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Towards Orientation Learning and Adaptation in
Cartesian Space

Yanlong Huang, Fares J. Abu-Dakka, João Silvério, and Darwin G. Caldwell

Abstract—As a promising branch of robotics, imitation learn-
ing emerges as an important way to transfer human skills to
robots, where human demonstrations represented in Cartesian
or joint spaces are utilized to estimate task/skill models that can
be subsequently generalized to new situations. While learning
Cartesian positions suffices for many applications, the end-
effector orientation is required in many others. Despite recent
advances in learning orientations from demonstrations, several
crucial issues have not been adequately addressed yet. For
instance, how can demonstrated orientations be adapted to pass
through arbitrary desired points that comprise orientations and
angular velocities? In this paper, we propose an approach that is
capable of learning multiple orientation trajectories and adapting
learned orientation skills to new situations (e.g., via-points and
end-points), where both orientation and angular velocity are
considered. Specifically, we introduce a kernelized treatment
to alleviate explicit basis functions when learning orientations,
which allows for learning orientation trajectories associated with
high-dimensional inputs. In addition, we extend our approach
to the learning of quaternions with angular acceleration or jerk
constraints, which allows for generating smoother orientation
profiles for robots. Several examples including experiments with
real 7-DoF robot arms are provided to verify the effectiveness of
our method.

Index Terms—imitation learning, orientation learning, gener-
alization, human-robot collaboration.

I. INTRODUCTION

IN many challenging tasks (e.g., robot table tennis [2] and
bimanual manipulation [3]), it is non-trivial to manually de-

fine proper trajectories for robots beforehand, hence imitation
learning is suggested in order to facilitate the transfer of human
skills to robots [4]. The basic idea of imitation learning is to
model consistent or important motion patterns that underlie
human skills and, subsequently, employ these patterns in new
situations. A myriad of imitation learning techniques have
been reported in the past few years, such as dynamic move-
ment primitives (DMP) [5], probabilistic movement primitives
(ProMP) [6], task-parameterized Gaussian mixture model (TP-
GMM) [7] and kernelized movement primitives (KMP) [8].
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João Silvério is with Idiap Research Institute, CH-1920 Martigny, Switzer-
land (e-mail: joao.silverio@idiap.ch).

Darwin G. Caldwell is with Department of Advanced Robotics, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy (e-mail: dar-
win.caldwell@iit.it).

Preliminary results have been presented in IEEE International Conference
on Robotics and Automation [1].

While the aforementioned skill learning approaches have
been proven effective for robot trajectory generation at the
level of Cartesian positions and joint angles [9], [10], [11],
learning of orientation in task space still imposes great chal-
lenges. Unlike position operations in Euclidean space, orien-
tation is accompanied by additional constraints, e.g., the unit
norm of the quaternion representation or the orthogonal con-
straint of rotation matrices. In many previous work, quaternion
trajectories are learned and adapted without considering the
unit norm constraint (e.g., orientation TP-GMM [3] and DMP
[12]), leading to improper quaternions and hence requiring an
additional renormalization.

Instead of learning quaternions in Euclidean space, a few
approaches that comply with orientation constraints have been
proposed. One representative type of approach is built on
DMP [13], [14], [15], where unit quaternions were used to
represent orientation and different reformulations of DMP
were developed to ensure proper quaternions over the course
of orientation adaptation. However, [13], [14], [15] can only
adapt quaternions towards a desired target with zero angular
velocity as a consequence of the spring-damper dynamics
inherited from the original DMP.

Another solution of learning orientation was proposed in
[16], where GMM was employed to model the distribution
of quaternion displacements so as to avoid the quaternion
constraint. However, this approach only focuses on orien-
tation reproduction without addressing the adaptation issue.
In contrast to [16] that learns quaternion displacements, the
Riemannian topology of the S3 manifold was exploited in
[17] to probabilistically encode and reproduce distributions
of quaternions. Moreover, [17] provides an extension to task-
parameterized movements, which allows for adapting orienta-
tion tasks to different initial and final orientations. However,
adaptation to orientation via-points and angular velocities is
not provided.

In addition to the above-mentioned issues, learning orienta-
tions associated with high-dimensional inputs is important. For
example, in a human-robot collaboration scenario, the robot
end-effector orientation is often required to react promptly and
properly according to the user’s state (e.g., hand poses). More
specifically, the robot might need to adapt its orientation in
accordance to dynamic environments. The results [12], [13],
[14], [15] are built on time-driven1 DMP, and hence it is non-
straightforward to extend these works to learn demonstrations

1Despite that time is often transformed into a phase variable in DMP, we
will refer to DMP as a time-driven approach, since time and phase are 1-
dimensional and their mapping is bijective, which make them be equivalent
in our argument.
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TABLE I: Comparison Among the State-of-the-Art and Our Approach

Probabilistic Unit norm Via-quaternion Via-angular velocity End-quaternion End-angular velocity Angular acc (or jerk) constraints Multiple inputs†

Silvério et al. [3] X - - - X - - X

Pastor et al. [13] - X - - X -∗ - -

Ude et al. [14] - X - - X -∗ - -

Abu-Dakka et al. [15] - X - - X -∗ - -

Kim et al. [16] X X - - - - - X

Zeestraten et al. [17] X X - - X - - X

Saveriano et al. [18] - X X X X X - -

Kramberger et al. [19] - X - - X -∗ - -‡

Our approach X X X X X X X X

* In these works, primitives end with zero angular velocity, i.e., one can not set a desired non-zero velocity.
† The multiple inputs are parts of the demonstrations, which shall be distinguished from external contextual variables. For example, in a human-robot
handover task, a typical demonstration consists of a varying human hand trajectory (i.e., high-dimensional inputs) and a robot trajectory (i.e., outputs).
‡ This work considers the generalization of demonstrations towards different external contextual (or conditional) states (which could be high-dimensional).
However, the demonstrations are composed of time sequences (i.e., 1-D input) and the corresponding robot trajectories (i.e., outputs).

consisting of high-dimensional varying inputs and deal with
tasks where the robot should react to a high number of input
variables, e.g., the hand position of a human partner in a
collaborative task. In contrast, due to the employment of
GMM, learning orientations with multiple inputs is feasible
in [3], [16], [17]. However, extending these approaches to
tackle adaptations towards via-points associated with multi-
dimensional inputs is non-trivial.

While many imitation learning approaches focus on mim-
icking human demonstrations, the constrained skill learning
is often overlooked. As discussed in [20], [21], trajectory
smoothness (e.g., acceleration and jerk) will influence robot
performance, particularly in time-contact systems (e.g., strik-
ing movement in robot table tennis). Thus, it is desirable to
incorporate smoothness constraints into the process of learning
orientations.

In summary, if we consider the problem of adapting quater-
nions and angular velocities to pass through arbitrary desired
points (e.g., via-point and end-point) while taking into account
high-dimensional inputs and smoothness constraints, no pre-
vious work in the scope of imitation learning provides an all-
encompassing solution.

In this paper, we aim at providing an analytical solution
that is capable of

(i) learning multiple quaternion trajectories,
(ii) allowing for orientation adaptations towards arbitrary

desired points that consist of both unit quaternions and
angular velocities,

(iii) coping with orientation learning and adaptations associ-
ated with high-dimensional inputs,

(iv) accounting for smoothness constraints.

For the purpose of clear comparison, the main contributions
of the state-of-the-art approaches and our approach are sum-
marized in Table I.

This paper is structured as follows. We first illustrate the
probabilistic learning of multiple quaternion trajectories and
derive our main results in Section II. Subsequently, we extend
the obtained results to quaternion adaptations in Section III,
as well as quaternion learning and adaptation with angular
acceleration (or jerk) constraints in Section IV. After that, we
take a typical human-robot collaboration case as an example
to show how our approach can be applied to the learning of

quaternions along with multiple inputs in Section V. We evalu-
ate our method through several simulated examples (including
discrete and rhythmic quaternion profiles) and real experiments
(a painting task with time input on Barrett WAM robot and a
handover task with a multi-dimensional input on KUKA robot)
in Section VI. In Section VII, we discuss the related work as
well as limitations and possible extensions of our approach.
Finally, our work is concluded in Section VIII. Note that this
paper has comprehensively extended our previous work [1] in
terms of both theoretical parts (e.g., Sections IV and V) and
evaluations (e.g., Sections VI-B, VI-C and VI-E).

II. PROBABILISTIC LEARNING OF QUATERNION
TRAJECTORIES

As suggested in [7], [22], the probability distribution of
multiple demonstrations often encapsulates important motion
features and further facilitates the design of optimal controllers
[11], [23], [24], [25]. Nonetheless, the direct probabilistic
modeling of quaternion trajectories is intractable as a result
of the unit norm constraint. Similarly to [14], [16], [17],
we propose to transform quaternions into Euclidean space,
which hence enables the probabilistic modeling of transformed
trajectories (Section II-A). Then, we exploit the distribution of
transformed trajectories using a kernelized approach, whose
predictions allow for the retrieval of proper quaternions (Sec-
tion II-B). We summarize key notations used throughout the
paper in Table II.

A. Probabilistic modeling of quaternion trajectories

For the sake of clarity, let us define quaternions q1 = v1+u1

and q2 = v2 + u2, where qi ∈ S3, vi ∈ R and ui ∈ R3,
i ∈ {1, 2}. Besides, we write q̄2 = v2−u2 as the conjugation
of q2 and, q = q1 ∗ q̄2 = v + u as the quaternion product of
q1 and q̄2. The function log(·) : S3 7→ R3 that can be used to
determine the difference vector between q1 and q2 is defined
as [14]

log(q1 ∗ q̄2) = log(q) =

 arccos(v)
u

||u||
,u 6= 0

[0 0 0]>, otherwise,
(1)

where || · || denotes `2 norm. By using this function, demon-
strated quaternions can be projected into Euclidean space.
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TABLE II: Description of Key Notations

q, q̄ , quaternion and its conjugation
qa , auxiliary quaternion
ζ , transformed state of quaternion
ω , angular velocity
p , Cartesian position
C , number of Gaussian components in GMM
πc,µc,Σc , parameters of c–th Gaussian component in GMM, see (3)
w , unknown parametric vector
φ(t), Θ(t) , B-dimensional basis function vector and its corresponding expanded matrix, see (10)
ϕ(t), Ω(t) , expanded matrices, see (27) and (30)
k(·, ·) , kernel function
Dq = {{tn,m,qn,m}Nn=1}Mm=1 , M demonstrations in terms of time and quaternion, where each demonstration has N datapoints
Dζ = {{tn,m, ζn,m, ζ̇n,m}Nn=1}Mm=1 , transformed data obtained from Dq , where ζn,m = log(qn,m ∗ q̄a), see (2)
Dη = {{tn,m,ηn,m}Nn=1}Mm=1 , compact form of Dζ , where ηn,m = [ζ>n,m ζ̇

>
n,m]>

Dr = {tn, µ̂n, Σ̂n}Nn=1 , probabilistic reference trajectory extracted from Dη , with η̂n|tn ∼ N (µ̂n, Σ̂n)

Φ,Σ,µ , expanded matrices/vectors defined on Dr , see (14)
k(ti, tj) , expanded kernel matrix, see (16) or (31)
D̃q = {t̃h, q̃h, ω̃h}Hh=1 , H desired quaternion states

D̃ζ = {t̃h, ζ̃h,
˙̃
ζh}Hh=1 , transformed states obtained from D̃q , see (19) and (23)

D̃η = {t̃h, η̃h}Hh=1 , compact form of D̃ζ , where η̃ = [ζ̃
> ˙̃
ζ>]>

D̃r = {t̃h, η̃h, Σ̃h}Hh=1 , additional reference trajectory to indicate the transformed desired points
DU
r = {tUl ,µ

U
l ,Σ

U
l }

N+H
l=1 , extended reference trajectory, see (26)

D0 = {{sn,m, ξ0
n,m}Nn=1}Mm=1 , demonstration database with high-dimensional input sn,m and output ξ0

n,m =

[
pn,m
qn,m

]
Ds = {{sn,m, ξn,m}Nn=1}Mm=1 , transformed data obtained from D0 with ξn,m =

[
pn,m

log(qn,m ∗ q̄a)

]
Ds
r = {sn, µ̂n, Σ̂n}Nn=1 , probabilistic reference trajectory extracted from Ds

φ(s), Θ(s) , basis function vector with high-dimensional inputs and its corresponding expanded matrix, see (33)
k(si, sj) , expanded kernel matrix, see (35)
D̃

0
= {s̃h, ξ̃

0
h}Hh=1 , H desired points associated with high-dimensional inputs

D̃
s

= {s̃h, ξ̃h}Hh=1 , transformed desired data from D̃
0

D̃
s
r = {s̃h, ξ̃h, Σ̃h}Hh=1 , additional reference trajectory for high-dimensional inputs

Let us assume that we can access a set of demonstrations
Dq = {{tn,m,qn,m}Nn=1}Mm=1 with N being the time length
and M the number of demonstrations, where qn,m denotes
a quaternion at the n-th time-step from the m-th demon-
stration. In addition, we introduce an auxiliary quaternion2

qa, which is subsequently used for transforming demonstrated
quaternions into Euclidean space, yielding new trajectories as
Dζ = {{tn,m, ζn,m, ζ̇n,m}Nn=1}Mm=1 with

ζn,m = log(qn,m ∗ q̄a) (2)

and ζ̇n,m ∈ R3 being the derivative of ζn,m ∈ R3.
It is worth pointing out that q and −q denote the same

orientation. In order to ensure that all demonstrations have
no discontinuities, we assume that q>

n,mqn+1,m > 0, ∀n ∈
{1, 2, . . . , N − 1}, ∀m ∈ {1, 2, . . . ,M}. Note that if this
is not satisfied, we can simply multiply qn+1,m by −1. In
addition, from the definition of log(·) in (1), we can see
that log(q ∗ q̄a) and log(−q ∗ q̄a) are different, albeit that
q ∗ q̄a and −q ∗ q̄a represent the same orientation. To avoid
this issue, at the n-th time step with n ∈ {1, 2, . . . , N}, we
assume (qn,i ∗ q̄a)>(qn,j ∗ q̄a) > 0, ∀i, j ∈ {1, 2, . . . ,M},
implying that qn,1 ∗ q̄a,qn,2 ∗ q̄a, . . . ,qn,M ∗ q̄a stay in
the same hemisphere of S3. If we write quaternion product
into the form of matrix-vector multiplication, we have (qn,i ∗
q̄a)>(qn,j ∗ q̄a) =

(
A(q̄a)qn,i

)>(
A(q̄a)qn,j

)
= q>

n,iqn,j ,

2qa should meet the constraint: qn,m ∗ q̄a 6= [−1 0 0 0]>, which shall
be seen in the Assumption 2 explained later.

where A(q̄a) ∈ R4×4 is an orthogonal matrix [3]. In summary,
demonstrations Dq should satisfy the following assumption:

Assumption 1 q>
n,iqn,j > 0, ∀n ∈ {1, 2, . . . , N},

∀i, j ∈ {1, 2, . . . ,M}. Moreover, q>
n,mqn+1,m > 0, ∀n ∈

{1, 2, . . . , N − 1}, ∀m ∈ {1, 2, . . . ,M}.
For simplicity, we denote η = [ζ> ζ̇

>
]> ∈ R6 and accord-

ingly Dζ becomes Dη = {{tn,m,ηn,m}Nn=1}Mm=1. Now, we
apply GMM [7] to model the joint probability distribution
P(t,η) from Dη , leading to

P(t,η) ∼
C∑
c=1

πcN (µc,Σc), (3)

where πc denotes prior probability of the c-th Gaussian
component whose mean and covariance are, respectively,

µc =

[
µt,c
µη,c

]
and Σc =

[
Σtt,c Σtη,c

Σηt,c Σηη,c

]
3. Then, Gaussian

mixture regression (GMR) [7], [26] is employed to retrieve
the conditional probability distribution, i.e.,

P(η|t) =

C∑
c=1

hc(t)N (µ̄c(t), Σ̄c) (4)

with

hc(t)=
πcN (t|µt,c,Σtt,c)∑C
i=1 πiN (t|µt,i,Σtt,i)

, (5)

3In order to keep notations consistent, we still use notations µt,c and Σtt,c

to represent scalars.
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µ̄c(t)=µη,c + Σηt,cΣ
−1
tt,c(t− µt,c) (6)

and Σ̄c = Σηη,c −Σηt,cΣ
−1
tt,cΣtη,c. (7)

With the properties of multivariate Gaussian distribution, we
can estimate E(η|t) and D(η|t) from (4), i.e., [7]

µ̂t = E(η|t) =

C∑
c=1

hc(t)µ̄c(t),

Σ̂t = D(η|t) = E(ηη>|t)− E(η|t)E>(η|t)

=

C∑
c=1

hc(t)
(
µ̄c(t)µ̄

>
c(t) + Σ̄c

)
− µ̂tµ̂

>
t .

(8)

Furthermore, we use N (µ̂t, Σ̂t) to approximate (4), i.e.,

P(η|t) ≈ N (µ̂t, Σ̂t). (9)

Please refer to [7], [8], [26] for more details. Therefore,
for a given time sequence4 {tn}Nn=1 that spans the input
space, we can obtain its corresponding trajectory {η̂n}Nn=1

with η̂n|tn ∼ N (µ̂n, Σ̂n), yielding a probabilistic reference
trajectory Dr = {tn, µ̂n, Σ̂n}Nn=1. Here, we can view Dr as
a representative of Dη since it encapsulates the distribution of
trajectories in Dη in terms of mean and covariance. Therefore,
we exploit Dr instead of the original demonstrations Dη in
the next subsection.

B. Learning quaternions using a kernelized approach

As a recently developed framework, KMP [8] exhibits
several advantages over state-of-the-art approaches:

(i) In comparison with DMP [5] and TP-GMM [7], that
focus on target adaptations, KMP is capable of adapt-
ing trajectories towards arbitrary desired points (e.g.,
start/via/end- points).

(ii) Unlike DMP and ProMP [6] that rely on explicit defini-
tion of basis functions, KMP employs the kernel trick to
alleviate the definition of basis functions and thus allows
for convenient extensions to the learning and adaptation
of demonstrations consisting of high-dimensional inputs.

(iii) In comparison to DMP and ProMP, KMP can learn
complex non-linearity underlying demonstrations with
fewer open parameters owing to the kernelized form.

Note that kernel approaches generally have some limitations
[27], such as the storage of experience data and the increasing
computation complexity with the size of training data. How-
ever, our approach learns the probabilistic reference trajectory
instead of the raw demonstration data, thus the corresponding
storage load and computation cost are alleviated.

4The size of time sequence is not necessarily the same as that of demon-
strations.

We follow the treatment in KMP to learn the probabilistic
reference trajectory Dr. Formally, let us first write η in a
parameterized way5, i.e.,

η(t) =

[
ζ(t)

ζ̇(t)

]
=



φ>(t) 0 0
0 φ>(t) 0
0 0 φ>(t)

φ̇
>

(t) 0 0

0 φ̇
>

(t) 0

0 0 φ̇
>

(t)


︸ ︷︷ ︸

Θ>(t)

w, (10)

where φ(t) ∈ RB represents a B-dimensional basis function
vector. In order to learn Dr, we consider the problem of
maximizing the posterior probability

J(w) =

N∏
n=1

P(Θ>(tn)w|µ̂n, Σ̂n), (11)

whose optimal solution w∗ can be computed as

w∗=argminw

N∑
n=1

(Θ>(tn)w−µ̂n)
>
(Σ̂n)−1(Θ>(tn)w−µ̂n)

+λw>w,
(12)

where the objective to be minimized can be viewed as the
sum of covariance-weighted squared errors6. Note that a
regularization term λw>w with λ > 0 is introduced in (12)
so as to mitigate the over-fitting.

Similarly to the derivations of kernel ridge regression [28],
[29], [30], the optimal solution w∗ of (12) can be computed.
Thus, for an inquiry point t∗, its corresponding output η(t∗)
can be predicted as

η(t∗) = Θ>(t∗)w∗ = Θ>(t∗)Φ(Φ>Φ + λΣ)−1µ (13)

where
Φ = [Θ(t1) Θ(t2) · · · Θ(tN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂>
1 µ̂

>
2 · · · µ̂

>
N ]>.

(14)

Furthermore, (13) can be kernelized as

η(t∗) = k∗(K + λΣ)−1µ (15)

with k∗[i] = k(t∗, ti) and K[i,j] = k(ti, tj), i ∈
{1, 2, . . . , N}, j ∈ {1, 2, . . . , N}, where k(·, ·) is defined by

k(ti, tj) = Θ>(ti)Θ(tj) =

[
kt,t(ti, tj)I3 kt,d(ti, tj)I3
kd,t(ti, tj)I3 kd,d(ti, tj)I3

]
(16)

5Similar parametric strategies were used in DMP [5] and ProMP [6].
6Similar variance-weighted scheme has also been exploited in trajectory-

GMM [7], motion similarity estimation [22] and optimal control [24].
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with7

kt,t(ti, tj)=k(ti, tj),

kt,d(ti, tj)=
k(ti, tj + δ)− k(ti, tj)

δ
,

kd,t(ti, tj)=
k(ti + δ, tj)− k(ti, tj)

δ
,

kd,d(ti, tj)=
k(ti+δ, tj+δ)−k(ti+δ, tj)−k(ti, tj+δ)+k(ti, tj)

δ2
,

where δ > 0 is a small constant and k(ti, tj) = φ(ti)
>φ(tj)

represents the kernel function.
By observing (10), we can find that both φ(t) and φ̇(t)

are used. If we would have used φ(t) to parameterize ζ(t)

and ζ̇(t) independently of each other, i.e., η(t) =

[
ζ(t)

ζ̇(t)

]
=

diag
(
φ>(t),φ>(t), . . . ,φ>(t)

) [ w1

w2

]
with w1 ∈ R3B and

w2 ∈ R3B , a simpler kernel k(ti, tj) = k(ti, tj)I6 can be
obtained in (16). However, this treatment would ignore the
derivative relationship between ζ(t) and ζ̇(t). Consequently, in
predictions (13) and (15), the derivative relationship between
ζ(t∗) and ζ̇(t∗) could not be guaranteed.

Once we have determined η(t∗) at a query point t∗ via (15),
we can use its component ζ(t∗) to recover the corresponding
quaternion q(t∗). Specifically, q(t∗) is determined by

q(t∗) = exp(ζ(t∗)) ∗ qa, (17)

where the function exp(·) : R3 7→ S3 is [14], [15]

exp(ζ) =

 cos(||ζ||) + sin(||ζ||) ζ

||ζ||
, ζ 6= 0

1 + [0 0 0]>, otherwise.

(18)

It should be noted that the singularity issue exists in log(·),
thus an assumption is imposed throughout this paper:

Assumption 2 [14] The input domain of the mapping log(·)
is restricted to S3 except for [−1 0 0 0]>, while the input
domain of the mapping exp(ζ) should fulfill the constraint
||ζ|| < π.

Under this assumption, both log(·) and exp(·) are bijective,
and exp(·) can be viewed as the inverse function of log(·),
leading to exp

(
log(q ∗ q̄a)

)
∗ qa = q. Please refer to [14]

for the discussion. Note that when we choose the auxiliary
quaternion qa in (2), it must obey the Assumption 2.

III. ADAPTATION OF QUATERNION TRAJECTORIES

While the approach in Section II-B is limited to orienta-
tion reproduction, we now consider the problem of adapting
the reference trajectory in terms of desired quaternions and
angular velocities. To do so, we propose to transform desired
orientation states into Euclidean space (Section III-A), and
subsequently we reformulate the kernelized learning approach
to incorporate these transformed desired points (Section III-B).
Finally, the adapted trajectory in Euclidean space is used to
retrieve its corresponding adapted quaternion trajectory.

7Note that φ̇(t) is approximated by φ̇(t) ≈ φ(t+δ)−φ(t)
δ

in order to
facilitate the following kernelized operations.

A. Transform desired quaternion states

Let us denote H desired quaternion states as D̃q =
{t̃h, q̃h, ω̃h}Hh=1, where q̃h ∈ S3 and ω̃h ∈ R3 represent de-
sired quaternion and angular velocity at time t̃h, respectively.
Similarly to (2), the desired quaternion q̃h can be transformed
as

ζ̃h = log(q̃h ∗ q̄a). (19)

In order to incorporate the desired angular velocity ω̃h, we
resort to the relationship between derivatives of quaternions
and angular velocities, i.e., [14], [15]

q̇ =
1

2
(0 + ω) ∗ q⇒ q(t+ δt) = exp

(ω
2
δt

)
∗ q(t), (20)

where (0+ω) represents a quaternion with its scalar part being
0 and vector part being ω, δt > 0 denotes a small constant.
By using (20), we can compute the desired quaternion at time
t̃h + δt as

q̃(t̃h + δt) = exp

(
ω̃h
2
δt

)
∗ q̃h, (21)

which is subsequently transformed into Euclidean space via
(2), resulting in

ζ̃(t̃h + δt) = log(q̃(t̃h + δt) ∗ q̄a). (22)

Thus, we can approximate the derivative of ζ̃h as

˙̃
ζh ≈

ζ̃(t̃h + δt)− ζ̃h
δt

=
log
((

exp( ω̃h

2 δt) ∗ q̃h
)
∗ q̄a

)
−log(q̃h ∗ q̄a)

δt
.

(23)

Now, D̃q can be transformed into D̃ζ = {t̃h, ζ̃h,
˙̃
ζh}Hh=1 via

(19) and (23), which can be further rewritten in a compact
way as D̃η = {t̃h, η̃h}Hh=1 with η̃h = [ζ̃

>

h
˙̃
ζ>h]> ∈ R6. In

addition, we can design a covariance Σ̃h ∈ R6×6 for each
desired point η̃h to control the precision of adaptations. Thus,
we can obtain an additional probabilistic reference trajectory
D̃r = {t̃h, η̃h, Σ̃h}Hh=1 to indicate the transformed desired
quaternion states.

B. Adapting quaternion trajectories towards desired points

Formally, the adaptation problem can be addressed by
incorporating D̃r into (12), i.e.,

w∗ = argminw

N∑
n=1

(Θ>(tn)w−µ̂n)
>
(Σ̂n)−1(Θ>(tn)w−µ̂n)︸ ︷︷ ︸

imitation

+

H∑
h=1

(
Θ>(t̃h)w−η̃h

)>
(Σ̃h)−1

(
Θ>(t̃h)w−η̃h

)
︸ ︷︷ ︸

adaptations

+ λw>w︸ ︷︷ ︸
regularizer

,

(24)
whose compact representation is

w∗ = argminw

N+H∑
l=1

((
Θ>(tUl )w − µUl

)>
(ΣU

l )−1

(
Θ>(tUl )w − µUl

))
+ λw>w,

(25)
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with{
tUl = tl,µ

U
l = µ̂l,Σ

U
l = Σ̂l, 1 ≤ l ≤ N

tUl = t̃l−N ,µ
U
l = η̃l−N ,Σ

U
l = Σ̃l−N , N+1 ≤ l ≤ N+H.

(26)
It can be observed that the new objective (25) shares the
same form with (12), except that the reference trajectory
DU
r = {tUl ,µUl ,Σ

U
l }N+H

l=1 in (25) is longer than that in
(12), thus the solution of (25) can be determined in a similar
way. Finally, η(t) = [ζ>(t) ζ̇

>
(t)]> can be computed via (15)

and, subsequently, q(t) is recovered from (17) by using ζ(t).
In this case, q(t) is capable of passing through the desired
quaternions q̃h with desired angular velocities ω̃h at time t̃h,
provided that Σ̃h is small enough8.

IV. QUATERNION ADAPTATIONS WITH ANGULAR
ACCELERATION/JERK CONSTRAINTS

It is well known that robot trajectories should be smooth
in order to facilitate the design of controllers as well as the
execution of motor commands [20], [21]. For instance, in
a striking task that needs fast striking motions, extremely
high accelerations or jerks may degrade the final striking
performance, given the physical limits of motors. It is possible
to formulate this constraint as an optimization problem and
search for the optimal trajectory via an iterative scheme, as
done in [20]. In this section, we consider the problem of
learning and adapting quaternion trajectories while taking into
account angular acceleration or jerk constraints. Specifically,
we aim to provide an analytical solution to the issue.

Formally, we consider the angular acceleration or jerk con-
straints as minimizing

∑N
n=1 ||ω̇(tn)||2 or

∑N
n=1 ||ω̈(tn)||2.

Note that the aforementioned imitation learning problem (12)
is built on the trajectory ζ(t), therefore we need to find the
relationship between ω(t) and ζ(t). Here, we provide two
main results:

Theorem 1 Given the definition ζ(t) = log(q(t) ∗ q̄a),
if we let q(t1) = qa, then the optimal quaternion trajectory
{q(tn)}N+2

t=1 of minimizing
∑N
n=1 ||ζ̈(tn)||2 corresponds to the

optimal solution of minimizing
∑N
n=1 ||ω̇(tn)||2.

Proof. The minimization of
∑N
n=1 ||ζ̈(tn)||2 implies that

ζ̇(t1) = ζ̇(t2) = · · · = ζ̇(tN ) = ζ̇(tN+1).

Consequently, we can write ζ(tn+1) = ζ(tn)+∆ with ∆ ∈ R3

being a constant. Given q(t1) = qa, we have ζ(t1) = 0 and

ζ(tn) = (n− 1)∆, n = 1, 2, . . . , N + 2.

Using the definition of ζ(t), we can obtain the optimal quater-
nion trajectory {q(tn)}N+2

t=1 of minimizing
∑N
n=1 ||ζ̈(tn)||2,

i.e.,
q(tn) = exp

(
(n− 1)∆

)
∗ qa.

8In (24) both the ‘imitation’ and ‘adaptation’ have impacts on w∗ and
both terms rely on their own covariance matrices. Thus, if one needs precise
adaptation, Σ̃h should be set far smaller (e.g., at least 2-3 orders of magnitude)
than the variance of the reference trajectory.

Now, we use the optimal quaternion trajectory to calculate the
corresponding {ω(tn)}N+1

n=1 . Specifically, we have9

ω(tn) =
2

δt
log
(
q(tn+1) ∗ q(tn)

)
=

2

δt
log
(
exp(n∆) ∗ exp((n− 1)∆)

)
=

2

δt
log(exp(∆)) =

2

δt
∆

with δt being the time interval between q(tn) and q(tn+1),
which implies

ω(t1) = ω(t2) = · · · = ω(tN ) = ω(tN+1).

Thus, we have ω̇(tn) = 0, n = 1, 2, . . . , N , which corre-
sponds to the optimal solution of minimizing

∑N
n=1 ||ω̇(tn)||2.

Theorem 2 Given the definition ζ(t) = log(q(t)∗q̄a), if we
let q(t1) = qa and ω(t1) = 0, then the optimal quaternion
trajectory {q(tn)}N+3

t=1 of minimizing
∑N
n=1 ||

...
ζ (tn)||2 corre-

sponds to the optimal solution of minimizing
∑N
n=1 ||ω̈(tn)||2.

Proof. Minimizing
∑N
n=1 ||

...
ζ (tn)||2 corresponds to

ζ̈(t1) = ζ̈(t2) = · · · = ζ̈(tN ) = ζ̈(tN+1).

Then, we have ζ̇(tn+1) = ζ̇(tn) + ∆, where ∆ ∈ R3 is
a constant. With the approximation ζ̇(t) = ζ(t+δt)−ζ(t)

δt
, we

have ζ(tn+2) = 2ζ(tn+1)−ζ(tn)+δt∆. Note that we assume
q(t1) = qa and ω(t1) = 0. Hence, q(t1) = q(t2) = qa and
ζ(1) = ζ(2) = 0. It can be further seen that

ζ(tn) =
(n− 1)(n− 2)

2
δt∆, n = 1, 2, . . . , N + 3.

Using the definition of ζ(t), we have the optimal quaternion
trajectory {q(tn)}N+3

t=1 of minimizing
∑N
n=1 ||

...
ζ (tn)||2, i.e.,

q(tn) = exp

(
(n− 1)(n− 2)

2
δt∆

)
∗ qa.

The corresponding angular velocity {ω(tn)}N+2
n=1 of using the

optimal quaternion trajectory is

ω(tn) =
2

δt
log
(
q(tn+1) ∗ q(tn)

)
=

2

δt
log

(
exp

(
n(n− 1)

2
δt∆

)
∗ exp

(
(n− 1)(n− 2)

2
δt∆

))
=

2

δt
log
(
exp
(
(n− 1)δt∆

))
= 2(n− 1)∆,

9The following results are used in Theorems 1 and 2:
(i) If ∆ 6= 0 and i 6= j,

exp(i∆) ∗ exp(j∆) =

[
cos(||i∆||)

sin(||i∆||) ∆
||∆||

]
∗
[

cos(||j∆||)
−sin(||j∆||) ∆

||∆||

]
=

[
cos(||i∆|| − ||j∆||)

sin(||i∆|| − ||j∆||) ∆
||∆||

]
=

[
cos((i− j)||∆||)

sin((i− j)||∆||) ∆
||∆||

]
=

[
cos(|i− j|||∆||)

sin(|i− j|||∆||) (i−j)∆
|i−j|||∆||

]
= exp((i− j)∆).

(ii) If ∆ = 0 or i = j,

exp(i∆) ∗ exp(j∆)=

[
1
0

]
=exp((i− j)∆).
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which implies that ω(tn+1)− ω(tn) = 2∆. Thus,

ω̇(t1) = ω̇(t2) = · · · = ω̇(tN ) = ω̇(tN+1),

leading to ω̈(tn) = 0, n = 1, 2, . . . , N . So, we can con-
clude that the optimal trajectory {q(tn)}N+3

n=1 that minimizes∑N
n=1 ||

...
ζ (tn)||2 yields the optimal solution {ω(tn)}N+2

n=1 of
minimizing

∑N
n=1 ||ω̈(tn)||2.

With Theorems 1 and 2, the problem of learning quater-
nions with angular acceleration or jerk constraints can be
approximately tackled by incorporating

∑N
n=1 ||ζ̈(tn)||2 or∑N

n=1 ||
...
ζ (tn)||2 into the objective (12). For brevity, we take

the angular acceleration constraints as an example, while the
case of angular jerk constraints can be treated in a similar way.
Following the parameterization form in (10), we have

ζ̈(t) =

 φ̈
>

(t) 0 0

0 φ̈
>

(t) 0

0 0 φ̈
>

(t)


︸ ︷︷ ︸

ϕ>(t)

w. (27)

Thus, the problem of learning orientations with angular accel-
eration constraints becomes

w∗=argminw

N∑
n=1

(Θ>(tn)w−µ̂n)
>
(Σ̂n)−1(Θ>(tn)w−µ̂n)︸ ︷︷ ︸

imitation

+λa

N∑
n=1

(ϕ>(tn)w)>(ϕ>(tn)w)︸ ︷︷ ︸
angular acceleration constraints

+ λw>w︸ ︷︷ ︸
regularizer

,

(28)
where λa > 0 acts as a trade-off regulator between orientation
learning and angular acceleration minimization.

Let us re-arrange (28) into a compact form, resulting in

w∗=argminw

N∑
n=1

(Ω>(tn)w−µ̄n)
>
(Σ̄n)−1(Ω>(tn)w−µ̄n)

+λw>w,
(29)

where

Ω(tn)=[Θ(tn) ϕ(tn)] , µ̄n=

[
µ̂n
0

]
, Σ̄n=

[
Σ̂n 0
0 1

λa
I

]
. (30)

It can be observed that (29) shares the same formula as (12),
and hence we can follow (13)–(18) to derive a kernelized
solution for quaternion reproduction with angular acceleration
constraints. Note that Ω(t) comprises the second-order deriva-
tive of φ(t), thus a new kernel matrix

k(ti, tj) = Ω>(ti)Ω(tj) =

[
Θ>(ti)Θ(tj) Θ>(ti)ϕ(tj)
ϕ>(ti)Θ(tj) ϕ>(ti)ϕ(tj)

]
(31)

is required instead of (16). Please see the detailed derivations
of kernelizing (31) in Appendix A.

Similarly, by analogy with (12) and (24), the adaptation
issue with angular acceleration or jerk constraints can be
addressed by reformulating (29) to include the desired points.
It is noted that the assumptions in Theorem 1 (i.e., q(t1) = qa)

and Theorem 2 (i.e., q(t1) = qa and ω(t1) = 0) are trivial
since they can be guaranteed by simply specifying a desired
point at time t1.

V. LEARNING QUATERNIONS ASSOCIATED WITH
HIGH-DIMENSIONAL INPUTS

While the aforementioned results focus on learning and
adapting orientation trajectories associated with time input,
we now consider the case of learning orientations with high-
dimensional varying inputs. Specifically, we focus on the prob-
lem of learning demonstrations D0 = {{sn,m, ξ0n,m}Nn=1}Mm=1

consisting of inputs sn,m and outputs10 ξ0n,m =

[
pn,m
qn,m

]
,

where sn,m ∈ RI denotes an I-dimensional input vector
and ξ0n,m stands for the concatenation of end-effector position
p and quaternion q in Cartesian space. Please note that the
varying high-dimensional input trajectories {{sn,m}Nn=1}Mm=1

are parts of demonstrations, which shall not be confused with
external contextual variables describing the conditions under
which demonstrations are recorded.

In order to illustrate the importance of learning demon-
strations that consist of multiple varying inputs, we first
motivate this problem in Section V-A. After that, we show the
modeling of demonstrations D0 in Section V-B, which is later
exploited to derive the kernelized approach for learning and
adapting quaternions associated with high-dimensional inputs
(Sections V-C and V-D).

A. Why learning demonstrations comprising high-dimensional
inputs?

Let us take human-robot collaboration as an example, where
the robot is demanded to react properly in response to the
human states (e.g., human hand positions/orientations). In
many previous work, human and robot motions are encoded by
taking time as input (e.g., DMP was used in [31] and ProMP
in [32]). Specifically, when human trajectory is adjusted with
time, the corresponding robot trajectory with respect to time
will also be modified. However, this treatment will cause a
synchronization issue, since human motions in the new eval-
uations could be significantly different (e.g., faster/slower ve-
locity) from the demonstrated ones. For instance, assuming in
a human-robot handover task where demonstrations (including
human and robot motions) lasting for 10s are recorded, but in
the evaluation stage human hand has a pause for more than 10s
before moving. In this case, the robot will still keep moving as
its trajectory is driven by time. As a consequence, before the
human hand starts to move, the robot has finished its hand-
over action, which violates the synchronization constraints.
To avoid this issue, in [33] human movement duration in
new evaluations is required to be the same as the one in the
training demonstrations. However, as pointed out in [32], this
restriction on human motion duration is impractical. In order
to provide a generic solution for human-robot collaboration,
various strategies of phase-estimation and time-alignment are
designed towards synchronizing human and robot in [31], [32].

10Note that outputs that comprise multiple Cartesian positions, quaternions,
rotation matrices and joint positions can be tackled similarly.
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In contrast, we propose to consider high-dimensional vary-
ing signals (e.g., human hand positions/orientations) as inputs
and predict robot motions (e.g., Cartesian positions and ori-
entations) according to the sensed states of the human hand.
We have successfully tested this solution in previous work on
human-robot collaboration, namely in the collaborative hand
task [8] and robot-assisted painting task [11], [34]. However, in
none of those works we have considered orientation outputs, as
the proposed tools were designed for Euclidean data, and only
[8] considers adaptation to new, unseen inputs. Note that now
robot trajectory is directly driven by the state of the human
hand, thus the explicit time is not involved when predicting
robot actions. Recalling the above-mentioned example and
following our strategy, if the human hand has a pause (i.e.,
inputs are unchanged), the corresponding robot trajectory (i.e.,
outputs) will also remain unchanged. Therefore, the main
advantage of learning demonstrations consisting of multiple
inputs is that additional synchronization procedures are not
needed, providing a straightforward solution for accomplishing
complex collaboration tasks.

B. Modeling quaternions with high-dimensional inputs

Handling high-dimensional inputs requires a different treat-
ment, when compared to the time-driven case described in
Section II, due to the higher complexity of the input space.
Since we are considering quaternions as outputs, we follow
the procedure in Section II-A, transferring D0 into Ds =

{{sn,m, ξn,m}Nn=1}Mm=1, where ξn,m=

[
pn,m

log(qn,m ∗ q̄a)

]
∈R6.

Then, we model the joint probability distribution P(s, ξ) from
Ds via GMM, i.e.,

P(s, ξ) ∼
C∑
c=1

πcN (µc,Σc) (32)

with µc =

[
µs,c

µξ,c

]
and Σc =

[
Σss,c Σsξ,c

Σξs,c Σξξ,c

]
.

However, unlike the generation of probabilistic reference
trajectories from time-driven demonstrations (Section II-A), it
is not straightforward to decide the input sequence {sn}Nn=1

for retrieving the corresponding reference trajectory, due to the
fact that s is high-dimensional.

Note that a proper input sequence should span the whole
input space, in order to adequately encapsulate all shown robot
behaviors. This is relatively straightforward when the input is
time, since the inputs of all demonstrations lie on one axis
and have roughly the same duration. When the input is high-
dimensional, one intuitive solution is to use the input parts of
all demonstrations, which, however, will lead to two issues:
(i) if all training inputs are used, redundancy will often arise,
leading to a data-inefficient solution, where multiple data-
points map to the same robot pose; (ii) if only parts of input
trajectories are exploited, one risks failing to capture important
input points.

Therefore, we propose to sample inputs from the marginal
probability distribution11 of P(s, ξ). Specifically, we sam-
ple an indicator variable zc with the probability πc and,

11Readers are suggested to refer to [35] for GMM sampling.

subsequently, we sample s from N (µs,c,Σss,c). By using
this sampling strategy, the input sequence {sn}Nn=1 can be
determined. In this way, the input sequence captures the
probabilistic properties of the input space of demonstrations,
where data-dense regions (hence important) will lead to more
sampled input points and vice-versa for more sparse regions
of the input space. Accordingly, by using GMR we have
the probabilistic reference trajectory with high-dimensional
inputs, denoted by Ds

r = {sn, µ̂n, Σ̂n}Nn=1. The resulting
probabilistic reference trajectory Ds

r hence encapsulates the
probabilistic features of demonstrations. It should be noted
that, for sampling, N needs not be the same as the number of
points in each demonstration, hence one has the freedom to
sub-sample when higher computational efficiency is required.

C. Learning quaternions with high-dimension inputs

Similarly to (10), we formulate the parametric trajectory
associated with high-dimensional inputs as

ξ(s) =


φ>(s) 0 · · · 0

0 φ>(s) · · · 0
...

...
. . .

...
0 0 · · · φ>(s)


︸ ︷︷ ︸

Θ>(s)

w. (33)

Note that dφ(s)
dt is not included in (33) since it relies on ds

dt ,
which is often unpredictable in real applications. Formally, we
formulate the imitation learning problem with multiple inputs
as maximizing

J(w) =

N∏
n=1

P(Θ>(sn)w|µ̂n, Σ̂n). (34)

Consequently, we can follow (12)–(15) to derive the kernelized
approach that is capable of learning high-dimensional inputs,
except that the definition of φ(·) is different and thus the kernel
definition in (16) becomes

k(si, sj) = Θ>(si)Θ(sj) = k(si, sj)I6. (35)

Therefore, given a query input s∗, we can employ (15) to

predict the output ξ(s∗) =

[
ξp

ξq

]
and, subsequently, re-

trieve the corresponding Cartesian state through
[
p(s∗)
q(s∗)

]
=[

ξp

exp(ξq) ∗ qa

]
.

D. Adapting quaternions with high-dimensional inputs

Let us write H desired points as D̃
0

= {s̃h, ξ̃
0

h}Hh=1 with

ξ̃
0

h =

[
p̃h
q̃h

]
. Then, we transform the desired points D̃

0

into Euclidean space, leading to D̃
s

= {s̃h, ξ̃h}Hh=1 with

ξ̃h =

[
p̃h

log(q̃h ∗ q̄a)

]
. In order to incorporate the adaptation

precision, we can assign covariance matrices Σ̃h for various
transformed points ξ̃h. Thus, we have an additional reference
trajectory that represents the transformed desired points in
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Fig. 1: Evaluations of various approaches on simulated examples. (a) shows simulated quaternion trajectories and their corresponding angular velocities. (b)–(d)
display adapted quaternion trajectories towards new target (i.e., end-point) as well as the adapted angular velocities by using our approach (b), orientation-DMP
[14], [15] (c) and orientation TP-GMM [3] (d). Note that for all approaches the desired movement duration is 10s, the shaded area in (c) denotes extra time
required for DMP. The circles with bright colors denote desired quaternions and angular velocities, while the gray circles in (c) correspond to the delayed
desired points.

Fig. 2: Adaptations of quaternion and angular-velocity profiles with various constraints of desired points (depicted by circles), where (a1)–(a2) and (b1)–(b2)
correspond to the first and second evaluations, respectively. Note that (a1) and (b1) represent adaptations in the transformed space R3 that is determined via
(2), while (a2) and (b2) correspond to adaptations in S3 space.

Euclidean space, i.e., D̃
s

r = {s̃h, ξ̃h, Σ̃h}Hh=1. According to
the discussion in Section III-B, we can concatenate D̃

s

r with
Ds
r = {sn, µ̂n, Σ̂n}Nn=1, resulting in an extended reference

trajectory Ds
r
U that can be used to generate a 6-D trajectory12

in Euclidean space and later recover the Cartesian trajectory
(comprising Cartesian position and quaternion) that passes
through various desired points defined by D̃

0
.

It is worth mentioning that, given the joint probability dis-
tribution P(s, ξ) in (32), GMR can be employed to predict the
corresponding output for a query input s∗ through calculating
P(ξ|s∗) . However, GMR is only limited for task reproduction
(i.e., reproducing demonstrations). When the adaptation prob-
lem is encountered, e.g., the predicted trajectory must pass
through the desired points D̃

0
, GMR becomes inapplicable,

since P(s, ξ) (extracted from demonstrations) does not address
the constraints from desired points. In contrast, within our
framework, both reproduction and adaptation issues can be
directly tackled by using Ds

r or Ds
r
U .

12This trajectory passes through the transformed desired points D̃
s

.

VI. EVALUATIONS

In this section, we report several examples to illustrate the
performance of our approach:

(i) orientation adaptation towards a desired target point
(Section VI-A1), where orientation-DMP [14], [15] and
orientation TP-GMM [3] are employed as comparisons13;
(ii) orientation adaptations towards arbitrary desired
points in terms of quaternions and angular velocities
(Section VI-A2);
(iii) orientation adaptations with angular acceleration
constraints (Section VI-B);
(iv) rhythmic orientation reproduction and adaptations
(Section VI-C);
(v) concurrent adaptations of Cartesian position and ori-
entation in a painting task (Section VI-D);
(vi) learning Cartesian trajectory with high-dimensional
inputs in a human-robot collaboration scenario (Sec-
tion VI-E).

13In this section, q is represented as q = [qs qx qy qz ]>.
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TABLE III: Planned Errors of Our Approach and State-of-the-Art

Quaternion distance error∗ Angular velocity error
t = 10s∗∗ t = 15s t = 10s t = 15s

Our approach 0 - 0.0017 -

Orientation–DMP [14], [15] 0.0285 0.0046 0.0513 0.0034

Orientation TP-GMM [3] 0.0085 - 0.0498 -

*Quaternion distance is calculated by [14], [15]:

d(q1,q2) =

{
2π, q1 ∗ q̄2 = −1 + [0 0 0]>

2|| log(q1 ∗ q̄2)||, otherwise.

**Note that the desired movement duration is 10s.

TABLE IV: Smoothness Costs of Our Approach and State-of-the-Art

Quaternion smoothness Angular-velocity smoothness
cost cq cost cω

Our approach 7.4326 × 10−4 8.5820 × 10−4

Orientation–DMP [14], [15] 7.7441 × 10−4 9.3905 × 10−4

Orientation TP-GMM [3] 7.8706 × 10−4 1.6463 × 10−3

*The smoothness costs (36)−(37) are evaluated between 0s and 10s.

The evaluations (i)–(iv) are verified in simulated examples
while (v)–(vi) are carried out on real robots. Videos of the
experimental evaluations as well as didactic codes are provided
at https://sites.google.com/view/quat-kmp.

A. Evaluations on quaternion adaptations

We collected five simulated quaternion trajectories with
time-length 10s, as depicted in Fig. 1(a), where minimal
jerk polynomial and renormalization are used to generate
smooth and proper quaternion trajectories. In order to show
the performance of our approach, we first compare it with
orientation-DMP [14], [15] and orientation TP-GMM [3] in
Section VI-A1. Subsequently, we evaluate our approach by
adapting quaternions and angular velocities towards vari-
ous desired points in Section VI-A2. The Gaussian kernel
k(ti, tj) = exp(−`(ti − tj)

2) with ` = 0.01 and the regu-
larization factor λ = 1 are used in this section.

1) Comparison with state-of-the-art approaches: Since
orientation-DMP is restricted to target (i.e., end-point) adap-
tation while having zero angular velocity at the ending point,
we here consider an example with the desired point being
t̃1 = 10s, q̃1 = [0.7172 0.3586 0.5123 0.3074], ω̃1 = [0 0 0].
The auxiliary quaternion qa is set as the initial value of
simulated quaternion trajectories.

The evaluations of using our approach and orientation–DMP
are provided in Fig. 1(b)–(c). It can be seen from Fig. 1(b)
that our approach is capable of generalizing learned quaternion
trajectories to the new target point q̃1 while having zero
angular velocity at the ending time t̃1. However, orientation–
DMP needs extra time (depicted by shaded area) to converge to
the desired point. Furthermore, we use orientation TP-GMM14

to tackle the same target adaptation problem, whose adapted
trajectories are shown in Fig. 1(d).

14A second-order linear dynamics model is employed together with TP-
GMM towards obtaining smooth trajectories. Please refer to [3] for imple-
mentation details.

TABLE V: Angular Acceleration Costs Under Different λa

λa 101 102 103 104 105

cωd 0.0307 0.0303 0.0273 0.0183 0.0140

The planned errors of three methods in comparison with
the desired point is summarized in Table III, showing that our
approach achieves the best performance in terms of adaptation
precision. Note that the errors from DMP can possibly be
further reduced by tuning the relevant parameters, e.g., the
number of basis functions, bandwidth of basis functions and
the length of time step, but here we present the best results
we could obtain. In addition, we evaluate the smoothness of
adapted quaternion and angular-velocity profiles, where the
smoothness cost for quaternion is defined as

cq =
1

N

N−1∑
n=1

||q(tn+1)− q(tn)|| (36)

and the cost for angular velocity is

cω =
1

N

N−1∑
n=1

||ω(tn+1)− ω(tn)||. (37)

As can be seen in Table IV, our approach corresponds to the
smallest costs in terms of both cq and cω .

2) Adapting quaternion trajectory towards various desired
points: Now, we consider a more challenging adaptation task
that needs various desired points (i.e., via-/end- points) in
terms of quaternion and angular velocity. Note that orientation-
DMP [14], [15] and orientation TP-GMM [3] are not applica-
ble in this case. Two groups of quaternion adaptations in S3,
accompanied by the corresponding adaptations of the projected
trajectories via (2) in R3, are shown in Fig. 2, showing that our
approach indeed modulates quaternions and angular velocities
to pass through various desired points (plotted by circles).

B. Evaluations on quaternion adaptations with angular accel-
eration constraints

In this section, we consider quaternion adaptations with
angular acceleration constraints, where the same simulated
demonstrations, as plotted in Fig. 1(a), are employed. Specif-
ically, we aim to adapt quaternion profile, while taking into
account the angular acceleration constraints. In order to quan-
titatively show the performance of our approach, we define the
angular acceleration cost as

cωd =
1

N

N∑
n=1

||ω̇(tn)||2 (38)

and meanwhile a group of penalty parameters λa are used.
We use Gaussian kernel for the evaluations. Other relevant
parameters are set as ` = 0.01 and λ = 1.

The evolved trajectories of quaternion and angular velocity
are depicted in Fig. 3, where the color changes from light to
dark as λa increases. Note that the evolved trajectories pass
through various desired points (depicted by circles) precisely.
The corresponding angular acceleration costs with different λa
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Fig. 3: Orientation adaptations with angular acceleration constraints, where quaternion profiles are adapted towards various desired points (depicted by colorful
circles). The cross ‘+’ represents the starting point of trajectories. The solid curves correspond to different values of λa, with color that switches from light
red to dark red corresponding to the increasing direction of λa.

Fig. 4: Reproduction and adaptation of rhythmic orientation trajectories by using our approach. (a) plots simulated quaternions and their corresponding angular
velocities, where the motion period is 10s. (b) and (c) show orientation reproduction and adaptation over three periods (i.e., 30s), respectively. Circles in (c)
denote the desired quaternion and angular velocity.

are provided in Table V, representing that cωd decreases as
λa increases (which indeed coincides with our interpretation
of the penalty coefficient). Thus, we can conclude that our
approach is capable of adapting quaternions towards various
desired points while incorporating angular acceleration con-
straints.

C. Evaluations on rhythmic quaternion trajectories

Differing from the aforementioned examples on point-to-
point quaternions, we here test our approach on rhythmic
quaternion trajectories. Note that rhythmic quaternions are
very important in many orientation-sensitive tasks, such as
screwing a lid off the bottle and wiping a surface. Simi-
larly to Section VI-A, we use polynomials to generate five
demonstrations (each lasts for 10s) for training our approach,
as shown in Fig. 4(a). The periodic kernel [36] k(ti, tj) =
exp(−`sin2(

ti−tj
T π)) with ` = 0.4 and T = 10s is employed.

The regularization factor is set to be λ = 10. In this section,
the angular acceleration constraints are not considered, i.e.,

λa = 0, but one can easily incorporate these constraints into
rhythmic movements.

We first consider the reproduction capability of our ap-
proach, where quaternion and angular-velocity profiles over
three periods (i.e., 30s) are generated. It can be seen from
Fig. 4(b) that our method can reproduce trajectories that
maintain the shape of demonstrations and meanwhile exhibit
rhythmic properties. Second, we test the adaptation capa-
bility of our method by imposing a via-point constraint at
t = 3s. The adapted trajectories over three periods are
given in Fig. 4(c), where the quaternion and angular-velocity
trajectories are modulated towards the via-point (depicted by
circles) in each period. Moreover, the rhythmic property is
kept in this adaptation case.

D. Evaluations of learning time-driven Cartesian trajectories
on real robot

We here consider a painting task that requires the real
Barrett WAM robot to paint different areas with proper ori-
entations. Through kinesthetic teaching (first row in Fig. 5),
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Fig. 5: Painting task on the real Barrett WAM robot. First row shows
kinesthetic teaching of the painting task. Second row represents the task
reproduction.

six demonstrations comprising time, Cartesian position and
quaternion are recorded, as shown in Fig. 6(a). We first apply
our approach to task reproduction, i.e., without incorporating
the desired points. The auxiliary quaternion qa is set as the ini-
tial value of demonstrations. Gaussian kernel with ` = 0.001
is used and λ = 1. The reproduced Cartesian trajectory (solid
curves) and its corresponding measured trajectory (dashed
curves) are shown in Fig. 6(b). Snapshots of task reproduction
are provided in Fig. 5 (second row), where we can see that
the robot is capable of reproducing a similar task to that
demonstrated by the human.

Now, we consider two groups of adaptation evaluations
and, in each group, demonstrated Cartesian trajectories are
modulated towards two unseen desired points (i.e., via-point
and end-point). The adapted Cartesian trajectories are shown
in Fig. 6(c)-(d), where the planned trajectories (solid curves)
and real measured trajectories (dashed curves) are provided. It
can be seen that the planned trajectories are capable of meeting
various constraints, i.e., Cartesian position and quaternion
constraints. More explanations of the adaptation evaluations
are provided in our previous work [1].

E. Evaluations of learning Cartesian trajectories with high-
dimensional inputs on real robot

In this section, we consider a human-robot handover task,
where the robot moves towards the human user in order to
accomplish the handover task. Specifically, we consider human
hand position15 as inputs while robot end-effector position and
orientation as outputs. It is worth emphasizing that we aim to
predict robot Cartesian state (6-D16) in accordance to human
hand state (3-D) directly, without any additional operations
like phase-estimation [31], [32].

We collect five demonstrations in terms of human hand
position (red curves), as well as robot end-effector position
(black curves) and quaternion, as show in Fig. 7. Note that
the transformed trajectories of quaternions (yellow curves)
via (2) are plotted for the sake of visualization. Then, by
following the description in Section V-B, we can generate a
reference trajectory (associated with high-dimensional inputs)
for training our approach. The auxiliary quaternion qa is set
to be qa = [1 0 0 0]>. The Gaussian kernel is used and the
related parameters are ` = 1 and λ = 2.

15An optical tracker is used to measure human hand position.
16We here refer to quaternion as a 3-D variable due to the norm constraint,

albeit that our approach predicts four elements of quaternion simultaneously.

In order to evaluate our approach, we first consider a
reproduction task and subsequently an adaptation task where
a new handover location is needed. Figure 8 depicts human
hand trajectory (dashed red curve) and the corresponding robot
Cartesian trajectory planned by our approach (dashed black
and yellow curves) in the reproduction case, where Fig. 8(a)
and Fig. 8(b) correspond to positions and transformed quater-
nion data, respectively. In addition, in Fig. 9(a) the human
hand positions, robot Cartesian positions and orientations (in
terms of frames) are depicted together. It can be seen that
the robot accomplishes the handover task when human hand
trajectory resembles the demonstrated ones.

Now, we apply our approach to the adaptation situation,
where the handover takes place at a new point that is unseen
in demonstrations. This adaptation can be achieved by adding a
desired point {s̃1, p̃1, q̃1} into the original reference trajectory,
where s̃1 = p̃1 = pnew and q̃1 = qnew, ensuring that the
robot reaches the new handover location pnew with desired
quaternion qnew when the human hand arrives at pnew. The
adaptation evaluation is provided in Fig. 8, where the solid
red curve denotes the user hand trajectory while the solid
black and yellow curves correspond to the planned Cartesian
trajectory for the robot. Again, we here only provide the
transformed data of quaternions for the sake of easy observa-
tion. Similarly to the reproduction case, we represent human
hand positions, robot Cartesian positions and orientations (in
terms of frames) into a single plot, as shown in Fig. 9(b). By
observing Fig. 8 and 9(b), we can find that robot trajectory is
indeed modulated according to the user hand position, leading
to a successful handover at the new location. Snapshots of
kinesthetic teaching of handover task as well as reproduction
and adaptation evaluations are shown in Fig. 10. Thus, our
approach is effective in both reproduction and adaptation cases
while considering high-dimensional inputs.

VII. DISCUSSION

In this section, we discuss some related work on learn-
ing time-driven demonstrations with via-point constraints, as
well as learning demonstrations comprising high-dimensional
inputs (Section VII-A). Then, we discuss limitations and
possible extensions of our approach (Section VII-B).

A. Related work

The topic of via-point adaptation has been the focus of a few
works in the imitation learning literature, e.g., [6], [37], [38].
In [6], Gaussian conditioning operation was used in ProMP
to address the via-point issue. In [37], the task-parameterized
DMP was studied, where the via-point constraint was handled
as a task parameter vector. However, both [6] and [37] did not
take into account the Cartesian orientation. Please note that
[37] in essence focuses on learning time-driven demonstrations
(i.e., demonstrations comprising 1-D time input), albeit that the
task parameters that describe the condition of demonstrations
could be high-dimensional. Similarly, within the DMP frame-
work, a time-varying target function was formulated in [38]
to incorporate via-points in terms of Cartesian position, while
the orientation was missing.
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Fig. 6: Evaluations of our approach through a painting task on the real Barrett WAM robot. (a) shows demonstrated Cartesian positions and quaternions in
the painting task. (b) represents Cartesian trajectory in task reproduction. (c)–(d) correspond to adapted Cartesian trajectories with various desired points. In
plots (b)–(d), solid curves represent planned trajectories by using our approach while dashed curves denote real measured trajectories. Circles depict desired
Cartesian positions and quaternions.

Fig. 7: Demonstrated human hand trajectories and robot Cartesian trajectories
in a human-robot handover task. (a) shows human hand positions (red curves)
and robot Cartesian positions (black curves). For the sake of visualization, the
transformed trajectories of robot quaternions are plotted in (b).

Fig. 8: Reproduction (dashed curves) and adaptation (solid curves) evaluations
in the handover task. (a) represents human hand positions (red curves) and
robot Cartesian positions (black curves). (b) plots the transformed trajectories
of robot quaternions via (2).

In order to cope with the via-quaternion and via-angular
velocity constraints, the strategy of sequencing different DMPs
was proposed in [18]. To take the sequence of two DMPs
as an example, in [18] the first DMP was used to plan a
trajectory from the starting quaternion to the via-quaternion,
and subsequently the second DMP was used to generate a
trajectory from the via-quaternion to the target quaternion.
Note that these two DMPs were trained by using different parts
of a demonstration. Differing from [18] where the demonstra-
tion needs to be segmented for each movement primitive, we
propose to learn and adapt the entire demonstrations using a
single movement primitive, where the segmentation of demon-

Fig. 9: Illustration of human hand trajectory and robot Cartesian trajectory in
reproduction (a) and adaptation (b) evaluations, where the red curves denote
human hand positions, the frames mounted on robot Cartesian positions (black
curves) denote the end-effector orientation of the robot.

Fig. 10: Handover task on the real KUKA robot. First row shows kinesthetic
teaching of the handover task. Second row and third row represent the repro-
duction and adaptation evaluations, respectively. Green circle corresponds to
the optical tracker which measures the user’s hand position on-line.

strations and the sequence of multiple motion primitives are
not required. Specifically, in contrast to [37], [38], [18] where
each DMP corresponds to a single training trajectory, we study
imitation learning from a probabilistic perspective and exploit
the consistent features underlying multiple demonstrations. As
a result, including via-points in our approach can be done in
a rather straightforward way by simply defining the via-point,
its associated input and the desired precision in the form of a



IEEE TRANSACTIONS ON ROBOTICS 14

covariance matrix.
Various imitation learning approaches (e.g., DMP [5] and

ProMP [6]) have been employed in human-robot collaboration
[31], [32]. However, the majority of these works model human
motion and robot motion with time (i.e., learning demonstra-
tions with time input), which will lead to the synchronization
issue (see Section V-A). Note that DMP and ProMP explicitly
depend on basis functions, which are non-trivial to extend
to learn demonstrations comprising high-dimensional inputs,
due to the curse of dimensionality. As discussed in [27],
the number of basis functions often increases significantly
as the dimension of inputs increases. In addition, the process
of defining proper parameters for basis functions over high-
dimensional state is cumbersome. For instance, the definition
of a multivariate Gaussian basis function requires a center
vector and a covariance matrix. In contrast, our approach
introduces the kernel trick (see (35)) and thus basis functions
are not needed, yielding a non-parametric solution.

Moreover, note that GMM/GMR based approaches [16]
are capable of learning demonstrations comprising high-
dimensional inputs, whereas the adaptation feature is not
provided. In order to endow GMM/GMR with the adaptation
capability, the task parameterized treatment (i.e., TP-GMM)
was studied in [3], [17]. However, TP-GMM suffers from
two main limitations: (i) for the case of adapting demon-
strations with multiple inputs, TP-GMM is restricted to target
adaptation, where the via-point adaptation is not allowed; (ii)
for the case of adapting demonstrations with time input, TP-
GMM is unable to deal with the via-point and angular-velocity
constraints (see also the discussion in Section VI-A2). Unlike
TP-GMM, our approach can handle the adaptation issue with
arbitrary desired points (including via-/end- points), as well as
the angular velocity constraints.

Finally, it is worth mentioning that, as an extension of [14],
[15], in [19] the orientation DMP was used for generalizing
demonstrations towards different contextual (or conditional,
task-specific) states. Specifically, in the training phase, each
fixed contextual state17 corresponds to one demonstration that
consists of a time sequence (i.e., 1-D input) and its associated
robot trajectory (i.e., outputs), and in the evaluation phase, the
new contextual state is used to predict the corresponding DMP
parameters that, subsequently, can be used to generate the
entire robot trajectory. Thus, the work in [19] can be viewed as
learning of demonstrations with time input, while considering
additional contextual states. Differing from [19], in our frame-
work (see Section V), each demonstration comprises a high-
dimensional varying input trajectory and a robot trajectory,
and in the evaluation phase, the high-dimensional inputs are
employed to directly predict the corresponding robot actions
(see the hand-over experiment, where the 3-D user’s hand
position is utilized to predict the 6-D robot Cartesian state). As
we have shown, our approach alleviates the synchronization
issue, allowing the robot to react in run-time to the human
behavior that changes arbitrarily (e.g. with different speed).
The adaptation capabilities of our approach complement this

17The contextual state in [19] can be interpreted as the condition under
which the whole time-driven demonstration has taken place.

feature by allowing the robot to react, even to human behaviors
that were not explicitly shown.

B. Limitations and extensions of our approach

As explained in Section II, the learning and adaptation of
quaternions are carried out in Euclidean space, where the
log(·) mapping in (1) is used to transform quaternions into
Euclidean space. In order to guarantee that similar quaternions
q correspond to similar ζ in Euclidean space, we have imposed
the Assumption 1. This assumption may restrict the appli-
cations of our method. For example, when the demonstrated
quaternion trajectories differ from each other dramatically, the
Assumption 1 could be violated, potentially invalidating the
teaching of highly dynamic motions.

It is noted that we only focus on the prediction of quater-
nion profile in this paper. In fact, we can also predict the
covariance (i.e., 3 × 3 matrix) of ζ in R3, similarly to [8].
Indeed, specifying a covariance matrix directly in S3 is not
possible, with other state-of-the-art approaches following the
direction of representing variability/correlation in Euclidean
spaces with 3× 3 matrix [16], [17]. Interestingly, some recent
works on exploiting the covariance of trajectories and optimal
control were reported, e.g., uncertainty-aware controller [11]
and minimum intervention controller [39]. Thus, it would be
useful to integrate these ideas with our framework so as to
perform orientation tasks in a safe and user-friendly way.
In addition, we set kernel parameters experimentally in our
evaluations. Despite the definition of the parameters being
relatively straightforward (intuition about the kernel width
can be derived from the order magnitude of the inputs), as
an extension of our work, we plan to provide a theoretical
guidance for choosing kernel parameters.

VIII. CONCLUSIONS

In this paper, we proposed an analytical approach for
adapting quaternion and angular velocity towards arbitrary
desired points. In addition, our method is capable of incorpo-
rating angular acceleration or jerk constraints. In comparison
with previous works (e.g., [14], [15]) that mostly focus on
orientation adaptation towards target points, our work allows
for broader applications, particularly when both quaternion
and angular velocity need to be modulated. Moreover, our
approach is capable of learning quaternions associated with
high-dimensional inputs (e.g., 3-D inputs were used in the real
handover task), which is a quite desirable property in human-
robot collaboration.
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APPENDIX A
KERNEL DERIVATION UNDER ANGULAR ACCELERATION

CONSTRAINTS

According to the definitions of Θ(t) and ϕ(t), i.e., (10) and
(27), we have
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Ω>(ti)Ω(tj) =

[
Θ>(ti)Θ(tj) Θ>(ti)ϕ(tj)
ϕ>(ti)Θ(tj) ϕ>(ti)ϕ(tj)

]

=

φ
>(ti)φ(tj)I3 φ>(ti)φ̇(tj)I3 φ>(ti)φ̈(tj)I3
φ̇

>
(ti)φ(tj)I3 φ̇

>
(ti)φ̇(tj)I3 φ̇

>
(ti)φ̈(tj)I3

φ̈
>

(ti)φ(tj)I3 φ̈
>

(ti)φ̇(tj)I3 φ̈
>

(ti)φ̈(tj)I3

 (39)

It is well known that we can write φ>(ti)φ(tj) = k(ti, tj)
[27]. However, when we calculate Ω>(ti)Ω(tj) in (39), the
terms φ>(ti)φ̇(tj), φ>(ti)φ̈(tj), φ̇

>
(ti)φ(tj), φ̇

>
(ti)φ̇(tj),

φ̇
>

(ti)φ̈(tj), φ̈
>

(ti)φ(tj), φ̈
>

(ti)φ̇(tj), φ̈
>

(ti)φ̈(tj) are also
encountered. We here propose to approximate φ̇(t) and φ̈(t),
i.e.,

φ̇(t) ≈ φ(t+ δ)− φ(t)

δ
and

φ̈(t) ≈ φ̇(t+ δ)− φ̇(t)

δ
≈ φ(t+ 2δ)− 2φ(t+ δ) + φ(t)

δ2
,

where δ > 0 denotes a small constant. By using these
approximations, (39) can be kernelized.

To take φ̈
>

(ti)φ̈(tj) as an example, we have

φ̈
>

(ti)φ̈(tj) =

(
φ>(ti + 2δ)− 2φ>(ti + δ) + φ>(ti)

δ2

)
(
φ(tj + 2δ)− 2φ(tj + δ) + φ(tj)

δ2

)
=
φ>(ti+2δ)φ(tj+2δ)−2φ>(ti+2δ)φ(tj+δ)+φ

>(ti+2δ)φ(tj)

δ4

− 2φ>(ti+δ)φ(tj+2δ)−4φ>(ti+δ)φ(tj+δ)+2φ>(ti+δ)φ(tj)

δ4

+
φ>(ti)φ(tj + 2δ)− 2φ>(ti)φ(tj + δ) + φ>(ti)φ(tj)

δ4

=
k(ti + 2δ, tj + 2δ)− 2k(ti + 2δ, tj + δ) + k(ti + 2δ, tj)

δ4

− 2k(ti + δ, tj + 2δ)− 4k(ti + δ, tj + δ) + 2k(ti + δ, tj)

δ4

+
k(ti, tj + 2δ)− 2k(ti, tj + δ) + k(ti, tj)

δ4
.

Therefore, (39) can be kernelized as

k(ti, tj) =

ktt(ti, tj)I3 ktd(ti, tj)I3 kta(ti, tj)I3
kdt(ti, tj)I3 kdd(ti, tj)I3 kda(ti, tj)I3
kat(ti, tj)I3 kad(ti, tj)I3 kaa(ti, tj)I3

, (40)

where

ktt(ti, tj)=k(ti, tj),

ktd(ti, tj)=
(
k(ti, tj + δ)−k(ti, tj)

)
/δ,

kta(ti, tj)=
(
k(ti, tj + 2δ)−2k(ti, tj + δ) + k(ti, tj)

)
/δ2,

kdt(ti, tj)=
(
k(ti + δ, tj)− k(ti, tj)

)
/δ,

kdd(ti, tj)=
(
k(ti + δ, tj + δ)− k(ti, tj + δ)− k(ti + δ, tj)

+ k(ti, tj)
)
/δ2,

kda(ti, tj)=
(
k(ti + δ, tj + 2δ)− 2k(ti + δ, tj + δ)

+ k(ti + δ, tj)− k(ti, tj + 2δ) + 2k(ti, tj + δ)

− k(ti, tj)
)
/δ3,

kat(ti, tj)=
(
k(ti + 2δ, tj)− 2k(ti + δ, tj) + k(ti, tj)

)
/δ2,

kad(ti, tj)=
(
k(ti + 2δ, tj + δ)− 2k(ti + δ, tj + δ)

+ k(ti, tj + δ)− k(ti + 2δ, tj) + 2k(ti + δ, tj)

− k(ti, tj)
)
/δ3,

kaa(ti, tj)=
(
k(ti + 2δ, tj + 2δ)− 2k(ti + 2δ, tj + δ)

+ k(ti + 2δ, tj)− 2k(ti + δ, tj + 2δ)

+ 4k(ti + δ, tj + δ)− 2k(ti + δ, tj)

+ k(ti, tj + 2δ)− 2k(ti, tj + δ) + k(ti, tj)
)
/δ4.

REFERENCES

[1] Y. Huang, F. J. Abu-Dakka, J. Silvério, and D. G. Caldwell, “Gener-
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