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Simulating Spin Chains Using a Superconducting Circuit:
Gauge Invariance, Superadiabatic Transport, and Broken
Time-Reversal Symmetry

Antti Vepsäläinen and Gheorghe Sorin Paraoanu*

Simulation of materials by using quantum processors is envisioned to be a
major direction of development in quantum information science. Here, the
mathematical analogies between a triangular spin lattice with
Dzyaloshinskii–Moriya coupling on one edge and a three-level system driven
by three fields in a loop configuration are exploited to emulate spin-transport
effects. It is shown that the spin transport efficiency, seen in the three-level
system as population transfer, is enhanced when the conditions for
superadiabaticity are satisfied. It is demonstrated experimentally that
phenomena characteristic to spin lattices due to gauge invariance,
non-reciprocity, and broken time-reversal symmetry can be reproduced in the
three-level system.

1. Introduction

Richard Feynman, in a landmark paper from 1982,[1] suggested
that quantum phenomena might be efficiently predicted by us-
ing other, better controllable quantum systems, as simulators.
Later in 1999 Seth Lloyd showed[2] that a universal quantum
computer based on the gate model[3] can be used to solve the
Schrödinger equation by the trotterization of its unitary evo-
lution operator. With superconducting qubits, demonstrations
of such digital simulations of spin systems have been recently
realized.[4,5] While large-scale quantum computers based on the
discrete gate model are still decades away, analog simulations
on small-scale quantum “emulators” are presently feasible.[6]

The overhead, in terms of number of qubits and operations,
is remarkably small. For example, single-device multilevel sys-
tems such as the one used in the present work have been
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already utilized for the simulation of large
spins,[7] two-qubit dynamics,[8] and mo-
tional averaging.[9]

Here, we use a three-level system to
simulate transport phenomena in three-
spin chains with XX nearest-neighbor in-
teraction and Dzyalozhinskii–Moriya next-
nearest-neighbor interaction. These types
of spin lattices play an essential role
in our understanding of magnetic phe-
nomena: they contain both the standard
XX couplings and the asymmetric spin
exchange found phenomenologically by
Dzyaloshinskii,[10] and whose microscopic
basis, related to spin–orbit coupling and
inversion symmetry breaking, has been

revealed by Moryia.[11] These models have been studied inten-
sively in connection with magnetic phenomena,[12–15] see re-
view in ref. [16]. Engineered systems that realize the same
spin physics have been proposed in circuit QED[17] and later
realized experimentally.[18,19] Related devices displaying non-
reciprocality and broken time-reversal symmetry have been
realized in nanomechanics[20–23] and in degenerate ultracold
gases.[24]

We show that, in general, the spinHamiltonianmaps onto that
of a multilevel system with driven transitions with complex ma-
trix elements; thus, amultilevel system can be seen as a universal
simulator of spin chains with any type of interaction. We put in
evidence effects such as gauge invariance, chirality, broken-time
reversal symmetry, and nonreciprocity. Our focus is on simulat-
ing transport phenomena in spin chains by a specificmodulation
of the couplings which will be discussed in detail below. We em-
phasize that also the imperfections of the real condensed-matter
system (inhomogenous broadening in our case) are directly em-
ulated by the multilevel system (through the presence of ac Stark
shifts), see also the discussion in Lloyd’s seminal paper.[2] Thus,
in contrast to the case of digital simulation or quantum informa-
tion processing, we do not aim at realizing high-fidelity transfer
protocols; instead, we are interested in protocols that are demon-
strably robust under experimental errors with realistic devices.
In general, there are two ways in which transport of excitations

can be realized: sequential and adiabatic. The first implies trans-
ferring the excitation between next-neighbor sites by using Rabi
pulses.[25] The sequential method is fast but at the same time
sensitive to errors in the timing of the pulses and their shape.
In contrast, the adiabatic method is based on the modulation
of the coupling elements in such a way that the system follows
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the dark state, and yields the desired robustness against imper-
fections of the pulses. However, the method is also slow, as re-
quired by the adiabatic theorem.[26] Several acronyms are used to
describe various versions of this process.[27] Stimulated adiabatic
passage (SAP) is a general term encompassing many physical re-
alizations: for example Bose–Einstein condensates in three wells
formed by optical trapping, quantum dots, sound waves, coupled
waveguides, etc. Similarly, coherent tunneling via adiabatic pas-
sage (CTAP) is often used in works on spin-1/2 particles,[28] elec-
trons in triple quantum dots[29] and three-well Bose–Hubbard
systems,[30] and triangular harmonic-trap lattices where single
atoms are transferred.[31] Exactly solvable models of coherent
transfer by adiabatic passage in 2D lattices, including triangular
ones, were studied in ref. [32]. In the specific case of spin lattices
however, spatial transport of spins is often referred to as dark-
state adiabatic passage (DSAP),[33] which is the terminology we
will also use.
While both the sequential and adiabatic methods have advan-

tages and disadvantages, there exists, surprisingly, a way to get
the best of the two worlds. This is based on a simple but pow-
erful observation made by Berry[34] and anticipated by several
authors[35–38]: a system can follow exactly the adiabatic state by
using an additional counterdiabatic Hamiltonian tailored to can-
cel the nonadiabatic excitations. This type of evolution is called
superadiabatic or transitionless, and several variations have been
explored theoretically.[39] In spin systems, transport assisted by
counteradiabatic terms has been proposed in ref. [40], a method
that can be called superadiabatic DSAP (saDSAP).
In the present experiment, the goal is to simulate this form

of transport by using the first three states of a superconducting
transmon circuit[41,42] by controlling the system with three mi-
crowave tones. This type of driving, called loop-drive or Δ con-
figuration, has been discussed theoretically in various contexts
in atomic physics.[43–46] Two of the drives realize the stimulated
Raman adiabatic passage (STIRAP), while the third provides
the counterdiabatic correction Hamiltonian required in saDSAP.
This configuration results in the creation of a synthetic gauge
potential with a gauge-invariant Aharonov–Bohm phase, which
can be controlled externally, allowing us to simulate the related
gauge-invariance phenomenon in spin systems. This contrasts to
the simpler case of two-field drive, where the phases of the driv-
ing fields can be eliminated by a gauge transformation, and also
with the case of two-level systems, where again the phase of the
counterdiabatic pulse is irrelevant. In three-level systems one can
use this pulse sequence to realize the superadiabatic STIRAP (sa-
STIRAP), provided that active time-domain compensation for ac
Stark shifts is performed.[47–49] The results present here show that
it is possible to have significant population transfer also in the ab-
sence of this technique, simulating the transport in spin chains
in the realistic experimental conditions when the presence of en-
ergy shifts due to magnetic fields or shifts due to modulation of
the couplings.
Our results open up several interesting perspectives in circuit

quantum electrodynamics, for example toward the use of driven
three-level systems for realizing qubits immune to noise.[50] The
two-photon driving technique might be useful also in other sys-
tems which have a forbidden direct transition, for example in
quantum optics where the Laporte rule prevents the coupling
of levels with the same parity in centrosymmetric molecules.

Scaling up to chains of transmons would allow the use of the
energy levels as additional synthetic dimensions and the cre-
ation of synthetic gauge potentials.[51,52] In such configurations
one could perform simulations of field theories governed by the
SU(3) gauge symmetry,[53] such as lattice QCD with its associ-
ated SU(3) color gauge. The special counterdiabatic coupling al-
lows also for various spin-1 particle adiabatic dynamics, realiz-
ing the multilevel Cook–Shore model for spins.[54,55] Finally, the
three-level transmon can be operated with well-defined detun-
ings, which allows the simulation of detrapping phenomena in
small quantum networks.[46]

In general, superadiabatic methods form a bridge between the
two paradigms of quantum control, and allow one to exploit the
advantages of both. The combination of robustness under pa-
rameter fluctuations and drive errors, together with fast opera-
tion times wouldmake superadiabatic protocols especially advan-
tageous for reducing the effects of decoherence and increasing
the signal-to-noise ratio. For adiabatic quantum computers,[56]

quantum-annealing processors,[57,58] and holonomic quantum
computing[59–61] this would be one important route to achiev-
ing quantum advantage.[62] In quantum thermodynamics, dur-
ing the adiabatic cycle of a quantum engine the system should
not only be decoupled from the thermal reservoir but also inter-
level transitions should be suppressed, leading to superadiabatic
engines with increased power,[63] and providing novel insights
into the foundations of the third law of thermodynamics.[64–66]

In cyclic processes, such as those used in heat engines, supera-
diabaticity provides a quantitative expression of Carnot’s formu-
lation of the third law of thermodynamics by showing why abso-
lute zero is not achievable in finite time.[64–66] Finally, techniques
of Floquet-engineering of the counterdiabatic term in Ising
models[67] and of adiabatic transfer of entanglement in quantum
dot arrays[68] and spin lattices with anti-ferromagnetic (Heisen-
berg) couplings,[69] open new avenues for quantum-information
tasks in complex lattices.
The paper is organized as follows: we start in Section 2 by

establishing the mathematical equivalence between the single-
excitation three-site spinmodel and the three-level transmon.We
also give a straightforward derivation of the pulse sequence re-
quired for superadiabatic transport. In Section 3 we present a se-
ries of technical details on the experiment. The main results on
putting in evidence the gauge-invariant phase, the broken time-
reversal symmetry and the currents are presented in Section 4.
Our conclusions are presented in Section 5.

2. Mapping of Spin Models into Multilevel Systems

2.1. Spin Models

Our goal is to simulate the transfer of excitation in a spin chain
with a structure shown in Figure 1. We consider the spin Hamil-
tonian in a convenient parametrization,

H = ℏ

4

∑
j≠k

Ωjk cos𝜙jk

(
𝜎xj 𝜎

x
k + 𝜎

y
j 𝜎

y
k

)

+ℏ
4

∑
j≠k

Ωjk sin𝜙jk

(
𝜎xj 𝜎

y
k − 𝜎

y
j 𝜎

x
k

)
(1)
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Figure 1. a) A 1D spin lattice with nearest-neighbor (single line) and next-
nearest-neighbor (double line) interaction. b) Equivalent 2D representa-
tion as a triangular lattice with only nearest-neighbor interaction. In gen-
eral, the interactions can be complex-valued (Peierls couplings) leading
to broken-time reversal symmetry and the development of an Aharonov–
Bohm gauge-invariant phaseΦ. Three sites, 0,1,2, have been marked here
(dark-blue dots), anticipating the mapping to a three-level system.

which is called the isotropic XX model with Dzyaloshinskii–
Moriya interaction. The Dzyaloshinskii–Moriya term is relevant
in the proximity of magnetic surfaces where spin–orbit coupling
becomes relevant.
We also assume the presence of uncontrollablemagnetic fields

Bj on each site, leading to an additional Zeeman-splitting Hamil-
tonian which produces inhomogenous broadening

Hinh = −ℏ𝛾
2

∑
j

Bj𝜎
z
j (2)

with 𝛾 the gyromagnetic ratio. We assume that the Bj’s are fluc-
tuating around the zero-value.
Here 𝜎xj and 𝜎

y
j are the spin-1/2 x- and y- Pauli matrices associ-

ated with the site j. Indeed, the first term is the standard XX inter-
action, symmetric in the exchange of x- and y and resulting from
the dot product of spins, while the second results from spin–orbit
interactions which has the form of a cross-product and it is anti-
symmetric under the exchange of x and y. The parametrization
in terms of an angle 𝜙 of the relative strengths of these interac-
tions has a clear physical meaning if we write 𝜎xj = 𝜎+

j + 𝜎−
j and

𝜎
y
j = −i𝜎+

j + i𝜎−
j , where 𝜎

±
j are spin-1/2 raising and lowering op-

erators for site j, 𝜎+
j |↑⟩ = |↓⟩, 𝜎+

j |↓⟩ = 0, 𝜎−
j |↓⟩ = |↑⟩, 𝜎−

j |↑⟩ = 0.
Then

H = ℏ

2

∑
j≠k

Ωjk

(
ei𝜙jk𝜎+

j 𝜎
−
k + e−i𝜙jk𝜎−

j 𝜎
+
k

)
(3)

This type of Hamiltonians are relevant for the analysis of non-
trivial spin structures that allow transfer of spin (angularmomen-
tum) without transfer of charge.[70,71] The 1D lattice with nearest-
neighbor and next-nearest-neighbor interactions from Figure 1a
can also be seen as a 2D triangular lattice with only nearest-
neighbor interactions, as shown in Figure 1b. Such lattices ap-
pear in a variety of systems–for example in Bose–Einstein con-
densates of atoms with two internal states in the Mott-insulator
phase where it yields three-spin interactions.[72] It was shown
that spin chains with complex nearest-neighbor and next-nearest

neighbor interactions lead to the Hofstadter butterfly energy
spectrum and to the appearance of edge states.[73]

Spin transport in this model can be studied by introducing the
spin current operator,[70,71] which is obtained from the continuity
equation 𝜕t𝜎

z
j +

∑
k Ij→k = 0. When comparing it to the Heisen-

berg equations of motion 𝜕t𝜎
z
j =

i
ℏ
[H, 𝜎zj ] we get

Ij→k = iΩjke
i𝜙jk𝜎+

j 𝜎
−
k − iΩjke

−i𝜙jk𝜎−
j 𝜎

+
k (4)

Also, the chirality operator in the z-direction for the triangular
lattice is defined as in ref. [74]

Cz =
1

2
√
3
𝜎⃗1
(
𝜎⃗2 × 𝜎⃗3

)
(5)

Consider the three-sites array, which will be the focus of
our experiment. A very useful classification of the eigenstates
of the Hamiltonian can be obtained by noticing that [H, Sz] =
0, where Sz = (1∕2)

∑
j 𝜎

z
j is the total spin of the chain in the

z-direction. Thus, the Hilbert space can be separated in sub-
spaces with Sz = −3∕2,−1∕2, 1∕2, 3∕2, that is |↓, ↓, ↓⟩, {|↑, ↓, ↓⟩,|↓, ↑, ↓⟩, |↓, ↓, ↑⟩}, {|↓, ↑, ↑⟩, |↑, ↓, ↑⟩, |↑, ↑, ↓⟩}, and |↑, ↑, ↑⟩. In this
case, the Sz = −3∕2 and Sz = 3∕2 states are left identical by the
evolution under the Hamiltonian (1), while the dynamics on the
Sz = −1∕2, 1∕2 subspaces correspond to spinwaves. Thesewaves
can be also seen as the transport of a single excitation (spin-up or
spin-down) in the chain.
It is important to realize that the relevant observables do not

have cross-couplings between these subspaces. The operator that
counts the number of spin excitations, N =

∑
j 𝜎

+
j 𝜎

−
j has eigen-

values 0,1,2, and 3 on these subspaces since N = 3∕2 + Sz. The
currents also have zero matrix elements between subspaces with
different Sz. For the chirality, the eigenvectors |Cz, Sz⟩ in the sub-
space Sz = −1∕2 are

|Cz,−1∕2⟩ = 1√
3

(|↑↓↓⟩ + e2iCz𝜋∕3|↓↑↓⟩ + e4iCz𝜋∕3|↓↓↑⟩), (6)

with eigenvalues Cz = 0,±1. The eigenvalues of Cz on the Sz =
1∕2 subspace are obtained by flipping all the spins,

|Cz, 1∕2⟩ = 𝜎x1𝜎
x
2𝜎

x
3 |Cz,−1∕2⟩. (7)

2.2. Multilevel Hamiltonians

To simulate the dynamics of the Hamiltonian Equation (1), the
key observation is that the number of spin excitations is con-
served by the dynamics. Thus, the 23 = 8-dimensional Hilbert
space breaks down into two 3D Hilbert spaces and two other ad-
ditional states with no dynamics. Due to this property the simula-
tion can be realized using a three-level system with states |0⟩, |1⟩,
and |2⟩.
Consider for example the subspace Sz = −1∕2 (N = 1). We

can identify |↑, ↓, ↓⟩ = (1, 0, 0)T = |0⟩, |↓, ↑, ↓⟩ = (0, 1, 0)T = |1⟩,|↓, ↓, ↑⟩ = (0, 0, 1)T = |2⟩. Similarly, for Sz = 1∕2 (N = 2) we
identify |↓, ↑, ↑⟩ = (1, 0, 0)T = |0⟩, |↑, ↓, ↑⟩ = (0, 1, 0)T = |1⟩,|↑, ↑, ↓⟩ = (0, 0, 1)T = |2⟩.
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Inhomogenous-broadening terms appear in the simulator
mostly as a result of ac Stark shifts, which can be significant if
the values of the amplitudes of the pulses are large. We therefore
have

HacStark =
ℏ

2

∑
j

𝜖j| j⟩⟨ j|, (8)

which reproduces the action of Hinh with 𝜖j = ±𝛾(
∑

k≠j Bk − Bj)
on the subspaces with Sz = ±1∕2.
The operators appearing in Equation (1) can be identified with

the Gell–Mann operators (see Section 1A, Supporting Informa-
tion).

Λs
jk ↔ 𝜎+

j 𝜎
−
k + 𝜎−

j 𝜎
+
k = 1

2

(
𝜎xj 𝜎

x
k + 𝜎

y
j 𝜎

y
k

)
(9)

Λa
jk ↔ −i𝜎+

j 𝜎
−
k + i𝜎−

j 𝜎
+
k = −1

2

(
𝜎xj 𝜎

y
k − 𝜎

y
j 𝜎

x
k

)
(10)

Here Λs
jk and Λa

jk are the symmetric and antisymmetric Gell–
Mann operators defined as: Λs

jk = Λs
kj = |j⟩⟨k| + |k⟩⟨j| (symmet-

ric) and Λa
jk = −Λa

kj = −i|j⟩⟨k| + i|k⟩⟨j| (anti-symmetric).
As we will see, the Hamiltonian

H = ℏ

2
Ω01n̂01 ⋅ 𝚲01 +

ℏ

2
Ω12n̂12 ⋅ 𝚲12 +

ℏ

2
Ω02n̂02 ⋅ 𝚲02 (11)

can be implemented by driving a transmon qubit in the
loop configuration with Rabi frequencies Ωjk = Ωkj, and with
𝜙jk the phases of the driving fields where by convention
𝜙jk = −𝜙kj, where n̂jk are unit vectors in a plane defined
as n̂jk = (cos𝜙jk,− sin𝜙jk), with j, k ∈ {0, 1, 2}. The matrix
vector comprising the Gell–Mann matrices is defined as
𝚲jk = (Λs

jk,Λ
a
jk).

This Hamiltonian realizes the so-called loop driving con-
figuration for three-level systems[44,45] (also referred to as Δ
configuration[46]) with complex (Peierls) couplings between each
pair of states.
In the simulator, the currents can be obtained from identify-

ing the population on a level j with the operator 1
2
(1 + 𝜎z) for the

case Sz = −1∕2 (N = 1) and with 1
2
(1 − 𝜎z) for the case Sz = 1∕2

(N = 2). Indeed, when averaged on superpositions of {|↑, ↓, ↓⟩ ,|↓, ↑, ↓⟩, |↓, ↓, ↑⟩} these operators yield the modulus squared of
the complex amplitude of the state with the j spin flipped. Thus,
the currents in the simulator are

Ij→k = −
Ωjk

2

(
sin𝜙jkΛs

jk − cos𝜙jkΛa
jk

)
(12)

The chiral operator corresponding to Equation (5) can be iden-
tified straightforwardly as

Cz =
√
3
3

(
Λa
01 + Λa

12 + Λa
20

)
(13)

Chiral states are obtained as a quantum Fourier transform

|Cz⟩ = 1√
3

∑
j=0,1,2

e2𝜋ijCz∕3| j⟩ (14)

Table 1. Summary of equivalence between the spin chain and the simula-
tor.

Spin chain Simulator

N = 1 or N = 2 subspaces of three spins qutrit Hilbert space

XX interaction Λs coupling

Dzyaloshinskii–Moriya interaction Λa coupling

inhomogeneous broadening ac Stark shifts

chirality quantum Fourier

DSAP STIRAP

saDSAP saSTIRAP

which can be immediately inverted

| j⟩ = 1√
3

∑
j=0,1,2

e−2𝜋ijCz∕3|Cz⟩ (15)

2.3. Adiabatic and Superadiabatic Processes

The possibility ofmanipulation of the couplings of the spin chain
raises the issue of efficient and robust transfer of state between
sites. This can be done by employing adiabatic and superadia-
batic processes.
For both the spin chain and the multilevel simulator we

can define the DSAP and respectively the STIRAP processes
by the requirement that the system follows the dark state|D(t)⟩ = cosΘ(t)|0⟩ − sinΘ(t)|2⟩, as the mixing angle Θ(t) =
tan−1[Ω01(t)∕Ω12(t)] is varied slowly from 0 to 𝜋∕2. Let us recall
that the eigenvalues of the STIRAP Hamiltonian H01(t) +H12(t)
comprise the dark state |D(t)⟩ with eigenvalue 0, as well as two
states of the form (sinΘ|0⟩ + cosΘ|2⟩ ± |1⟩)∕√2 with eigenval-

ues±ℏ
√

Ω2
01 + Ω2

12∕2, respectively, see for example ref. [85]. Here
sinΘ|0⟩ + cosΘ|2⟩ is the bright state, orthogonal to the dark state
in the subspace {|0⟩, |2⟩}.
To accelerate the process, one could use the concept of su-

peradiabaticity, where a counterdiabatic correction pulse is ap-
plied to suppress excitations on states other than the dark state.
The resulting protocols are denoted by saSTIRAP for the sim-
ulator and saDSAP for the spin chain. Table 1 summarizes the
equivalence between the two systems. The form of the counter-
diabatic pulse in the case of three-level systems can be found by
applying the general superadiabatic protocol[34,36–38] to the case of
STIRAP.[75,76] It is interesting to note that in this specific case, the
counterdiabatic Hamiltonian was found[44,45] several years before
the general formalism[34,36–38] was developed. In Section 1C, Sup-
porting Information, we provide a proof of these results based
on the method of adiabatic potentials.[77] Here we give a direct,
straightforward derivation based on the Schrödinger equation.
Specifically, we would like to find under which conditions the

dark state is a solution of the Schrödinger equation with total
Hamiltonian H01(t) +H12(t) +H02(t). This leads immediately to

sinΘ
(
2iΘ̇ − e−iΦΩ02

)|0⟩ + cosΘ
(
2iΘ̇ + eiΦΩ02

)|2⟩ = 0 (16)

where Φ = 𝜙01 + 𝜙12 + 𝜙20 is the gauge-invariant phase, to be
discussed in detail later. We see that this can be satisfied only
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Figure 2. Schematic of the experimental platform used for simulations. a) Microwave instruments and components at various temperature stages are
used to control the transmon device installed at the mixing chamber. b) Optical image of the sample, showing the transmon and part of the coplanar
waveguide resonator used for measurement. c) Energy levels and driving fields in the loop driving configuration. STIRAP pulses Ω01(t) and Ω02(t) are
applied resonantly into the transitions 𝜔01(t) and 𝜔02(t), respectively, while the counteradiabatic control is realized by the two pulses Ω̃01 and Ω̃12 with
detuning Δ.

if Φ = −𝜋∕2 and Ω02 = 2Θ̇(t). Thus, if we set 𝜙01 = 𝜙12 = 0, the
counterdiabatic Hamiltonian takes the form

Hcd(t) = −ℏ
2
Ω02(t)Λa

02 =
ℏ

2
Ω02(t)Λa

20 (17)

where, as previously, Λa
kl = −Λa

lk = −i|k⟩⟨l| + i|l⟩⟨k| are the anti-
symmetric Gell–Mann matrices.
It is interesting to note that the Gell–Mann matrices Λs

01, Λ
s
12,

and Λa
02, form a closed subalgebra and can be regarded respec-

tively as the x, y, and z-components of a spin-1 particle since [Λs
01,

Λs
12] = iΛa

02 and circular permutations thereof. Thus, STIRAP can
be seen as the adiabatic guiding of a spin-1 in the xOy plane by
a magnetic field with x, y-components (Ω01,Ω12). The mixing an-
gleΘ is then the angle formed by themagnetic field (and the spin
which follows its direction) with the y-axis. Interestingly, saSTI-
RAP achieves a faster motion in the same plane by adding a con-
trol field in the z-direction: the corresponding spin z-component
produces a rotation in the x − y plane designed such that it can-
cels exactly the nonadibatic terms.

3. Experimental Platform

3.1. Measurement and Control Setup

Our experiments run on a superconducting-circuit platform, as
shown in Figure 2a. As a multilevel simulator we use a transmon
device,[41] which consists of a Cooper pair box with large shunt-
ing capacitors inserted in the gap between the signal line and the

ground of a coplanar waveguide. The latter is configured as a 𝜆∕4
resonator and used for dispersive readout. The bare resonance
frequency of the resonator (measured with the qubit far-detuned)
is fr ≃ 5.13 GHz, and for the quality factor we obtain Q ≃ 7000.
The size of the Josephson junctions is 150 × 170 nm2 and it is fab-
ricated from aluminum (90 nm film thickness) by shadow angle
evaporation on a high-resistivity Si substrate; the chip is bonded
and installed in a dilution refrigerator with∼ 20mK base temper-
ature (Figure 2b). The device is biased by amagnetic field applied
by using an additional line which is shortcut to the ground in the
proximity of the SQUID loop of the device. For this, at room tem-
perature we use an Agilent 33500B waveform generator, while a
passive low pass RC-filter anchored to the 4K-flange of the re-
frigerator (cutoff frequency of ∼ 500 Hz) is used to filter out the
thermal noise.
The transmon is controlled by sending microwave pulses

through a coplanar waveguide which is evaporated on the chip
and capacitively interacts with the large transmon shunting ca-
pacitor. The pulses are created by mixing their envelopes, cre-
ated by an arbitrary wavefrom generator (Tektronix 5014B), with
a continuous microwave tone. In the setup, three IQ-mixers (IQ-
0307L), denoted by g1, g2, and g3, are used to create pulses at
three different control frequencies (Figure 2a). In order to ensure
the phase-coherence of the pulses, a single local oscillator tone at
7.608 GHz (generated by an Anritsu MG3692C) is used, and the
pulse envelopes are digitally modulated by an intermediate fre-
quency tone.
The mixers are calibrated at the beginning of each experi-

ment by standard techniques in order to reduce the leakage and
the spurious sidebands. The detection scheme is a homodyne
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measurement: the signal from a vector network analyzer (PNA-L
N5230C) at a frequency fp = 5.1249 GHz is split into two parts,
one mixed in the IQ-mixer m1 (IQ-0307LXP) with a rectangu-
lar waveform, and the other used as the LO. Demodulation and
digitization is done by mixer m2 (IQ-0307LXP) and by an analog-
to-digital converter (Acquiris U1082a). To perform quantum state
tomography, we record the demodulated traces in time domain.
We first prepare the system in the states |0⟩, |1⟩, and |2⟩ and use
these traces as calibration. The calibration measurement fideli-
ties of the states |1⟩ and |2⟩, with |0⟩ as reference, are 95.7% and
88.4%, respectively. To extract the populations for a general state,
we assume the measured trace to be a linear combination of the
calibration traces. Using the least squares fit, we can extract the
coefficients of the linear combination in the basis of the calibra-
tion traces.[78]

We first characterize the device: spectroscopy measurements
allow us to identify the transition frequencies 𝜔01 and 𝜔12 be-
tween the energy levels of the device at different bias magnetic
fields and extract the parameters of the electrical circuit. We
obtain a Josephson energy at the sweet spot EJΣ = EJ,1 + EJ,2 ≃
h × 26.235 GHz, a charging energy EC ≃ h × 282MHz (which re-
sults in an anharmonicity ℏ𝜔12 − ℏ𝜔01 ≈ −EC), and a junction
asymmetry d = |EJ,1 − EJ,2|∕(EJ,1 + EJ,2) ≃ 0.02. When the qubit
frequency is tuned to be on resonance with the 𝜆∕4 resonator,
we observe an avoided crossing in the spectrum, which allows us
to extract the qubit-resonator coupling g ≃ 103 MHz. After this,
the magnetic field is kept fixed at a bias point corresponding to
𝜔01∕(2𝜋) = 7.381 GHz and 𝜔12∕(2𝜋) = 7.099 GHz.
At this biasing point, we measure the relaxation rates from the

state 1 and 2 by exciting the system with 𝜋 pulses and recording
the decay. We obtain Γ10 = 5.0 MHz and Γ21 = 7.0 MHz. From
Ramsey interference experiments, we find that in this sample
the dephasing times are dominated by the energy relaxation. To
model the decoherence, we use the standard Lindblad formal-
ism for a three-level system,[79,80] with a superoperator [𝜌] =
−Γ21𝜌22|2⟩⟨2| − (Γ10𝜌11 − Γ21𝜌22)|1⟩⟨1| + Γ10𝜌11|0⟩⟨0|.
3.1.1. STIRAP pulses

In order to create the microwave pulses used for STIRAP, we ap-

ply two IF waves with Gaussian envelopes exp[− t2

2𝜎2
], exp[− (t−ts)2

2𝜎2
]

and phases 𝜙01, 𝜙12 to the I ports of the mixers g1 and g2. These
pulses couple resonantly into the 0 ↔ 1 and 1 ↔ 2 transitions,
resulting in Rabi couplings

Ω01(t) = Ω01 exp
[
− t2

2𝜎2

]
(18)

Ω12(t) = Ω12 exp
[
−
(t − ts)

2

2𝜎2

]
(19)

and yielding the matrix elements ⟨0|H(t)|1⟩ = ⟨1|H(t)|0⟩∗ =
Ω01(t) exp(i𝜙01) and ⟨1|H(t)|2⟩ = ⟨2|H(t)|1⟩∗ = Ω12(t) exp(i𝜙12).
For convenience, the Gaussians were truncated at ±3𝜎. The
Gaussian pulses are not the only possible choice for the STIRAP
pulse shape, but they are experimentally and theoretically conve-
nient without sacrificing performance.[76] In this parametrization

𝜎 is the width of the pulses, and the counterintuitive STIRAP se-
quence is realized at negative pulse separation times ts < 0. The
resulting form of the STIRAP Hamiltonian[81] in the Gell–Mann
representation is then

HSTIRAP(t) =
ℏ

2
Ω01(t)n̂01 ⋅ 𝚲01 +

ℏ

2
Ω12(t)n̂12 ⋅ 𝚲12 (20)

which reproduces the first two terms of Equation (11).

3.1.2. Counterdiabatic drive

If the adiabaticity condition for STIRAP is broken, for example
by attempting to drive the system too fast, the system gets dia-
batically excited away from the state |D(t)⟩, reducing the trans-
ferred population. However, it is possible to accelerate the STI-
RAPprotocol by employing the technique of reverseHamiltonian
engineering.[34,36–38] This requires the addition of a counterdia-
batic pulse with a very specific shape and with complex coupling
into the 0 − 2 transition - which for the case of transmon is a for-
bidden transition in the first order. To create this pulse, we gener-
ate an IF signal with envelope cosh−1∕2[ts(t − ts∕2)∕𝜎2] and phase
𝜑̃, and apply it to the I port of the mixer g3. The frequency of
the IF tone is set such that, after mixing with the local oscillator,
the resulting upconverted frequency would match half of the for-
bidden transition𝜔02∕(2𝜋) = 14.480 GHz. Thus, this two-photon
drive is detuned from both the 0 − 1 and 1 − 2 transitions by
an amount ±Δ, which equals to half the transmon anharmonic-
ity Δ = (𝜔01 − 𝜔12)∕(4𝜋) = 141 MHz. This generates an effective
matrix element ⟨0|H(t)|2⟩ = ⟨2|H(t)|0⟩∗ = Ω02(t) exp(i𝜙02) with-
out populating the state |1⟩. The Rabi coupling Ω02(t) is obtained
from the perturbation theory[82] asΩ02(t) = Ω̃01(t)Ω̃12(t)∕(2Δ) and
𝜙02 = −𝜙20 = 2𝜑̃ + 𝜋. Note that we define Ω02 as a real positive
quantity. Thus we obtain the last term from Equation (11)

H02(t) =
ℏ

2
Ω02(t)n̂02 ⋅ 𝚲02 (21)

Satisfying the relation Φ = 𝜙01 + 𝜙12 + 𝜙20 = −𝜋∕2 amounts to
producing a complex Peierls matrix element ⟨0|Hcd(t)|2⟩ =⟨2|Hcd(t)|0⟩∗ = (ℏ∕2)Ω02(t) exp(i𝜋∕2). For equal-amplitude Gaus-
sian STIRAP pulses, from the relation Ω02(t) = 2Θ̇(t) we get
Ω02(t) = −(ts∕𝜎2) cosh

−1[ts(t − ts∕2)∕𝜎2].

3.2. Pulse Calibration

Overall, the pulses described above results in couplings of
the form H(t) =

∑
j≠k Hjk(t), where Hjk(t) =

ℏ

2
Ωjk(t)(cos𝜙jkΛs

jk −
sin𝜙jkΛa

jk), which reproduces the form Equation (11). In addition
to these terms, ac Stark shifts are produced by off-resonant drives.
In our case, the largest ac Stark shifts are produced by the two-
photon pulse, which effectively displaces the energy levels of the
qutrit as seen by the STIRAP pulses; this produces in general (see
Section 2, Supporting Information)HacStark(t) =

ℏ

2

∑
j 𝜖j(t)|j⟩⟨j| as

in Equation (8). These shifts are expected to occur also in the spin
chain, where they will appear as inhomogenous broadening. In
principle it is possible to exactly cancel these shifts by techniques
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Figure 3. The population of the state |2⟩ as a function of the amplitude
pulse asymmetry 𝜂 = (Ω12 − Ω01)∕(Ω12 + Ω01) of the STIRAP pulses and
of the time shifts of the counterdiabatic pulse Ω02(t) → Ω02(t − 𝛿t02).
The black circles correspond to the values used in experiments, 𝜂 =
−0.22,−0.09, and a reference 𝜂 = 0, from left to right. The parameters
used in the numerics are k = |ts|∕𝜎 = 2.45 and 𝜎 = 25 ns.

such as time-dependent frequency corrections[47–49] or by an
additional two-photon drive, designedwith a detuningwith oppo-
site sign and a 𝜋 phase in one of the drives.[50] However, whether
these techniques can be implemented depends on the particular
physical system and the associated array of available experimen-
tal methods. For example, in optical systems the control of the
phase of the lasers might not be possible with sufficient accuracy.
Here, we attempt to optimize the transfer by varying the pa-

rameters of the STIRAP pulses and the timing of the counterdia-
batic pulse. The results are presented in Figure 3. Note that for
the numerics we use the full Hamiltonian = 01 +12 +02
as given in Section 1B [Equations (1), (2), and (7)], Supporting
Information, which incorporates all cross-couplings of the fields
into the transmon transitions. We characterize the pulse am-
plitude asymmetry of the Gaussian pulses by a parameter 𝜂 =
(Ω12 − Ω01)∕(Ω12 + Ω01) and we shift the counterdiabatic pulses
by a quantity 𝛿t02, Ω02(t) → Ω02(t − 𝛿t02). From Figure 3 we ob-
serve the existence of a rather large plateau of transferred popu-
lation around 𝛿t02 = 0, showing a quite remarkable insensitivity
to the STIRAP pulse symmetry. For the experiments, we choose
to operate at two points, (𝜂 = −0.22, 𝛿t02 = 0) and (𝜂 = −0.09,
𝛿t02 = 0) which are somewhat in themiddle of one of the plateaus
and therefore are less exposed to errors. Using these pulses we
typically reach experimental values for p2 in the range 0.8 – 0.9.

4. Results

4.1. Synthetic Gauge-Invariant Phase

The calibration procedure described above was done by optimiz-
ing one of the phases of the three pulses while keeping the other
two fixed. This is allowed by the gauge-invariance of the system
with respect to the total circular phaseΦ = 𝜙01 + 𝜙12 + 𝜙20 as we
will demonstrate explicitly here.

To show this, we first examine the couplingHamiltonian Equa-
tion (11)

H(t) = ℏ

2
Ω01(t)n̂01 ⋅ 𝚲01 +

ℏ

2
Ω12(t)n̂12 ⋅ 𝚲12

+ ℏ

2
Ω02(t)n̂02 ⋅ 𝚲02, (22)

comprising the driving fields that couple into each pair of states
k, l ∈ {0, 1, 2} with Rabi frequencies Ωjk (real and positive) and
phases 𝜙jk. This describes three simultaneous rotations in the
three subspaces 0 − 1, 1 − 2, and 0 − 2 around the vectors n̂kl.
In each of the subspaces (k, l), the action of the Hamiltonian is
analogous to that of a spin-1/2 particle in a magnetic field of
magnitude Ω12 and direction n̂kl. For a single spin-1/2 particle
it is always possible to rotate the axis so that one of them over-
laps with the direction of the magnetic field. Crucially, for the
three-level system it is not possible to rotate arbitrarily all the
three vectors n̂kl. Indeed, by applying a unitary U = e−i𝜒0 |0⟩⟨0| +
e−i𝜒1 |1⟩⟨1| + e−i𝜒2 |2⟩⟨2| one obtains a Hamiltonian UHU† with
a similar structure as Equation (11) but with different angles
𝜙′
kl; these new angles are not arbitrary, but they satisfy the con-

straint 𝜙′
01 + 𝜙

′
12 + 𝜙

′
20 = 𝜙01 + 𝜙12 + 𝜙20 = Φ. By performing lo-

cal gauge transformations we can always eliminate two of the
phases but the third one will be constrained by the value of the
gauge-invariant quantityΦ. The situation is mathematically sim-
ilar with that of a three-site system with complex hopping el-
ements (Peierls hopping)[83] and a magnetic field piercing the
plaquette and creating a flux Φ.[51,52] This conclusion holds also
for the total HamiltonianH +HacStark, since by inspecting the ac
Stark part Equation (8)

HacStark(t) =
ℏ

2

∑
j

𝜖j(t)| j⟩⟨ j| (23)

we have UHacStarkU
† = HacStark. We can then define the Wilson

loop around the triangle contour as

W△ = ei𝜙01+𝜙12+𝜙20 = eiΦ (24)

which is the path-ordered product of link variables exp(i𝜙jk) ∈
U(1).
In Figure 4 we present the population transferred to state |2⟩

using saSTIRAP when either of the angles 𝜙01, 𝜙12, and 𝜑̃ are var-
ied, while keeping the other two fixed. The populations are mea-
sured at a time t = 20 ns. The experiment shows clearly that the
method can successfully transfer population to state |2⟩, given
the correct choice of the phases and shows that the three phases
for a given transferred population are not independent from each
other. From the data, the 𝜋-periodicity of the population trans-
ferred as a function of the phase 𝜑̃ of the two-photon drive pulse
is alsomanifest. In contradistinction, a sequential process (where
we populate the first excited state, then transfer to the second ex-
cited state) should display a 2𝜋 periodicity in the single-photon
drive phase. This demonstrates the fully quantum-coherent na-
ture of the process.
Once the phenomenon of gauge invariance is demonstrated,

we can proceed by fixing the gauge. A convenient choice is
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Figure 4. Transferred population p2 as a function of the phases 𝜙01, 𝜙12,
and 𝜑̃ of the externally applied microwave fields. The three plots cor-
respond, from the upper to the lower picture, to 𝜙01 = 0, 𝜙12 = 0 and
𝜑̃ = 0, respectively; the other parameters for these measurements are
Ω01∕(2𝜋) = 25 MHz, Ω12∕(2𝜋) = 16 MHz (𝜂 = −0.22), ts = −45 ns, and
𝜎 = 30 ns. The slope of the constant-population lines are positive in the
two upper pictures and negative in the lowest one, and the 𝜑̃ periodicity
is twice as large as that of the periodicity in 𝜙01 and 𝜙12. This verifies the
relation 𝜙01 + 𝜙12 − 2𝜑̃ − 𝜋 = Φ.

𝜙′
01 = 0, 𝜙′

12 = 0, and 𝜙′
20 = Φ, which leads to the following struc-

ture for Equation (11),

HΦ(t) =
ℏ

2
Ω01(t)Λs

01 +
ℏ

2
Ω12(t)Λs

12 +
ℏ

2
Ω02(t)n̂Φ ⋅ 𝚲02, (25)

where n̂Φ = (cosΦ, sinΦ). This form puts in evidence the role of
the gauge-invariant phase Φ as a parameter in the Hamiltonian,
which can be controlled experimentally along with the Rabi fre-
quencies Ω01(t), Ω12(t), and Ω02(t).

4.2. Broken Time-Reversal Symmetry

For a spin lattice the time-reversal symmetry is relatively straight-
forward to understand. Amagnetic field, either applied externally
or resulting from the complex phases of the couplings, remains
invariant when time runs backward; as a result, the time-reversed
Schrödinger equation is no longer satisfied. This leads to nonre-
ciprocal phenomena: an input signal at one lattice site might be
transmitted to another site, but nothing will be transmitted if we
reverse the direction of the signal. In practice, this can be used for
realizing non-reciprocal devices such as circulators or isolators.
Here, we examine in detail the time-reversal symmetry of

the problem. We first note that STIRAP itself is clearly time-
symmetric. Indeed, starting from state |2⟩ as the initial state and
running backward in time the STIRAP process, the system will
see the Ω01 wave as the Stokes pulse and then the Ω12 wave
as the pump pulse, thus realizing the usual counterintuitive se-
quence. Experimentally, STIRAP reversal has been demonstrated
already in ref. [81]. This can be understood by recalling that in
this situation the wavefunction simply follows the slow variation
of the Hamiltonian dark state as the mixing angle varies from 0
to 𝜋∕2. Thus, when reversing the direction of time,Θ → 𝜋∕2 − Θ

and cosΘ|0⟩ − sinΘ|2⟩ → −(cosΘ|2⟩ − sinΘ|0⟩), with the roles
of the states |2⟩ and |0⟩ reversed, as expected.
The situation changes dramatically when the additional trans-

fer path provided by the two-photon pulse is introduced and the
gauge-invariant phase Φ is established. In the spin system one
sees immediately that this is equivalent to the appearance of a
magnetic field piercing the plaquette. We do expect then to have
a broken time symmetry if this magnetic field is non-zero, and a
time-symmetric problem otherwise, and similar considerations
will hold for the three-level system.
As usual in time-reversal problems, we define an antilinear

complex conjugation operator ; when applied from the right
to the Schrödinger equation

iℏ
𝜕|𝜓(t)⟩
𝜕t

= HΦ(t)|𝜓(t)⟩ (26)

we obtain

−iℏ 𝜕
𝜕t
|𝜓(t)⟩ = HΦ(t)|𝜓(t)⟩ (27)

where we used 2 = 1. A time-reversed Schrödinger equation

iℏ
𝜕|𝜓 ′(t′)⟩
𝜕t′

= H′
Φ′ (t′)|𝜓 ′(t′)⟩, (28)

where t′ = −t, can be obtained by identifying |𝜓 ′(t′)⟩ = |𝜓(t)⟩
and H′

Φ′ (t′) = HΦ(t). By examining Equation (25) we notice
that HΦ(t) = H−Φ+2n𝜋(t). Thus, the time-reversed evolution
corresponds to changing the gauge-invariant phase toΦ′ = −Φ +
2n𝜋 (or 𝜑̃′ = −𝜑̃ − (n + 1)𝜋), and the time-reversal symmetry is
broken for all values of Φ, with the exception of Φ = n𝜋 (or
𝜑̃ = −(n + 1)𝜋∕2). These results agree also with the findings in
ref. [17] for a three-site lattice, corresponding to reversing the
direction of magnetic field piercing the lattice in Figure 1b. It
is important to understand that these considerations do not de-
pend on the particular gauge used in Equation (25): the same
conclusion is reached if the Hamiltonian Equation (11) is exam-
ined. This is due to the fact that no gauge transformation can
make the Hamiltonian Equation (11) real, with the exception of
the case Φ = 𝜙01 + 𝜙12 + 𝜙20 = n𝜋. In the spin lattice, this case
corresponds to an integer number of flux quanta per unit cell.
Also, because the Hamiltonian HacStark is invariant under time-
reversal (there is no phase-dependence in the ac Stark shifts), the
breaking of the time-reversal symmetry due toHΦ should be ob-
servable when the system is evolved under the full Hamiltonian
comprising also the inhomogenous/ac-Shifted part.
To demonstrate the gradual onset of the broken time-

symmetry regime, we perform the experiments shown in
Figure 5, where wemeasure the transferred populations at differ-
ent phases 𝜑̃. We introduce the area of the counterdiabatic pulse
02 = ∫ ∞

−∞ dtΩ02(t) and we define the STIRAP pulse area as =

∫ ∞
−∞ dt

√
Ω2
01(t) + Ω2

12(t) which is a measure of adiabaticity of the
STIRAP process. In Figure 5a we show the population of state |2⟩
as a function of the area of the counterdiabatic pulse and phase.
We can also examine the dependence of the population p2 on the
STIRAP area, while keeping the counterdiabatic pulse area02
constant, see 5b. As expected from the previous gauge-invariance
considerations and the use of a two-photon transition |0⟩ → |2⟩,
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Figure 5. Observation of broken time-reversal symmetry, with experimental data shown as a continuum and the simulations as contour plots. We
measure the transferred population as a function of the gauge-invariant phase Φ (controlled experimentally via the phase 𝜑̃) at increasing values
of the a) two-photon pulse area 02 and b) STIRAP area . The experimental parameters were (a) ts = −61 ns, 𝜎 = 25 ns, Ω01∕(2𝜋) = 44 MHz,
Ω12∕(2𝜋) = 36.8 MHz,  = 5.5𝜋 and (b) ts = −37.5 ns 𝜎 = 25 ns, and 02 = 0.81𝜋. The transition into the regime of broken time-reversal symmetry
(corresponding to nonreciprocality in the spin system) is seen through the gradual emergence of Φ-dependence as (a)02 or (b) is increased.

the transfer is 𝜋-periodic in 𝜑̃. One notices however small devia-
tions from perfect 𝜋-periodicity especially in Figure 5b, reflecting
the limitations of the two-photon approximation.
We further observe the main features of broken time-reversal

symmetry: when both the STIRAP process and the counteradi-
batic fields are on, the transfer is in general not symmetric un-
der the transformation 𝜑̃→ −𝜑̃ − (n + 1)𝜋. The plots also show
that if either one of the couplings is turned off, time-symmetry
is restored. For example, in Figure 5a there is no phase depen-
dence for 02 = 0. Similarly, from Figure 5b we notice the ab-
sence of phase dependence for = 0, as expected when only the
two-photon pulse is applied, while in the other extreme case, at
large values  > 12𝜋, STIRAP dominates and the phase depen-
dence becomes again weaker. In general, these patterns of trans-
fer are complicated but they are reproduced very well by the nu-
merical modeling of the total Hamiltonian (contour plots). For
the ideal case of unitary evolution under HΦ(t), the maximum
transfer should occur at 02 = 𝜋 (which follows immediately
by using Ω02(t) = 2Θ̇(t)) and at −2𝜑̃ − 𝜋 = Φ = −𝜋∕2 + 2n𝜋 (or
𝜑̃ ≈ 3𝜋∕4 + n𝜋 ). However, in general the presence of the Hamil-
tonianHacStark shifts these optimal phases and areas to other val-
ues (see Section 2, Supporting Information), depending on the
specific parameters of the pulses. Still, the values of the mea-
sured optimal phases are reproduced quite well by the numerics,
typically within 0.09𝜋. In these regions of optimal transfer, the
population on state |2⟩ exceeds 0.9.
This experiment also shows, as emphasized in ref. [17], that an

intimate connection exists between gauge invariance and time
symmetry, which experimentally amounts to the fact that time-
reversal symmetry is fully controlled by only one parameter, the
gauge-invariant phase Φ.

4.3. Currents and Chirality

For transport phenomena in spin chains, the measurement
and analysis of the currents provide important insights into

the dynamics. Much attention has been given so far to the case
where the currents exhibit a circular flow, which can be made
clockwise or anticlockwise by changes in the gauge-invariant
phase.[18,19] Here we will show that the analysis of currents give
important insights into the mechanism by which the number of
excitations transferred from one site to another is maximized by
adiabatic processes.
To start with, let us calculate the time-dependent currents in a

dark state. Using Equation (12) we find

⟨D(t)|I0→2|D(t)⟩ = 1
2
Ω02(t) sin 2Θ(t) sin𝜙02 (29)

and

⟨D(t)|I0→1|D(t)⟩ = ⟨D(t)|I1→2|D(t)⟩ = 0 (30)

We notice that current I0→2 depends not only on Ω02, as ex-
pected, but also on the mixing angle Θ(t). Clearly for equal-
strength STIRAP pulsesΩ01 = Ω12 the maximum current is real-
ized in the middle of the protocol, that is, at t = ts∕2. The magni-
tude of the current is modulated by the sin𝜙02 factor. For 𝜙02 =
𝜋∕2 (or Φ = −𝜋∕2) we obtain a maximum current

⟨D(t)|Imax
0→2|D(t)⟩ = 1

2
Ω02(t) sin 2Θ(t) (31)

in the direction of increasing the population on the state |2⟩. For
𝜙02 = −𝜋∕2 (or Φ = 𝜋∕2) the current would flow in the opposite
direction: the transfer realized by STIRAP is undone by the two-
photon pulse. The fact that the averages of I0→1 and I0→1 on the
dark state are zero reflects the fact that the state |1⟩ is not popu-
lated. The result has a paradoxical flavor, since a quanta is trans-
ferred along a trajectory without apparently going through the in-
termediate positions, which leads to infinite Bohmian velocities
at those positions.[84]
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Let us examine now the time-derivative of the population
p2(t) = sin2 Θ(t); we find

ṗ2(t) = Θ̇(t) sin 2Θ(t). (32)

We can immediately compare Equations (29) and (30) with
Equation (32). To have consistency between these results, we
need to impose the condition Ω02(t) = 2Θ̇(t) and 𝜙02 = 𝜋∕2.
These are precisely the requirements of superadiabatic driving.
Next, we give a more precise account of the intuition that sa-

STIRAP can be seen as a constructive interference effect between
two paths, one corresponding to the STIRAP process and the
other to the two-photon process. This argument illustrates sur-
prisingly well why a purely imaginary value for the 0 − 2 driving
is necessary.
Let us consider the case  = 0. Since the state |1⟩ is not pop-

ulated, let us consider the two-photon process with Hamiltonian

H02 =
ℏ

2
Ω02n̂Φ ⋅ 𝚲02 (33)

where n̂Φ = (cosΦ, sinΦ) is a unit vector in the plane xOy and
𝚲02 = (Λs

02,Λ
a
02) is the vector formed by the symmetric and anti-

symmetric Gell–Mann matrices. In this subspace the evolution
operator is

U(t) = e−
i
ℏ
∫ t
−∞ d𝜏H02(𝜏) = e−

i
2 ∫ t

−∞ d𝜏Ω02(𝜏)n̂Φ𝚲02 . (34)

Now, the components of 𝚲02 are essentially Pauli matrices in the
0 − 2 subspace (and all the othermatrix elements are zero), there-
fore we can use a familiar formula for the exponential of Pauli
matrices.

einΦ⋅𝚲02 = cos n + in̂Φ ⋅ 𝚲02 sin n, (35)

with n = − 1
2
∫ t
−∞ d𝜏Ω02(𝜏) and nΦ = nn̂Φ, resulting in

U(t) = cos
(
1
2 ∫

t

−∞
d𝜏Ω02(𝜏)

)

−in̂Φ ⋅ 𝚲02 sin
(
1
2 ∫

t

−∞
d𝜏Ω02(𝜏)

)
(36)

Since Ω02(t) = 2Θ̇(t), the state at any time is obtained as

|0⟩ → U(t)|0⟩ = cosΘ(t)|0⟩ + ei(Φ−𝜋∕2) sinΘ(t)|2⟩ (37)

It is instructive to see that this state coincides with the dark state
precisely for Φ = −𝜋∕2 as expected.
Now, for a 𝜋 pulse from t = −∞ to t = ∞ we have

∫ ∞
−∞ d𝜏Ω02(𝜏) = 𝜋, resulting in

U𝜋 = −i
(
cosΦΛs

02 + sinΦΛa
02

)
(38)

When applied to the initial state |0⟩, this leads to
U𝜋|0⟩ = (−i cosΦ + sinΦ)|2⟩ (39)

Suppose now that Φ = −𝜋∕2 (up to integer multiples of 2𝜋).
This means that U𝜋|0⟩ = −|2⟩. The same sign is obtained from

Figure 6. The averaged 0 – 2 current ⟨I02⟩ at different values of 𝜑̃. The
parameters are the same as in Figure 5a for a counterdiabatic pulse area
02 = 𝜋.

the STIRAP path, |0⟩ STIRAP
←→ −|2⟩, therefore we expect that these

paths will interfere constructively. Conversely, if Φ = 𝜋∕2 (up to
integermultiples of 2𝜋), we expect destructive interference, since
U𝜋|0⟩ = +|2⟩. This is precisely what is observed in the experi-
ment. That is, the dynamics along the STIRAP path occurs in
the {|0⟩, |2⟩} subspace.
In the experiments with the three-level simulator, the currents

can be obtained by calculating the averages of the operators Equa-
tion (12) on the state extracted from experimental data. In Fig-
ure 6we present the current ⟨I02⟩ at a few values of 𝜑̃ for02 = 𝜋

and with the rest of the parameters as in Figure 5a. In general,
the features we observe are consistent with the idealized model
above; in addition, oscillations are present in the currents due to
the ac Stark shift. At 𝜑̃ = 3𝜋∕4 + n𝜋 we obtain a relatively large
positive current. The envelope of this current matches well with
the ideal-case analytical expression Equation (31), plotted with
dotted line. As we depart from this optimal transfer point, the
current becomes more oscillatory and smaller in value. It can
even have negative values for points in the regions of minimal
population transfer, as shown in Figure 6 for 𝜑̃ = 𝜋∕4, signaling
the transfer of population backward to state |0⟩. Note also that
the points 𝜋∕4 and 3𝜋∕4 are related by the time-reversal relation
𝜑̃′ = −𝜑̃ − (n + 1)𝜋; thus, as expected, the currents show conclu-
sively the signature of broken time-reversal symmetry. Finally, let
us notice that the dark state in STIRAP and saSTIRAP involves
superpositions of states with various chiralities. However, the av-
erage of the chirality operator on this state is zero

⟨D(t)|Cz|D(t)⟩ = 0 (40)

reflecting the connection between chirality and asymmetry,
namely the fact that the chirality is expressed in terms of only
asymmetric Gell-Mann matrices Equation (13). In this sense, in-
creasing  in Figure 5b also results in a change of chirality. For
 = 0 we have

⟨0|U†(t)CzU(t)|0⟩ =
√
3
3

cosΦ sin 2Θ(t) (41)
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which is zero only at the beginning and at the end of the process
(Θ = 0,𝜋∕2) if Φ ≠ ±𝜋∕2.
This is easy to understand in the Bloch-sphere picture for the

subspace {|0⟩, |2⟩}. There, the dark state moves from the North
pole to the South pole in the z −O − x plane, while the chiral-
ity becomes the Pauli-y operator. The average value of the y-axis
projection will be therefore zero at any time for the dark state.

5. Conclusions

We have employed a transmon superconducting circuit in the
loop driving (Δ-driving) configuration as a simulator for a
spin chain with XX and Dzyaloshinskii–Moryia couplings and
subjected to time-dependent inhomogenous broadening. We
demonstrate that transport can be realized efficiently under
the condition of superadiabaticity. We put in evidence the phe-
nomenon of gauge invariance and we observe the manifestation
of broken time-reversal symmetry. Finally, we extract the currents
and show that the superadiabaticity condition leads to a maxi-
mum positive current flowing between the initial state and the
target state.
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