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Modeling of Multiport DC Busses in

Power-Electronic Systems

Matti Liukkonen, Marko Hinkkanen, Jorma Kyyrä, and Seppo J. Ovaska

Aalto University School of Electrical Engineering

Espoo, Finland

Abstract—This paper deals with dynamic modeling of multi-
port DC busses, which are increasingly applied in various DC-
power distribution systems, such as hybrid powertrains and DC
microgrids. Parasitic impedances of long DC cabling together
with distributed DC capacitors introduce a potential risk of small-
signal instabilities in the DC bus, if resonance frequencies of the
bus appear below (or around) switching frequencies of power-
electronic converters. In order to predict the resonance behavior
of the bus, a systematic approach for dynamic modeling of the DC
bus in power-electronic systems is presented. The DC-bus model
is validated by means of experiments. Furthermore, application
of the model in small-signal analysis and time-domain simulations
is illustrated.

Index Terms—Cable, DC bus, modeling, multiport.

I. INTRODUCTION

Multiport DC busses are applied in emerging applications,

such as industrial and household DC distribution systems [1],

more-electric aircraft [2], powertrains of electrified transporta-

tion systems [3], and non-road mobile machineries [4]. An

example of a system with a multiport DC bus is shown

in Fig. 1. In these kind of applications, the DC bus is

typically distributed, i.e., DC capacitors are placed inside

individual converters, which may be located far away from

each other. Therefore, parasitic DC-cable impedances become

considerable, and they have to be taken into account in the

control design and system stability assessments. Furthermore,

the change of the capacitor type from electrolytic capacitors

to film capacitors introduces a need to examine the system

stability with decreasing capacitance values.

The risk of instability in a cascade-connected system con-

sisting of a DC source, an LC filter, and a regulated load is

well known. The stability analysis and design methods have

been considered for regulated DC loads [5]–[8] as well as

for three-phase AC loads [9]–[15]. Traditionally, nonlinear

models of regulated DC or AC loads have been first averaged

over the switching cycle and then linearized for small-signal

analysis purposes. The small-signal stability has been studied

by means of linearized models, which are typically expressed

in a form of state-space representations or transfer functions.

The product of the source impedance and the load admittance

(called as a minor loop gain) together with the Nyquist

criterion have been used to analyze the small-signal stability,

cf. [6], [7] and references therein. Alternatively, the local

stability has been analyzed based on the eigenvalues of the

linearized system, e.g. [3]. Typically, constant-power loads

have been assumed, leading to a negative conductance as a
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Fig. 1. Example system equipped with a DC bus, where parasitic cable
inductances are also shown. This system could be, e.g., a hybrid powertrain
of a mobile working machine or a future building equipped with a DC
distribution network. Naturally, the system could include more sources, loads,
and energy storages.

small-signal model. In more advanced load admittance models,

the effect of nonideal control loops has been considered [13],

[14]. Furthermore, the sampling and pulse-width modulator

(PWM) delays have been taken into account in [12], [15].

Recently, the above mentioned concepts have been applied

to developing stabilizing controllers for systems involving

multiport DC busses [2], [8], [16], while systematic derivation

of multiple-input-multiple-output (MIMO) models for the DC

bus has mostly been disregarded. As the number of ports in-

creases, developing state-space equations or transfer functions

becomes laborious without a systematic approach. Further-

more, increase in the number of the ports adds resonance

frequencies to the bus. Moreover, these resonances appear

typically in the range of 1. . . 20-kHz frequency. Therefore, it

is important to take the phase-shifting effect of the delays

properly into account on load admittance modeling.

Contributions of this paper are on the systematic mul-

tiport DC-bus modeling approach, presented in Section II.

The proposed modeling approach is experimentally validated

in Section III-A. An application example in Section III-B

illustrates the risk of instability in the DC bus by means of

small-signal analysis and time-domain simulations.

II. MODELING OF A DC BUS

The DC-bus impedance is considered to consist of the input

capacitances of power-electronics converters and DC cabling
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Fig. 2. DC transmission line: (a) dimensions; (b) model.

between them. The converters with their loads are modeled as

admittances, which are connected to ports of the DC bus.

A. Cabling

Fig. 2(a) illustrates dimensions of a DC transmission line.

The corresponding equivalent circuit is shown in Fig. 2(b)1.

The DC values for the cable inductances and resistances

are considered. These low-frequency values can be seen to

yield a worst-case scenario from the point of resonances,

since the inductances are overestimated and resistances are

underestimated compared to their values at high frequencies.

The self-inductance of the transmission line at low frequen-

cies may be estimated with [17]

L =
µ0ℓ

π

[

ln

(

d

a

)

+
1

4

]

(1)

where ℓ is the length of the transmission line, a is the

conductor radius, d is distance between the cable centers, and

µ0 = 4π ·10−7 H/m is the permeability of free space. The first

term inside the brackets corresponds to the external inductance

and the second term corresponds to the internal inductance.

The internal inductance decreases with the frequency due to

the skin effect. As an example, the ratio d/a = 5 yields L/ℓ =
0.74 µH/m.

The DC resistance of the transmission line is

R =
2ℓ

σA
(2)

where A = πa2 is the cross section of the wire, and σ
is the conductivity (σ = 5.8 · 107 S/m for copper). The

resistance increases significantly with the frequency due to

the skin effect and temperature. Furthermore, the real cabling

parameters differ from (1) and (2), e.g., due to uncertainties in

the actual dimensions. However, these fundamental equations

can be used as a starting point, if measurement data is not

available.

1In this paper, a voltage arrow from positive towards negative is used to
represent polarity.
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Fig. 3. DC-bus model. Admittances Y1 . . . Yn represent load (and source)
models, which can be, e.g., nonlinear time-domain models or small-signal
transfer functions.

B. Capacitors

DC capacitors are typically located inside the power-

electronic converters. However, from the modeling point of

view, it is more convenient to include them as a part of the

DC-bus model. A DC capacitor could be modeled in a wide

range of frequencies as

ZC(s) =
1

sC
+ sLC +RC (3)

where C is the capacitance, LC is the equivalent series

inductance, and RC is the equivalent series resistance of the

capacitor. The undamped natural frequency

ω0 =
1√
LCC

(4)

corresponding to the impedance in (3) is typically higher

than switching frequencies applied in DC-power distribution

systems. Hence, ideal DC capacitors will be assumed in the

DC-bus model. In order to increase the frequency range of

the DC-bus model, the equivalent series inductances of the

capacitors could be taken into account.

C. Dynamic DC-Bus Model

Fig. 3 shows a DC-bus model (augmented with load mod-

els). Without loss of generality, the inductance between port

1 and the point of common coupling is zero. The inductors

model the parasitic inductance of long cables. Due to the

capacitors connected across each port, the inputs of the system

are the currents i1 . . . in and the outputs are the capacitor

voltages u1 . . . un.

First, the DC bus with three ports is considered for sim-

plicity. Based on Fig. 3, the state equations can be written

as

C1

du1

dt
= i1 + iL2 + iL3 (5a)

C2

du2

dt
= i2 − iL2 (5b)

C3

du3

dt
= i3 − iL3 (5c)

L2

diL2

dt
= u2 − u1 −R2iL2 (5d)

L3

diL3

dt
= u3 − u1 −R3iL3 (5e)



where iL2 and iL3 refer to inductor currents. If n ports are

assumed, the state equations can be expressed in matrix form

as

C
du

dt
= −FiL + i (6a)

L
diL

dt
= Gu−RiL (6b)

where the input current vector is i = [i1, i2, · · · , in]T and

the voltage vector is u = [u1, u2, · · · , un]
T. The capacitance

matrix is

C =











C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn











(7)

and inductance and resistance matrices are

L =











L2 0 · · · 0
0 L3 · · · 0
...

...
. . .

...

0 0 · · · Ln











R =











R2 0 · · · 0
0 R3 · · · 0
...

...
. . .

...

0 0 · · · Rn











(8)

The coupling matrices F and G are

F =















−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1















G =











−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
. . .

...

−1 0 0 · · · 1











(9)

Other kind of couplings could be modeled in a similar way.

Based on (6), the port voltages can be expressed as

u(s) = [sC + F (sL+R)−1
G]−1

i(s)

= Z(s)i(s)
(10)

where Z(s) is the impedance matrix. If the resistance R = 0

is assumed, the resonance frequencies of Z(s) can be solved

from

det(ω2
I −C

−1
FL

−1
G) = 0 (11)

A three-port DC bus is considered as an example. Hence,

the representation in (10) reduces to





u1(s)
u2(s)
u3(s)



 =





Z11(s) Z12(s) Z13(s)
Z12(s) Z22(s) Z23(s)
Z13(s) Z23(s) Z33(s)









i1(s)
i2(s)
i3(s)



 (12)

In order to illustrate the resonances and antiresonances, the

impedances |Z11(jω)|, |Z22(jω)|, and |Z23(jω)| of a lossless

DC bus are first shown in Fig. 4(a). Resonance frequencies

calculated using (11) are 1.0 kHz and 2.24 kHz. For compar-

ison, Fig. 4(a) also shows the impedance of the stiff system.

Fig. 4(b) shows impedances with realistic resistances based on

(2). As expected, the resonance frequencies are almost equal

to the lossless case.
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Fig. 4. Impedances: (a) lossless DC bus (R2 = R3 = 0) and the stiff
system (L2 = L3 = 0); (b) DC bus with realistic resistances. Capacitances
are C1 = 2 mF and C2 = C3 = 4 mF and inductances are L2 = L3 = 6.3
µH.

D. Loads and Sources

In Fig. 3, admittances Y1 . . . Yn represent load and source

models. Since the same concepts hold for modeling both loads

and sources, the term load is used in the following. The load

model can be, e.g., a detailed nonlinear model, as illustrated

in Fig. 5(a). However, conclusions based on only nonlinear

time-domain models may be difficult to draw. Thus, the small-

signal behavior in the vicinity of an operating point can be

described by means of a linearized small-signal model, such

as the admittance shown in Fig. 5(b). These methods together

give a tool for analyzing and illustrating the stability margin of

the system. Some aspects of small-signal modeling are briefly

discussed in the following.

In order to derive a small-signal model, the original non-

linear model is first averaged over a switching period. The

resulting switching-cycle averaged model is valid up to around

the switching frequency if two samples per switching cycle

are taken. A well-defined switching-cycle averaged model can

be expressed as a nonlinear state-space representation, which

can be unambiguously linearized by means of well-known

techniques. The system to be linearized can be complicated

since control loops and their delays should be taken into

account. However, more insight into the system can be ob-

tained with the help of linearized models as compared to using

time-domain simulations or experiments only. Linearized input

admittances of three-phase converters have been considered in,

e.g., [14], [15], [18].
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Fig. 5. Example three-phase load model: (a) block diagram of nonlinear
system; (b) linearized small-signal model.

As a result of the linearizing procedure, the transfer function

Y1(s) = −i1(s)/u1(s) can be obtained in the case of the

example system shown in Fig. 5, where the sign of the current

flowing to the load is defined in accordance with Fig. 3. Using

matrix notation, the load current vector i(s), which is the input

of the DC bus model, can be expressed as

i(s) = −Y (s)u(s) (13)

In the case of a distributed control of each load, the admittance

matrix is

Y (s) =











Y1(s) 0 · · · 0
0 Y2(s) · · · 0
...

...
. . .

...

0 0 · · · Yn(s)











(14)

Furthermore, the load model could be augmented with external

disturbances [such as a varying AC-side voltage in Fig. 5(a)]

with Norton or Thevenin equivalent sources. Without any

external inputs, the closed-loop system consisting of the DC-

bus model and load admittances becomes

[I +Z(s)Y (s)]u(s) = 0 (15)

If delays are included in the linearized model, it is convenient

to apply the loop gain matrix Z(s)Y (s) (whose elements are

the minor loop gains) and open-loop analysis methods such as

the Nyquist and Bode plots, when studying the stability and

robustness of the system.

III. RESULTS

A. Experimental Validation of the DC Bus Model

Typical cable dimensions in (1) and (2) with the mini-

mum distance d between cable centers (obtained from cable

datasheets) yield the inductance range of 0.8. . . 0.35 µH/m

and the resistance range of 23. . . 0.11 mΩ/m with the cross

section range of 1.5. . . 300 mm2, respectively. In practice, the

distance d is larger than its minimum value calculated from

datasheets, which increases the actual inductance. Fig. 6 shows

inductances of 35-mm2 and 50-mm2 DC cables measured

using an RLC meter. Hereafter, the value of L/ℓ = 1 µH/m

will be used.
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Fig. 6. Measured inductance of 35-mm2 and 50-mm2 DC cables. Measure-
ments were performed with an RLC meter.

TABLE I
DC-BUS PARAMETERS CORRESPONDING TO FIG. 7

C1 = C2 = C3 [µF] L2 [µH] L3 [µH] R2 [mΩ] R3 [mΩ]

360 3.4 3.7 3.3 3.6

In order to validate the DC-bus model presented in Section

II-C, impedances of a three-port DC bus were measured using

a frequency response analyzer. The schematic of the DC bus is

illustrated in Fig. 3. The DC transmission lines were composed

of 35-mm2 cables, and their lengths were ℓ2 = 3.4 m and ℓ3 =
3.7 m. Resulting parameters are given in Table I.

The measured and modeled impedances Z11(jω) are shown

in Fig. 7. It can be seen that the measured impedance agrees

very well with the model up to frequencies of 15 kHz. At

higher frequencies, the series inductance LC = 60 nH of the

capacitors affects: the measured phase begins to turn as induc-

tive (towards +90◦) and the antiresonance corresponding to (4)

occurs at the frequency of 36 kHz. Minor differences between

the measured and modeled impedances below frequencies of

15 kHz are mainly due to the skin effect.

B. Application Example

1) Example System: The block diagram of the example

system is shown in Fig. 8. This system has three ports: a

vector-controlled grid-connected converter is connected to port

1, an open-loop controlled induction motor drive to port 2, and

port 3 is open. In both converters, a space-vector PWM is used,

and the duty ratios are calculated based on the measured DC-

bus voltages. Discretized controllers with sampling period of

Ts = 1/(2fsw) are used, where fsw is the switching frequency,

and sampling is synchronized to the PWM. The total delay in

the discrete control systems is Td = (3/2)Ts, which consists

of the computation delay (Ts) and sample-and-hold behavior

of the PWM (Ts/2). The parameters of the example system

are given in Table II.

The voltage controller calculates the reference power as

Pref =
C1

2

(

kp +
ki

s

)

(

u2

1,ref − u2

1

)

(16)

where C1 is the capacitance of the grid-connected converter,
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Fig. 8. Example system consisting of a vector-controlled grid-connected converter in port 1, an open-loop controlled induction motor drive in port 2, and
port 3 is open. Resistors in series with inductors are not shown in the figure.
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Fig. 7. Measured and modeled frequency responses of the impedance
Z11(jω). Parameters given in Table I were used in the model.

and the gains are kp = 2ζωn and ki = ω2
n .2 The reference grid

current in grid-voltage coordinates is obtained as

ig,ref =

[

igd,ref

igq,ref

]

=

[

2

3

Pref

‖ug‖

0

]

(17)

where the reactive current component igq,ref is set to zero. A PI-

type current controller in synchronous coordinates is applied

in the grid-connected converter [19].

The open-loop controlled motor drive is modeled as a three-

phase LR load and the back emf. The parameters of the load

correspond to a 160-kW induction motor [18].

2) Small-Signal Analysis: The load models of the example

system were linearized in a similar way to [15]. The delay

Td of the actual discrete-time control system was taken into

account as exp(−sTd). In order to determine the operating

2If inner control loops were ideal, ωn and ζ would equal the undamped
natural frequency and the damping ratio of the closed-loop transfer function
from the reference DC-bus voltage to the actual DC-bus voltage.

TABLE II
PARAMETERS AND OPERATING POINT OF THE EXAMPLE SYSTEM (PHASE

QUANTITIES, PEAK VALUES)

Parameter Value

Motor drive

Back emf ‖e‖ 251 V
Leakage inductance Lσ 0.70 mH
Resistance Rσ 32 mΩ
Stator angular frequency ωs 2π · 50 rad/s
Power into the stator 196 kW
Switching frequency fsw 4 kHz

Grid-connected converter system

Voltage ‖ug‖ 376 V
Inductance Lg 1.0 mH
Resistance Rg 4.0 mΩ
Angular frequency ωg 2π · 50 rad/s
Voltage controller

Undamped natural frequency ωn 2π · 20 rad/s
Damping ratio ζ 1

Current controller bandwidth 2π · 400 rad/s
Switching frequency fsw 4 kHz

DC bus

Capacitance C1 2 mF
Capacitances C2 = C3 4 mF
Lengths of transmission lines

Stable case: ℓ2 = ℓ3 5 m
Unstable case: ℓ2 = ℓ3 30 m

Inductance per length L/ℓ 1.0 µH/m
Resistance per length R/ℓ 0.29 mΩ/m

point, the AC loads were transformed to synchronous coor-

dinates. The linearized load models were formulated as load

admittances, and small-signal stability analysis of the example

system was carried out in various operating points and system

parameters. Since the delay is included in the model, the

stability margin was evaluated by means of the loop-gain

matrix Z(s)Y (s).

As an example, Fig. 9 shows the DC-bus impedance

Z11(jω), the load admittance Y1(jω), and the minor loop gain

Z11(jω)Y1(jω). The operating point and the parameters are

given in Table II. The transmission-line lengths are 30 m.

Based on the minor loop gain, it can be concluded that the

system is unstable since the phase margin becomes 0◦ at

around the frequency of 1 kHz while the magnitude is over 1.
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Fig. 10. Initial transient in the DC-bus voltage u1 with 5-m (stable) and
30-m (unstable) transmission-line lengths.

Based on the linearized model, the minor loop gain at port 1

becomes stable, if the transmission-line lengths are decreased.

In addition, if the direction of the power flow is reversed or

the switching frequency (which determines the delay Td) is

increased, this minor loop gain also becomes stable. However,

the switching frequency needs to be increased significantly,

in this case up to 30 kHz. Naturally, the voltage controller

gains affect the stability via load admittances, and thus, those

should be chosen in accordance with the presented small-

signal analysis.

3) Time-Domain Simulations: Fig. 10 shows time-domain

simulation examples with parameters given in Table II. When

the lengths of the transmission lines are 5 m, the system is

stable. The transmission-line lengths of 30 m lead to unstable

operation, seen as oscillations in the voltage u1. Thus, the

time-domain simulation results agree well with the small-

signal analysis.

IV. CONCLUSION

A systematic modeling approach for a multiport DC busses

in power-electronic converter systems is proposed. The model

is valid up to resonance frequencies of the DC-bus capacitors.

The model can be applied both in time-domain simulations

and small-signal analysis. If the DC-bus model is augmented

with load admittances, the stability margins of the system can

be evaluated.
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[12] H. Mosskull, J. Galić, and B. Wahlberg, “Stabilization of induction
motor drives with poorly damped input filters,” IEEE Trans. Ind.

Electron., vol. 54, no. 5, pp. 2724–2734, Aug. 2007.
[13] P. Liutanakul, A.-B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and

F. Meibody-Tabar, “Linear stabilization of a dc bus supplying a constant
power load: a general design approach,” IEEE Trans. Power Electron.,
vol. 25, no. 2, pp. 475–488, Feb. 2010.

[14] J. Puukko, T. Messo, L. Nousiainen, J. Huusari, and T. Suntio, “Nega-
tive output impedance in three-phase grid-connected renewable energy
source inverters based on reduced-order model,” in Proc. IET RPG’11,
Edinburgh, UK, Sept. 2011.

[15] O. Wallmark, S. Lundberg, and M. Bongiorno, “Input admittance
expressions for field-oriented controlled salient PMSM drives,” IEEE

Trans. Power Electron., vol. 27, no. 3, pp. 1514–1520, Mar. 2012.
[16] E. Jamshidpour, B. Nahid-Mobarakeh, P. Poure, S. Pierfederici, and

S. Saadate, “Distributed stabilization in DC hybrid power systems,” in
Proc. IEEE VPPC’11, Chicago, IL, Sept. 2011.

[17] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Reading, MA:
Addison Wesley, 1989.

[18] H. Mosskull, “Robust control of an induction motor drive,” Ph.D.
dissertation, Sch. Elect. Eng., Royal Inst. Tech. (KTH), Stockholm,
Sweden, 2006.

[19] L. Harnefors and H.-P. Nee, “Model-based current control of AC
machines using the internal model control method,” IEEE Trans. Ind.

Appl., vol. 34, no. 1, pp. 133–141, Jan./Feb. 1998.

Powered by TCPDF (www.tcpdf.org)


