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Inclusion of Magnetic Saturation in Dynamic

Models of Synchronous Reluctance Motors

Zengcai Qu, Toni Tuovinen, and Marko Hinkkanen

Aalto University School of Electrical Engineering

P.O. Box 13000, FI-00076 Aalto, Finland

Abstract—This paper deals with the modeling of the mag-
netic saturation in synchronous reluctance motors (SyRMs).
The saturation is modeled by means of analytical expressions,
which can be easily embedded in dynamic equivalent-circuit
models. A modified power function—proposed in this paper—can
take into account the cross saturation between the orthogonal
windings, it is physically consistent, and the number of its
parameters is small. The function can be used in real-time control
applications and in computer simulations. The model fits well to
the experimentally measured inductances of a 6.7-kW SyRM.
As an application example, the proposed saturation model was
implemented in a full-order observer of a motion-sensorless drive,
and experimental results are shown.

Index Terms—Cross saturation, efficiency optimization, induc-
tances, reciprocity conditions, synchronous reluctance motor.

I. INTRODUCTION

The synchronous reluctance motor (SyRM) is becoming an

important alternative in vector-controlled drives. In addition

to its simple and robust structure, advantages of modern

transverse-laminated SyRMs compared to other AC motors

are [1], [2]:

1) Absense of the rotor winding results in higher efficiency

and higher temperature capacity (i.e., higher rated torque

for a given frame size) than in the induction motor.

2) Lower production cost compared to the permanent-

magnet synchronous motor. High-speed operation and

flux-weakening control can be easily achieved because

of no magnets in the rotor.

3) Typically lower torque ripple, vibration, and noise com-

pared to the switched reluctance motor.

These benefits attract industry and academia, but there are

still issues to be considered in SyRMs, one of them being the

modeling of the magnetic saturation.

The SyRMs are often operated with extreme saturation to

achieve high torque density, and the inductances vary as a

function of the currents (or fluxes). The cross-saturation of the

inductances is also significant [3], [4]. Therefore, a saturation

model is necessary in many applications, such as motion-

sensorless control and efficiency optimization.

In control algorithms, the magnetic saturation can be taken

into account via look-up tables, online parameter estimation

[5], [6], [7], or explicit functions [8], [4]. The look-up table

is a simple way to model the saturation characteristics, but

it needs a large amount of measurement data and memory.

Furthermore, the look-up table is discontinuous and defined

only in the measurement range, and the interpolation may

not be very efficient. The dynamic performance of the online

inductance estimation can be insufficient, and the inductance

estimation may require additional excitation signal in sensor-

less drives. The inductances can be calculated offline using

a finite-element method, if the geometry of the machine and

the material properties are known [9]. However, finite-element

methods cannot be used in real-time control because they are

computationally very demanding.

In real-time applications, explicit continuous functions are

preferable for several reasons: (i) no need to store the mea-

sured inductances; (ii) continuous and differentiable; and (iii)

available in sufficient range. Furthermore, they are convenient

in numerical analyses and computer simulations. In this paper,

dynamic models of the SyRM are described in Section II, and

explicit functions for modeling the magnetic saturation are re-

viewed in Section III. A saturation model using explicit power

functions is proposed in Section IV. The proposed function can

take the cross-saturation into account and the number of its

parameters is small. As shown in Section V, the model fits well

to the measured inductances of a 6.7-kW SyRM. Further, the

proposed saturation model is experimentally demonstrated in

a motion-sensorless SyRM drive.

II. SYRM MODEL

The dynamic model of the SyRM is briefly described in

the following, taking into account the nonlinearity due to

the magnetic saturation. The saturation can be modeled as a

function of the flux or as a function of the current. In order to

formulate a nonlinear state equation, the state variable should

agree with the independent variable of the saturation model.

This selection of the state variable affects the complexity of

the whole dynamic model.

The d-axis of the rotating coordinate system is defined as the

direction of the maximum inductance. Real space vectors will

be used in the model. For example, the stator-current vector

is is = [id, iq]
T, where id and iq are the components of the

vector and the matrix transpose is marked with the superscript

T. The magnitude is denoted by

is =
√

i2d + i2q (1)

The orthogonal rotation matrix is J = [ 0 −1
1 0

]. Per-unit quan-

tities will be used.
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Fig. 1. Dynamic space-vector model in rotor coordinates. The nonlinear
inductor can be defined either by is = is(ψs) or ψs = ψs(is).

A. Flux as a State Variable

The dynamic equivalent circuit in rotor coordinates is illus-

trated in Fig. 1. The stator-voltage equation is

dψs

dt
= us −Rsis − ωmJψs (2)

where ψs is the stator-flux vector, us the stator-voltage vector,

Rs the stator resistance, and ωm the electrical angular speed of

the rotor. If the magnetic saturation were omitted, id = ψd/Ld

and iq = ψq/Lq would hold. However, due to the magnetic

saturation, the components of the stator-current vector become

nonlinear functions of the flux components1

is = is(ψs) =

[

id(ψd, ψq)
iq(ψd, ψq)

]

(3)

A nonlinear state-space representation is obtained by substi-

tuting (3) into (2). The signal-flow graph of the model is

shown in Fig. 2(a). Fig. 3 illustrates an example of saturation

characteristics.

The power balance of the SyRM model is given by

uT
s is = Rsi

2
s +

dWf

dt
+ Teωm (4)

where the electromagnetic torque is

Te = i
T
s Jψs = iqψd − idψq (5)

and the rate of change of the magnetic energy is

dWf

dt
= iTs

dψs

dt
= id

dψd

dt
+ iq

dψq

dt
(6)

It is worth noticing that the current components id and iq are

functions of the flux components according to (3). If needed,

the core losses can be modeled separately, and the nonlinear

inductor should not generate or dissipate electrical energy. The

conservation of energy leads to the reciprocity condition [10],

[11], [3]:

∂id(ψd, ψq)

∂ψq

=
∂iq(ψd, ψq)

∂ψd

(7)

1If desired, the nonlinear functions can be represented by means of
inductance functions as id(ψd, ψq) = ψd/Ld(ψd, ψq) and iq(ψd, ψq) =
ψq/Lq(ψd, ψq). In the latter part of the paper, both forms will be used.
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Fig. 2. Signal-flow graph of the saturable SyRM model: (a) stator flux as a
state variable; (b) stator current as a state variable.
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Fig. 3. Fluxes ψd (blue) and ψq (red) as a function of id and iq, respectively.
The parameter of ψd is iq = {0, 0.6, 1.2} p.u. and the parameter of ψq is
id = {0, 0.3, 0.6} p.u.

B. Current as a State Variable

Instead of (3), the saturation can be modeled using the

current components as independent variables:

ψs = ψs(is) =

[

ψd(id, iq)
ψq(id, iq)

]

(8)

In this case, the voltage equation (2) cannot be directly used

to form a nonlinear state equation. Using (8), the derivatives



of the stator flux components become

dψd(id, iq)

dt
=
∂ψd

∂id

did
dt

+
∂ψd

∂iq

diq
dt

(9a)

dψq(id, iq)

dt
=
∂ψq

∂id

did
dt

+
∂ψq

∂iq

diq
dt

(9b)

These derivatives can be expressed using the matrix notation

as dψs/dt = Lt(is) · dis/dt, where

Lt(is) =









∂ψd(id, iq)

∂id

∂ψd(id, iq)

∂iq
∂ψq(id, iq)

∂id

∂ψq(id, iq)

∂iq









(10)

is the incremental inductance matrix, and its elements are func-

tions of the current components. Hence, the voltage equation

(2) becomes

dis
dt

= L−1
t (us −Rsis − ωmJψs) (11)

A nonlinear state equation is obtained by substituting (8) and

(10) into (11). The signal-flow graph of the model is shown

in Fig. 2(b).

The power balance and the torque equation are naturally

independent of the choice of the state variable. The reciprocity

condition for the saturation model can now be formulated as

∂ψd(id, iq)

∂iq
=
∂ψq(id, iq)

∂id
(12)

i.e., the incremental inductance matrix should be symmetric.

C. Comparison of State Variable Choices

Comparing the two different nonlinear state equations of

the SyRM, it is clear that using the flux as the state variable

leads to simpler equations, since the incremental inductance is

avoided. Hence, the model in Section II-A is preferred in the

computer simulation models and various numerical analyses.

In the case of state observers, the selection of the saturation

model depends on the observer structure. In full-order ob-

servers, the saturation can be modelled as is(ψs) since the flux

estimate is available. In reduced-order observers, the saturation

has to be typically modelled as ψs(is) using the measured

stator current as the input.

If the signal injection methods are to be designed or

analyzed, the incremental inductance matrix Lt is typically

needed. Furthermore, the current controller gains should be

tuned by taking into account the incremental inductances.

III. REVIEW OF EXPLICIT FUNCTIONS FOR MODELING

SATURATION

Explicit functions for saturation models are briefly reviewed.

Even if some functions below have been originally proposed

for non-salient machines, they can be seen as a relevant

starting point for developing expressions for SyRMs.

A. Flux as Independent Variable

1) Power Function: If the cross-saturation is omitted, the

magnetic saturation can be modeled by applying a power

function as [8]

id(ψd) =
ψd

Ldu

[1 + (α|ψd|)
a
] (13)

where Ldu is the unsaturated inductance and α and a are

nonnegative constants. The exponent a determines the shape

of the saturation characteristics. An interpreration for the

parameter α is that the inductance is half of the unsaturated

value Ldu at ψd = 1/α. Naturally, the q-axis current iq(ψq)
could be modeled using the same function (with different

parameters). However, the cross-saturation cannot be directly

modeled using (13). It is worth noticing that (13) could be

alternatively formulated as an inductance function

Ld(ψd) =
Ldu

1 + (α|ψd|)
a (14)

since Ld(ψd) = ψd/id(ψd).
2) Arctangent Function: Typically, the incremental induc-

tance is initially constant, undergoes a transition, and finally

becomes constant again. The arctangent function has similar

characteristic [12]

∂id
∂ψd

=
2

π
Md arctan [τT (|ψd| − ψT)] +Ma (15)

where the shape is determined by its parameters Ma, Md, τT,

and ψT. The expression for id(ψd) is obtained by integrating

(15) with respect to ψd, cf. [12] for the lengthy closed-form ex-

pression. The expression of iq(ψq) uses the same function with

separate parameters. An advantage of this arctangent-based

model is that the parameters have physical interpretation,

leading to comparatively easy fitting procedure.2 However, the

cross-saturation is not taken into account in (15).

B. Current as Independent Variable

Expressions for ψs = ψs(is), or equivalent expressions

using inductance functions, will be discussed below. However,

for dynamically accurate models, also the incremental induc-

tances in (10) are needed, if the stator current is used as a

state variable.
1) Piecewise Functions: In some applications, a very sim-

ple saturation model may suffice. In [14], the d-axis inductance

is

Ld(id) =

{

Ldu, |id| < id0

Ldu − δ(|id| − id0), |id| > id0
(16)

where Ldu is the unsaturated inductance and id0 and δ are

positive parameters. The inductance Lq was kept constant and

the cross-saturation was ignored. Naturally, this model can be

formulated as ψd(id) = Ld(id)id and ψq = Lqiq. A slightly

more complicated piecewise function was applied in [15],

where also the cross-saturation was taken into account. Piece-

wise functions can simplify the mathematical expressions, but

they are not differentiable on the boundary.

2A similar function has been implemented in a built-in induction machine
model of a commercial circuit simulator [13].



2) Polynomial Functions: In [16], the saturation character-

istics are modeled by means of polynomials as

Ld(id, iq) =

n
∑

i=0

m
∑

j=0

ai,j |iq|
i(|id| − id0)

j (17a)

Lq(id, iq) =

n
∑

i=0

m
∑

j=0

bi,j |id|
i(|iq| − iq0)

j (17b)

where the parameters ai,j and bi,j are determined using the

method of least squares. A higher degree results in better

accuracy and smoothness but the number of coefficients is

limited by the memory of controller. In the implemented model

in [16], the total number of parameters in (17) was 13. In addi-

tion to (17), separate models for the incremental inductances

were applied. Typically, the accuracy of polynomial models

deteriorates significantly outside the range of the data, which

can be a limitation in some applications.

3) Rational Functions: In [4], the saturation was modeled

as

Ld(id, iq) = Ld0(id)− Ld1(id)Lq2(iq) (18a)

Lq(id, iq) = Lq0(iq)− Lq1(iq)Ld2(id) (18b)

where Ld0, Ld1, Ld2, Lq0, Lq1, and Lq2 are all expressed as

rational functions. As an example, the function

Ld0(id) = A+
B

i4d + Ci2d +D
(19)

Totally 16 parameters were needed. The model seem to fit

very well to the measured data. However, it does not fulfill

the reciprocity condition (12), and its accuracy may deteriorate

outside the range of the data.

IV. PROPOSED MODEL

In the proposed model, the flux is considered as an in-

dependent variable. The power function in (13) is used as

a starting point, since it was noticed to fit well to the no-

load data. The goal is to augment the power function so that

the cross-saturation can be taken into account and the number

of its parameters is kept small. In order to develop explicit

functions, which fulfill the reciprocity condition, functions of

the following form can be considered [3]:

id(ψd, ψq) = id(ψd, 0) +
df(ψd)

dψd

g(ψq) (20a)

iq(ψd, ψq) = iq(0, ψq) + f(ψd)
dg(ψq)

dψq

(20b)

where the first terms id(ψd, 0) and iq(0, ψq) are the currents

in no-load conditions. It can be easily seen that these functions

fulfill (7). Augmenting the power function with f(ψd) ∝ ψc+2
d

and g(ψq) ∝ ψd+2
q yields the proposed model:

id(ψd, ψq)=
ψd

Ldu

[

1 + (α|ψd|)
a
+
γLdu

d+2
|ψd|

c|ψq|
d+2

]

(21a)

iq(ψd, ψq)=
ψq

Lqu

[

1 + (β|ψq|)
b
+
γLqu

c+2
|ψd|

c+2|ψq|
d

]

(21b)
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Fig. 4. Results of curve fitting to experimental data: (a) Ld as a function
of ψd for three different values of ψq; (b) Lq as a function of ψq for three
different values of ψd. In (a), the values of ψq are 0.1 p.u. (black line), 0.2
p.u. (blue line) and 0.3 p.u. (red line). In (b), the values of ψd are 0.6 p.u.
(black line), 0.8 p.u. (blue line) and 1.0 p.u. (red line).

where Ldu and Lqu are the unsaturated inductances, and α,

β, γ, a, b, c, and d are nonnegative constants. The model has

only nine parameters in total. A similar modeling approach

has been used in connection with induction motors [17].

V. EXPERIMENTAL RESULTS

The studied motor is a transverse-laminated 6.7-kW four-

pole SyRM. The rated values are: speed 3175 r/min; frequency

105.8 Hz; line-to-line rms voltage 370 V; rms current 15.5 A;

and torque 20.1 Nm.

A. Data Fitting

The measurements were carried out in steady state at a

constant speed ωm = 0.3 p.u. The measurement range was

id = 0.1 . . . 0.7 p.u. and iq = −1.4 . . . 1.4 p.u. The inductance

data were calculated in rotor coordinates as

L̂d =
uq −Rsiq
idωm

, L̂q =
ud −Rsid
iqωm

(22)
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Fig. 5. Experimental results showing a slow load-torque reversal from the rated load to the negative rated load: (a) Results with constant model inductances;
(b) Results with the proposed magnetic saturation model. The speed reference is 0.1 p.u. and id = 0.5 p.u. The first subplot shows the measured speed
(blue) and the estimated speed (red). The second subplot shows the measured currents in the estimated rotor coordinates. The third subplot shows the torque
reference of the loading drive (blue) and the estimated torque (red). The last subplot is the estimation error of the rotor position (in electrical degrees).

It is worth noticing that the inductance calculation is sensitive

to small measurements errors at lowest current values.

The parameters of the proposed model are fitted by mini-

mizing the cost function

J(Ldu, Lqu, α, β, γ, a, b, c, d)

=
N
∑

n=1

(

L̂d,n − Ld,n

)2

+
(

L̂q,n − Lq,n

)2 (23)

where the inductances Ld and Lq are calculated from the

functions (21) using the actual values of the fluxes ψd and

ψq in each operating point. The index n refers to an operating

point and N is the total number of different operating points.

Since the exponents d was noticed to approach zero in the

fitting procedure, it was preset to zero. The fitted per-unit

parameters are given in Table I.

The measured inductance data and the curves from the fitted

functions are shown in Fig. 4. The d-axis inductance Ld is

shown as a function of ψd for three different values of ψq in

Fig. 4(a). Similar representation for the q-axis inductance Lq

is used in Fig. 4(b). It can be seen that the proposed model fits

very well to the measured data. The cross-saturation appears

to be very significant in the analyzed machine; in the case of

no cross-saturation, the curves in Fig. 4 would overlap.

TABLE I
FITTED PER-UNIT PARAMETERS

Ldu Lqu α β γ a b c d

2.73 0.843 0.847 3.84 2.37 6.61 1.33 0.41 0

B. Application Example: Sensorless Full-Order Observer

As an application example, the proposed saturation model

(21) was implemented in a full-order observer of a sensorless

6.7-kW SyRM drive [18]. The parameters given in Table I

were used.

Results of changes in load torque are shown in Fig. 5. The

load torque was stepped from zero to the rated value at t = 1
s and then reversed to the negative rated value in a ramp from

t = 4 s to t = 10 s. The speed reference was kept at 0.1 p.u.

Fig. 5(a) shows the results with constant model inductances

and Fig. 5(b) shows the results with the proposed magnetic

saturation model. It can be seen that the error in the estimated

position with the proposed model is smaller at all torque levels.

The slight variation in the position estimation error indicates

that there are still some model uncertainties.

Results of a load-torque steps are shown in Fig. 6. The load

torque was reversed from the negative rated value to the rated

value at t = 1 s and removed at t = 4 s. It can be seen that the
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Fig. 6. Experimental results showing load-torque steps (negative rated → rated → 0): (a) Results with constant model inductances; (b) Results with the
proposed magnetic saturation model. The speed reference is 0.1 p.u. and id = 0.5 p.u.

position estimation error in transient states with the proposed

model is smaller than that of without the model.

VI. CONCLUSION

This paper proposed an explicit function for modeling the

magnetic saturation of the SyRM. The saturation is modeled

by means of two-dimensional power functions, where the

cross-coupling between the d- and q-axes is taken into account.

The proposed function fulfills the reciprocity condition. The

function can be easily implemented in computer simulations

and real-time control algorithms. The model was fitted to

the measured inductance data of a 6.7-kW SyRM. As an

application example, the proposed saturation model was im-

plemented in a full-order observer of a motion-sensorless

drive. Experimental results show that the control accuracy

and position estimation accuracy are improved by taking the

saturation effect into account.

ACKNOWLEDGMENT

The authors would like to acknowledge ABB Oy for the

financial support.

REFERENCES

[1] A. Vagati, A. Fratta, G. Franceschini, and P. M. Rosso, “Ac motors
for high-performance drives: a design-based comparison,” in Conf. Rec.

IEEE-IAS Annu. Meeting, vol. 1, Orlando, FL, Oct. 1995, pp. 725–733.

[2] A. Boglietti, A. Cavagnino, M. Pastorelli, and A. Vagati, “Experimental
comparison of induction and synchronous reluctance motors perfor-
mance,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 1, Hong Kong,
Oct. 2005, pp. 474–479.

[3] A. Vagati, M. Pastorelli, F. Scapino, and G. Franceschini, “Impact of
cross saturation in synchronous reluctance motors of the transverse-
laminated type,” IEEE Trans. Ind. Appl., vol. 36, no. 4, pp. 1039–1046,
Aug. 2000.

[4] S. Yamamoto, T. Ara, and K. Matsuse, “A method to calculate transient
characteristics of synchronous reluctance motors considering iron loss
and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1,
pp. 47–56, Jan. 2007.

[5] H. Kim, J. Hartwig, and R. D. Lorenz, “Using on-line parameter
estimation to improve efficiency of IPM machine drives,” vol. 2, Cairns,
Australia, Nov. 2002, pp. 815–820.

[6] T. Senjyu, K. Kinjo, N. Urasaki, and K. Uezato, “High efficiency control
of synchronous reluctance motors using extended Kalman filter,” IEEE

Trans. Ind. Electron., vol. 50, no. 4, pp. 726–732, Aug. 2003.

[7] P. Niazi, H. A. Toliyat, and A. Goodarzi, “Robust maximum torque per
ampere (MTPA) control of PM-assisted SynRM for traction application,”
IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538–1545, Jul. 2007.

[8] H. C. J. de Jong, “Saturation in electrical machines,” in Proc. ICEM’80,
vol. 3, Athens, Greece, Sep. 1980, pp. 1545–1552.
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