with delayed prediction-error vectors E:

�v =

⇥
U↵1 U�1 U�2 z�1

Ev z�2
Ev

⇤
(30)

The prediction-error vector E = ["(5), "(6) . . . "(N)]

T is
solved using (26) in each iteration round:

Ev =

1

ˆCv(z)

⇣
Y � ↵̂1,vU↵1 � ˆ�1,vU�1 � ˆ�2,vU�2

⌘
(31)

In the first round, we can use the prediction-error vector
obtained in the OLS stage. Iterations are continued, until the
parameter estimate ˆ✓ can be applied in the Gauss-Newton
algorithm.

Finally, the Gauss-Newton algorithm is performed. The
parameter vector ˆ✓ is solved iteratively, starting from the initial
value of ˆ✓ obtained in the ELS stage:

ˆ✓v+1 =

ˆ✓v � (J

H
v Jv)

�1
J

H
v Ev (32)

The Jacobian matrix J of the prediction-error vector E is
expressed as

Jv =

@Ev

@ˆ✓v

= � 1

ˆCv(z)
�v (33)

Iterations are continued until the estimated parameters con-
verge to the final values.
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