
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Thejaswi, Suhas; Gionis, Aristides
Pattern detection in large temporal graphs using algebraic fingerprints

Published in:
Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020

DOI:
10.1137/1.9781611976236.5

Published: 01/01/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Thejaswi, S., & Gionis, A. (2020). Pattern detection in large temporal graphs using algebraic fingerprints. In C.
Demeniconi, & N. Chawla (Eds.), Proceedings of the 2020 SIAM International Conference on Data Mining, SDM
2020 (pp. 37-45). (Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020). Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976236.5

https://doi.org/10.1137/1.9781611976236.5
https://doi.org/10.1137/1.9781611976236.5

Pattern detection in large temporal graphs using algebraic fingerprints∗

Suhas Thejaswi† Aristides Gionis‡

Abstract

In this paper, we study a family of pattern-detection prob-

lems in vertex-colored temporal graphs. In particular, given

a vertex-colored temporal graph and a multi-set of colors

as a query, we search for temporal paths in the graph that

contain the colors specified in the query. These types of

problems have several interesting applications, for example,

recommending tours for tourists, or searching for abnormal

behavior in a network of financial transactions.

For the family of pattern-detection problems we de-

fine, we establish complexity results and design an algebraic-

algorithmic framework based on constrained multilinear siev-

ing. We demonstrate that our solution can scale to massive

graphs with up to hundred million edges, despite the prob-

lems being NP-hard. Our implementation, which is publicly

available, exhibits practical edge-linear scalability and highly

optimized. For example, in a real-world graph dataset with

more than six million edges and a multi-set query with ten

colors, we can extract an optimal solution in less than eight

minutes on a haswell desktop with four cores.

1 Introduction

Pattern mining in graphs has become increasingly pop-
ular due to applications in analyzing and understanding
structural properties of data originating from informa-
tion networks, social networks, transportation networks,
and many more. At the same time, real-world data are
inherently complex. To accurately represent the het-
erogeneous and dynamic nature of real-world graphs,
we need to enrich the basic graph model with addi-
tional features. Thus, researchers have considered la-
beled graphs [40], where vertices and/or edges are as-
sociated with additional information represented with
labels, and temporal graphs [20], where edges are asso-

∗This research was supported by the Academy of Finland
project “Adaptive and Intelligent Data (AIDA)” (317085), the

EC H2020 RIA project “SoBigData++” (871042), and the Wal-

lenberg AI, Autonomous Systems and Software Program (WASP)
funded by Knut and Alice Wallenberg Foundation. We acknowl-

edge the use of computational resources funded by the project

“Science-IT” at Aalto University, Finland.
†Department of Computer Science, Aalto University, Finland.
‡Department of Computer Science, KTH Royal Institute of

Technology, Sweden, and Department of Computer Science, Aalto
University, Finland.

ciated with timestamps that indicate when interactions
between pairs of vertices took place.

In this paper we study a family of pattern-detection
problems in graphs that are both labeled and temporal.
In particular, we consider graphs in which each vertex
is associated with one (or more) labels, to which we
refer as colors, and each edge is associated with a
timestamp. We then consider a motif query, which is a
multi-set of colors. The problem we consider is to decide
whether there exists a temporal path whose vertices
contain exactly the colors specified in the motif query.
A temporal path in a temporal graph refers to a path in
which the timestamps of consecutive edges are strictly
increasing. If such a path exists, we also want to find it
and return it as output.

The family of problems we consider have several in-
teresting applications. One application is in the domain
of tour recommendations [11], for travelers or tourists
in a city. In this case, vertices correspond to locations.
The colors associated with each location represent dif-
ferent activities that can be enjoyed in that particular
location. For example, activity types may include items
such as museums, archaeological sites, restaurants, etc.
Edges correspond to transportation links between dif-
ferent locations, and each transportation link is associ-
ated with a timestamp indicating departure time and
duration. Furthermore, for each location we may have
information about the amount of time recommended to
spent in that location, e.g., minimum amount of time
required to finish a meal or appreciate a museum. Fi-
nally, the multi-set of colors specified in the motif query
represents the multi-set of activities that a user is inter-
ested in enjoying. In the tour-recommendation problem
we would like to find a temporal path, from a starting
location to a destination, which satisfies temporal con-
straints (e.g., feasible transportation links, visit times,
and total duration) as well as the activity requirements
of the user, i.e., what kind of places they want to visit.

Another application is in the domain of analyzing
networks of financial transactions. Here, the vertices
represent financial entities, the vertex colors represent
features of the entities, and the temporal edges repre-
sent financial transactions between entities, annotated
with the time of the transaction, amount, and possi-
bly other features. An analyst may be interested in

37
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

finding long chains of transactions among entities that
have certain characteristics, for example, searching for
money-laundering activities may require querying for
paths that involve public figures, companies with cer-
tain types of contracts, and banks in off-shore locations.

In this paper we study the following problems:

k-TempPath: find a temporal path whose length is at
least k − 1;

PathMotif: find a temporal path whose vertices con-
tain the set of colors specified by a motif query;

RainbowPath: find a temporal path of length at least
k − 1, whose vertices have distinct colors.

All the problems we consider are NP-hard; thus,
there is no known efficient algorithm to find exact so-
lutions. In such cases most algorithmic solutions resort
to approximation schemes. In this paper we present an
(exact) algebraic approach based on constrained multi-
linear sieving for pattern detection in temporal graphs.

The algorithms based on constrained multilinear
detection offer the theoretically best-known results for
a set of combinatorial problems including k-path [4],
Hamiltonian path [5], graph motifs [6] and many more.
The implementations based on multilinear sieving are
known to saturate the empirical arithmetic and memory
bandwidth on modern CPU and GPU micro-architec-
tures. Furthermore, these implementations can scale to
large graphs as well as large query sizes [7, 22].

Even though these algebraic techniques have been
studied extensively in the algorithms community, they
are not been applied to data-mining problems. To the
best of our knowledge this is the first paper that ap-
plies these approaches for data mining and exploratory
graph analysis. Furthermore, this is the first work that
applies these techniques for pattern detection in tempo-
ral graphs.

Our key contributions are as follows:

• We introduce a set of pattern-detection problems that
originate in the vertex-colored and temporal graphs.
For the problems we define we present NP-hardness
results, while showing that they are fixed-parameter
tractable [10], meaning that, if we restrict the size of
motif query the problems are solvable in polynomial
time in the size of host graph.

• We present a general algebraic-algorithmic framework
based on constrained multilinear sieving. Our solu-
tion exhibits edge-linear scalability. The applications
of the algorithmic approach described in this work
is not limited to temporal paths, but rather it can
be extended to study information cascades, temporal
arborescences and temporal subgraphs.

• We engineer an implementation of the algebraic algo-

rithm and demonstrate that the implementation can
scale for graphs with up to hundred million edges.

• Open-source release: our implementation and data-
sets are released as open source [33].

Due to space constraints, the proofs of our techni-
cal contributions are omitted from the conference pro-
ceedings. A more detailed version of this work is avail-
able [34].

2 Related work

Pattern detection and pattern counting are fundamen-
tal problems in data mining. In the context of paths
and trees, pattern matching problems have been ex-
tensively studied in non-temporal graphs both in the-
ory [14, 17, 29] as well as applications [3, 21]. For
many restricted variants of path problems Kowalik and
Lauri presented complexity results and deterministic al-
gorithms with probably optimal runtime bounds [29].
Most of these problems are known to be fixed-parameter
tractable and the best known randomized algorithms
for a subset of path and subgraph pattern detection
problems is due to Björklund et al. [4, 6]. Color cod-
ing can be used to approximately count the patterns in
O∗(2k) time, however, these algorithms require O∗(2k)
memory [1].1 A practical implementation of color cod-
ing using adaptive sampling and succint encoding was
demonstrated by Bressan et al. [8] for the pattern-count-
ing problem. However, the techniques based on color
coding are mostly used to detect and count patterns in
graphs with no vertex labels.

Algebraic algorithms based on multilinear and con-
strained multilinear sieving are due to the pioneer-
ing work of Koutis [23–25], Williams [37], Koutis and
Williams [26, 27]. The approach has been extended
to various combinatorial problems using a multivariate
variant of the sieve by Björklund et al. [4]. Dell et al. [12]
used the decision oracles introduced by Björklund et al.
to approximately count the motifs. A practical imple-
mentation of multilinear sieving and its scalability to
large graphs has been demonstrated by Björklund et
al. [7]. Furthermore, its parallelizability to vector-paral-
lel architectures and scalability to large multi-set sizes
was shown by Kaski et al. [22].

In the recent years there has been a lot of progress
with respect to mining temporal graphs. The most rel-
evant work includes methods for efficient computation
of network measures, such as centrality, connectivity,
density, motifs, etc. [20, 30], as well as mining frequent
subgraphs in temporal networks [32, 36]. Path prob-
lems in temporal graphs are well studied [16,38]. Many

1The ∗ in the notation O∗ hides the polynomial factor.

38
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

variants of the path problems are known to be solv-
able in polynomial-time [38, 39]. Surprisingly, a simple
variant to check the existence of a temporal path with
waiting time constraints was shown to be NP-complete
by Casteigts et al. [9], more strongly, they proved that
the problem is W[1]-hard. A known variant of the
temporal-path problem is finding top-k shortest paths.
In this setting, one asks to find not only a shortest path,
but also the next k − 1 shortest paths, which may be
longer than the shortest path [19]. Here by shortest
path we mean that the total elapsed time of the tempo-
ral path is minimized. Note that the top-k shortest path
is different from the k-TempPath problem studied in
our work.

With the availability of social media data in the re-
cent years there has been growing interest to study pat-
tern mining problems in temporal graphs. Paranjape et
al. [32] presented efficient algorithms for counting small
temporal patterns. Liu et al. [31] presented complexity
results and approximation methods for counting pat-
terns in temporal graphs. However, they mainly study
temporal graphs with no vertex-labels (colors). Kova-
nen et al. [28] studied a general variant of the temporal
subgraph problem in temporal graphs with vertex la-
bels. Aslay et al. [2] presented methodologies for count-
ing frequent patterns with vertex and edge labels in
streaming graphs. However, most of these approaches
are limited to small pattern sizes (up to 3 vertices).

To the best of our knowledge, there is no existing
work related to detecting and extracting temporal pat-
terns with vertex labels. The problems considered in
this paper are closely related to variants of classical
problems such as orienteering problem, TSP and Hamil-
tonian path [15, 35]. A motivating application for the
problems can be traced to the context of tour recom-
mendations [11,18].

3 Method overview

Our method relies on the algebraic-fingerprinting tech-
nique [26,37]. As this technique is not well known in the
data-mining community, we provide a bird’s eye view.
The approach is described in more detail in Section 6.

In a nutshell, the problem is to decide the existence
of a pattern, or a structure in the data. The idea is to
encode the pattern-discovery problem as a polynomial
over a set of variables. The variables represent entities
of the problem instance (e.g., vertices or edges), and
their values represent possible solutions (e.g., whether
a vertex belongs to a path). The challenge is to find
a polynomial encoding that has the property that a
solution to our problem exists if and only if the poly-
nomial evaluates to a non-zero term. We can then verify
the existence of a solution, using polynomial identity

testing, in particular, by evaluating random substitu-
tions of variables: if one of them does not evaluate
to zero, then the polynomial is not identically zero.
Thus, the method can give false negatives, but the error
probability can be brought arbitrarily close to zero.

It should also be noted that an explicit represen-
tation of the polynomial can be exponentially large.
However, we do not need to represent the polynomial
explicitly, since we only need to be able to evaluate the
variable substitutions very fast.

4 Terminology

In this section we introduce the basic terminology used
in the paper.

A graph G is a tuple (V,E) where V is a set of
vertices and E is a set of unordered pairs of vertices
called edges. We denote the number of vertices |V | = n
and the number of edges |E| = m. Vertices u and v
are adjacent if there exists an edge (u, v) ∈ E. The set
of vertices adjacent to vertex u is denoted by N(u). A
walk between any two vertices is an alternating sequence
of vertices and edges u1e1u2 . . . ekuk+1 such that there
exists an edge ei = (ui, ui+1) ∈ E for each i ∈ [k].2 We
call the vertices u1 and uk+1 the start and end vertices
of the walk, respectively. The length of a walk is the
number of edges in the walk. A path is a walk with no
repetition of vertices.

A temporal graph Gτ is a tuple (V,Eτ), where V is
a set of vertices and Eτ is a set of temporal edges. A
temporal edge is a triple (u, v, j) where u, v ∈ V and
j ∈ Z≥0 is a timestamp. The maximum timestamp
in Gτ is denoted by t. The total number of edges at
time instance j ∈ [t] is denoted by mj and the total
number of edges in a temporal graph is m =

∑
j∈[t]mj .

A vertex u is adjacent to vertex v at timestamp j if
there exists an edge (u, v, j) ∈ Eτ . The set of vertices
adjacent to vertex u at time step j is denoted by Nj(u).
The set of vertices adjacent to vertex u is denoted by
N(u) =

⋃
j∈[t]Nj(u).

A temporal walk W τ between any two vertices is
an alternating sequence of vertices and temporal edges
u1e1u2e2 . . . ekuk+1 such that there exists an edge ei =
(ui, ui+1, j) ∈ Eτ for all i ∈ [k] and for any two edges
ei = (ui, ui+1, j), ei+1 = (ui+1, ui+2, j

′) it is j < j′. In
other words, the timestamps of the edges should always
be in strictly increasing order. The length of a temporal
walk is the number of edges in the temporal walk. A
temporal path is a temporal walk with no repetition of
vertices.

In the next section we will introduce a set of path
problems in temporal graphs and an exact algorithm

2For convenience we represent {1, 2, . . . , k} as [k].

39
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

3

1

3
1

2 4

5

(a) A motif query and a temporal graph

3

1

3
1

2
4

5

(b) A PathMotif

Figure 1: An example of the PathMotif problem in
temporal graphs.

based on multilinear sieving is presented in Section 6.

5 Path problems in temporal graphs

Let us begin our discussion with the k-path problem for
static graphs before continuing to temporal graphs.

The k-path problem in static graphs. Given a
graph G = (V,E) and an integer k ≤ n the k-Path
problem asks to decide whether there exists a path of
length at least k− 1 in G. The k-Path problem is NP-
complete [15, ND29]. Fortunately, the problem is fixed-
parameter tractable. The best known fixed-parameter
tractable algorithm is due to Björklund et al. [4] and
has complexity O∗(1.66k).

The k-path problem in temporal graphs. Given
a temporal graph Gτ = (V,Eτ) and an integer k ≤ n
the k-TempPath problem asks to decide whether there
exists a temporal path of length at least k−1 in Gτ . For
the hardness, a reduction from k-Path to k-TempPath
is straightforward.

Lemma 5.1. Problem k-TempPath is NP-complete.

Path motif problem in temporal graphs. Given a
vertex-colored temporal graph Gτ = (V,Eτ) and multi-
set M of colors the PathMotif problem asks to decide
whether there exists a temporal path P τ in Gτ such that
the vertex colors of P τ agrees with M . An example of
PathMotif problem is illustrated in Figure 1.

The PathMotif problem is NP-complete — a
reduction from k-TempPath is straightforward.

Lemma 5.2. Problem PathMotif is NP-complete.

Rainbow path problem in temporal graphs.
Given a temporal graph Gτ = (V,Eτ), an integer k ≤ n,
and a coloring function c : V → [k], the RainbowPath
problem asks us to decide whether there exists a tempo-
ral path P τ of length k−1 such that all vertex colors of
P τ are different. An example of RainbowPath prob-
lem is illustrated in Figure 2.

3

1

3
1

2 4

5

(a) A motif query and a temporal graph

3

1

3
1

2
4

5

(b) A RainbowPath

Figure 2: An example of the RainbowPath problem
in temporal graphs.

The RainbowPath problem is a special case of
the PathMotif problem, where all the colors in the
multi-set M are different, that is M = [k]. It is
easy to see that the RainbowPath problem in static
graphs can be reduced to the RainbowPath problem
in temporal graphs by replacing each static edge with
k− 1 temporal edges.3 So, the RainbowPath problem
is NP-complete.

6 Algebraic algorithm for temporal paths

We now present an algorithm for the k-TempPath and
PathMotif problems. Our algorithm relies on a poly-
nomial encoding of temporal walks and the algebraic
fingerprinting technique [6,23,26,37]. The algorithm is
presented in three steps: (i) we present a dynamic pro-
gramming recursion to generate polynomial encoding of
temporal walks; (ii) we present an algebraic algorithm
to detect the existence of an multilinear monomial in
the polynomial generated using the recursion in (i) —
furthermore, we prove that existence of a multilinear
monomial implies existence of a temporal path; (iii) fi-
nally, we extend the approach to detect temporal paths
with additional color constraints using constrained mul-
tilinear detection. Let us begin with the concept of poly-
nomial encoding of temporal walks.

Let P be a multivariate polynomial such that every

monomial M is of the form xd11 x
d2
2 . . . x

dq
q y

f1
1 y

f2
2 . . . yfrr .

A monomial is multilinear if di ∈ {0, 1} for all i ∈ [q] and
fj ∈ {0, 1} for all j ∈ r. A monomial is x-multilinear if
di ∈ {0, 1} for all i ∈ q, i.e., we do not take into account
the degrees of the y-variables. The degree of a monomial
M is the sum of the degrees of all its variables. However,
for a x-multilinear monomial the degree is the sum of
degrees of x-variables.

Monomial encoding of a temporal walk. Let

3Given a static graph G = (V,E) and a coloring function
c : V → [k], the RainbowPath problem in static graphs asks
us to find a path P of length k − 1 such that all vertex colors of

P are different. The RainbowPath problem in static graphs is
known to be NP-complete [13].

40
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

W τ = v1e1v2 . . . ek−1vk be a temporal walk in a tempo-
ral graph Gτ = (V,Eτ). Let {xv1 , . . . , xvn} be a set
of variables representing vertices in V and {yuv,`,i :
(u, v, i) ∈ Eτ , ` ∈ [k]} be a set of variables such that
yuv,`,i correspond to an edge (u, v, i) ∈ Eτ that appears
at position ` in W τ . A monomial encoding of W τ is
represented as

xv1yv1v2,1,i1xv2yv1v2,2,i2 . . . yvk−1vk,k−1,ik−1
, xvk ,

where i1, . . . , ik−1 denote the timestamps on the edges
e1, . . . , ek−1, respectively.

It can be shown that the above encoding of W τ is
x-multilinear if and only if W τ is a temporal path.

Lemma 6.1. The monomial encoding of a temporal
walk W τ is x-multilinear (and multilinear) if and only
if the temporal walk is a temporal path.

Generating polynomial for temporal walks. We
present a recursion to generate temporal walks. Let
Pu,`,i denote the encoding of all walks of length ` − 1
ending at vertex u and at latest time i. Let v1 be a
vertex such that Ni(v1) = {v2, v3, v4}. Let Pv2,`−1,i−1,
Pv3,`−1,i−1 and Pv4,`−1,i−1 represent the polynomial
encoding of walks ending at vertices v2, v3 and v4,
respectively, such that all walks have length ` − 2 and
end at latest time i−1. Let Pv1,`,i−1 denote polynomial
encoding of all walks of length ` − 1, ending at v1 at
latest time i−1. The example is illustrated in Figure 3.

The polynomial encoding to represent walks of
length ` − 1 ending at v1 and at latest time i can be
written as:

Pv1,`,i = xv1yv2v1,`,i Pv2,`−1,i−1 +

xv1yv3v1,`,i Pv3,`−1,i−1 +

xv1yv4v1,`,i Pv4,`−1,i−1 + Pv1,`,i−1.

Intuitively, the above equation represents that we can
reach vertex v1 at time step i if we have already reached
any of its neighbors in Ni(v1) by latest timestamp i−1.
Furthermore, the term Pv1,`,i−1 is included so that if we
have reached v1 at latest time i − 1 we can choose to
stay at v1 for timestamp i.

By generalizing the above idea, a generating func-
tion for Pu,`,i, for each u ∈ V , ` ∈ [k], and i ∈ [t] is
written as follows:

(6.1) Pu,`,i = xu
∑

v∈Ni(u)

yuv,`,iPv,`−1,i−1 + Pu,`,i−1.

Furthermore, let us form the polynomial P`,i =∑
u∈V Pu,`,i, for each ` ∈ [k] and i ∈ [t]. More precisely,

P`,i denotes the polynomial encoding of all walks of

v2

v3

v4

v1

Pv2,`−1,i−1

Pv3,`−1,i−1

Pv4,`−1,i−1

Pv1,`,i = xv1yv2v1,`,i Pv2,`−1,i−1 +
xv1yv3v1,`,i Pv3,`−1,i−1 +
xv1yv4v1,`,i Pv4,`−1,i−1 + Pv1,`,i−1

yv1v2,`,i

yv1v3,`,i

yv1v4,`,i

Figure 3: An illustration of the polynomial encoding
of temporal walks.

length ` − 1 ending at latest timestamp i. Now the
problem of detecting a k-TempPath is equivalent to
finding a x-multilinear monomial in Pk,t. From the
construction of the generating function in (6.1) it is
clear that y variables are always distinct and detecting
a x-multilinear monomial is equivalent to detecting a
multilinear monomial.

Lemma 6.2. The polynomial encoding Pu,`,i in (6.1)
contains a x-multilinear monomial of degree ` if and
only if there exists a temporal path of length `−1 ending
at vertex u at latest time i.

Multilinear sieving. From Lemma 6.2 the problem of
deciding the existence of a k-TempPath in Gτ reduces
to detecting the existence of a multilinear monomial
term in Pk,t.

Let L be the set of k labels and [n] the set denoting
vertices in V . For each vertex i ∈ [n] and label j ∈ L we
introduce a new variable zi,j . The vector of all variables
of zi,j is denoted as z and the vector of all y-variables as
y. Now we can determine the existence of a multilinear
monomial in Pk,t by making 2k random substitutions
of the new variables in z using the technique described
by Björklund, Kaski and Kolwalik [5]. The algorithm is
randomized and has a false negative probability of 2k−1

2b

where the arithmetic is over GF(2b) [6].

Lemma 6.3. ([5]) The polynomial Pk,t has at least one
multilinear monomial if and only if the polynomial

(6.2) Q(z,y) =
∑
A⊆L

Pk,t(zA1 , . . . , zAn ,y)

is not identically zero, where zAi =
∑
j∈A zi,j for all

i ∈ [n] and A ⊆ L.

Algorithm. Our algorithm for k-TempPath works as
follows: (i) we construct a polynomial representing all
temporal walks of length k−1 using the recursion (6.1);

41
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

and (ii) we check if there exits a x-multilinear mono-
mial term in the polynomial generated from (i) us-
ing Lemma 6.3. From Lemma 6.2, existence of a x-
multilinear monomial term of size k implies existence of
a temporal path of length k − 1 and vice versa.

Lemma 6.4. There exists an algorithm for solving the
k-TempPath problem in O(2kk(nt + m)) time and
O(nt) space.

Lemma 6.5. k-TempPath is fixed-parameter tractable.

Constrained multilinear sieving. The previous sec-
tion describes an algorithm for detecting k-TempPath.
Now we discuss how to extend this approach to detect
PathMotif using constrained multilinear sieving tech-
nique.

If we observe carefully, to obtain a PathMotif we
need to find a multilinear monomial term in the poly-
nomial Pk,t such that the vertex colors corresponding
to the x-variables with degree one agrees to that of the
multi-set M . This can be done by imposing additional
constraints while evaluating the sieve.

Let C be a set of n colors and c : [n]→ C a function
that associates each i ∈ [n] to a color in C. For each
color s ∈ C let us denote the number of occurrences
of color s by µ(s). A monomial xd11 . . . xd

q

q y
f1
1 . . . yfrr is

properly colored if for all s ∈ C it holds that µ(s) =∑
i∈c−1(s) di, more precisely the number of occurrences

of color s is equal to the total degree of x-variables
representing the vertices with color s.

For each s ∈ C, let Ss be the set of µ(s) with color
s such that Ss ∩ Ss′ = 0 for all s 6= s′. For i ∈ [n] and
d ∈ Sc(i) we introduce a new variable vi,d. Let L be a
set of K labels. For each d ∈ ∪s∈CSs and each label
i ∈ L we introduce a new variable wi,d.

Lemma 6.6. ([6]) The polynomial Pk,t has at least one
monomial that is both x-multilinear and properly colored
if and only if the polynomial

(6.3) Q(z,w,y) =
∑
A⊆L

Pk,t(zA1 , . . . , zAn ,y)

is not identically zero, where

(6.4) zAi =
∑
j∈A

zi,j , and zi,j =
∑

d∈Sc(i)

vi,dwd,j .

From Lemmas 6.4 and 6.6 it follows that we have an
O(2kk(nt+m)) algorithm to solve PathMotif problem
in O(nt) space.

Obtaining an optimal solution. In this section we
describe a procedure to obtain an optimal path. By

optimal we mean that the maximum timestamp of the
edges in the temporal path is minimized. For simplicity,
we refer to our algorithm for the decision version
as decision oracle. To find the minimum (optimal)
timestamp t′ ∈ [t], we make at most O(log t) queries
to the decision oracle using binary search on range [t].

Extracting a solution. In the previous sections we
described an algebraic solution for the decision version
of the PathMotif problem. In many cases we need to
extract a solution, if such a path exists. We use the
decision oracle as a subroutine to find a solution in at
most O(n) queries as follows: (i) for each vertex v ∈ V
we remove the vertex v and the edges incident to it and
query the oracle. If there is a solution, then we continue
to next vertex; otherwise we put back v and the edges
incident to it, and continue to next vertex. In this way,
we can obtain a subgraph with k vertices in at most n−k
queries to the oracle. However, the number of queries to
the decision oracle can be reduced to O(k log n) queries
in expectation by recursively dividing the graph in to
two halves [5]; (ii) pick an arbitrary start vertex in the
subgraph obtained from (i) and find a temporal path
connecting all the k vertices using temporal DFS, if such
a path do not exist then continue to next vertex. Even
though the worst case complexity is O(k!), in practice
this approach works very fast. However, extracting a
solution can be done using O(k) queries to the decision
oracle using vertex-localized sieving. For the reasons of
space we skip a detailed discussion of this approach.

Path motif problem with delays. In a real-world
transport network a transition between any two loca-
tions would involve a transition time and a minimum
delay time at a location before continuing the journey,
for example a minimum time to visit a museum. In this
section, we introduce a problem setting with transition
and delay times and present generating polynomials to
solve the problems.

For a temporal graph Gτ = (V,Eτ), an edge e ∈ Eτ
is a quadruple (u, v, i,∆) where u, v ∈ V , i ∈ Z≥0 is
a time instance and ∆ ∈ Z≥0 is transition time from
u to v. Additionally, each vertex has a delay time
δ : V → Z≥0. The encoding with transition time and
delay is the following:

Pu,`,i+∆ = xu
∑

(u,v,i,∆)∈E

yuv,iPv,`−1,i−δ(v) + Pu,`,i−1.

From Lemmas 6.2 and 6.6, it follows that existence
of a multilinear monomial in the polynomial generated
above would imply the existence of a PathMotif.

7 Implementation

We use the design of Björklund et al. [7] as a starting
point for our implementation, in particular we make use

42
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 1: Comparison of extraction time for baseline and
algebraic algorithms. All runtimes are in seconds.

m
Regular Powlaw d−0.5 Powlaw d−1.0

Base Alg Sp Base Alg Sp Base Alg Sp

1040 0.1 0.1 1 0.1 0.1 1 0.1 0.1 1.0

10040 0.5 0.1 5 1.0 0.1 10 10.8 0.1 108
100040 5.6 1.1 5 30.4 1.1 27.6 20430.2 1.0 20430.2

1000040 74.0 12.0 6 808.2 11.2 72.1 – 10.1 –

of fast finite-field arithmetic implementation.
Our effort boils down to implementing the generat-

ing function (6.1) and evaluating the recurrence at 2k

random points. Specifically, we introduce a domain vari-
able xv for each v ∈ V and a support variable yuv,`,i for
each ` ∈ [k] and (u, v, i) ∈ Eτ . The values of variables
xv are computed using Equation (6.4) and the values of
variables yuv,`,i are assigned uniformly at random.

Our current implementation uses O(ntk) memory
instead of O(nt). In order to reduce the memory access
latency we arrange our memory layout as k × t × n;
furthermore, we employ hardware prefetching [7, § 3.6]
to saturate the memory bandwidth and a parallelization
scheme [7, § 3.5] to achieve thread-level parallelism.

Our software is available as open source [33].

8 Experimental evaluation

In this section we discuss our experimental evaluation.

Baseline. For the problems considered in this paper we
are not aware of any known baselines to compare. Thus,
we implemented two baselines: (i) an exhaustive-search
algorithm using temporal DFS, and (ii) a brute-force
algorithm based on random walks. The details of these
algorithms are available in an extended abstract [34].
The brute-force algorithm does not work in practice,
even for small graphs (m = 104). For this reason,
we experiment only with the exhaustive-search baseline.
We note that the baseline is highly optimized and thread
parallelized.

Hardware. We experiment with two configurations.
Workstation: A Fujitsu Esprimo E920 with 1×3.2 GHz
Intel Core i5-4570 CPU, 4 cores, 16 GB memory,
Ubuntu, and gcc v 5.4.0.
Computenode: A Dell PowerEdge C4130 with
2×2.5 GHz Intel Xeon 2680 V3 CPU, 24 cores, 12
cores/CPU, 128 GB memory, Red Hat, and gcc v 6.3.0.

Our executions make use of all cores.

Input graphs. We evaluate our methods using both
synthetic and real-world graphs. (i) We use two types of
synthetic graphs: random d-regular graphs; and power-
law graphs. (ii) We use the real-world road transport
networks from the cities of Helsinki and Madrid. A

description of datasets and graph configuration models
is available in an extended version of this paper [34].

Our baseline and scalability experiments are per-
formed on RainbowPath problem instances, remem-
ber that, in RainbowPath problem every vertex
matches with a multi-set color. Likewise, no trivial pre-
processing step can be employed to reduce the graph
size.

8.1 Experimental results. We now describe our
results and key findings. Recall that decision time
is the time required to decide the existence of one
solution, while extraction time is the time required
to extract such a solution. As discussed previously,
extracting a solution requires multiple calls to the
decision oracle. All the experiments are executed on the
workstation using all cores, with an only exception for
the experiments with scalability to large graphs which
is executed on the computenote.

Baseline. Our first set of experiments compares the
extraction time to obtain an optimal solution using our
algebraic algorithm and the exhaustive-search baseline.
In Table 1, we report extraction times for: (i) d-regular
random graphs with n = 102, . . . , 105 and fixed values
of d = 20, t = 100, k = 5; (ii) power-law graphs with
n = 102 . . . , 105, D = 20, w = 100, k = 5, α = −0.5;
and (iii) α = −1.0. Vertex colors are assigned randomly
in the range [k] and the multi-set is [k]. Each graph
instance has at least ten target instances agreeing multi-
set colors with different timestamps chosen uniformly
at random. For the baseline we report the minimum
time of five independent runs, however, for the algebraic
algorithm we report the maximum. Speedup (Sp) is the
ratio of baseline and algebraic algorithm runtimes.

Surprisingly, the baseline can compete with the
algebraic algorithm in the case of d-regular random
graphs, however, the runtimes have high variance. On
the other hand, the algebraic algorithm is very stable.
For the power-law graphs with m = 105 edges and
multi-set size k = 5, the algebraic algorithm is at
least twenty thousand times faster than the baseline.
The baseline failed to report a solution in small graphs
m = 103 with large multi-set size k = 10.

Scalability. Our second set of experiments study scala-
bility with respect to: (i) number of edges; (ii) multi-set
size; (iii) number of timestamps; and (iv) vertex degree.

Figure 4 (left) reports decision and extraction times
for d-regular random graphs with n = 102, . . . , 105 and
fixed values of d = 20, k = 8, t = 100. Figure 4 (center-
left) shows decision time for d-regular random graphs
with k = 10, . . . , 18 and fixed values of n = 103,
d = 20, t = 100. Vertex colors are assigned randomly
in the range [k] and the multi-set is [k]. We observe a

43
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

10-1

100

101

102

103

103 104 105 106

T
im

e
[s

]

Number of edges (m)

Decision
Extraction

100

101

102

103

104

105

 10 11 12 13 14 15 16 17 18

T
im

e
[s

]

Multi-set size (k)

Decision
Extraction

10-1

100

101

102

 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

]

Max timestamp (t)

Decision
Extraction

10-1

100

101

102

103

100 101 102 103 104

T
im

e
[s

]

Degree (d)

Decision
Extraction

Figure 4: Scalability results. Runtime as a function of the number of edges (left); multi-set size (center-left);
number of timestamps (center-right); and degree (right).

10-2

10-1

100

101

102

103

105 106 107 108

T
im

e
[s

]

Number of edges (m)

Decision
Extraction

100

101

102

103

104

105

105 106 107 108

T
im

e
[s

]

Number of edges (m)

Decision
Extraction

Figure 5: Scaling to large graphs. Runtime as a function
of number of edges with k = 5 (left) and k = 10 (right).

linear scaling with increasing the number of edges and
exponential scaling with increasing the multi-set size, as
expected by the theory. The variance in decision time
is very small for different inputs, however, it is higher
for extraction time. The algorithm is able to decide
the existence of a solution in less than two minutes for
graphs up to one million edges with multi-set size k = 8
and extract a solution in less than sixteen minutes.

Next we study the effect of graph density on scal-
ability. Figure 4 (center-right) shows decision and ex-
traction times for d-regular random graphs with t =
10, . . . , 100 and fixed values of n = 104, d = 20, k = 8.
Figure 4 (right) shows decision and extraction times for
d-regular random graphs with d = 2, 20, 200, 2000 and
corresponding values of n = 106, . . . , 103, with fixed
m = 106 and t = 100. We observe that the algebraic
algorithm performs better for dense graphs. A possible
explanation is that for sparse graphs there is not enough
work to keep both the arithmetic and memory pipeline
busy, simultaneously.

Scaling to large graphs. Next we study the scal-
ability of the algebraic algorithm to graphs with up
to hundred million edges. Figure 5 reports decision
and extraction times for d-regular random graphs with
n = 103, . . . , 106, d = 200, t = 100 with k = 5 (left) and
k = 10 (right). Vertex colors are assigned randomly in
the range [k] and the multi-set is [k]. In graphs with
hundred million edges, the algebraic algorithm can ex-
tract an optimal solution in less than two minutes for

Table 2: Experimental results on real-world graphs. All
runtimes are in seconds. H–Helsinki, M–Madrid.

Dataset n m t k = 5 k = 10

Base Alg Base Alg

Tram(M) 70 35144 1265 1.37 0.24 1337.98 28.05
Train(M) 91 43677 1181 40.01 0.25 – 24.12
Bus(M) 4597 2254993 1440 6337.89 1.27 – 278.91

IU-bus(M) 7543 1495055 1440 744.79 1.30 – 325.51
Bus(H) 7959 6403785 1440 – 1.67 – 444.66

k = 5 and less than two hours for k = 10.

Experiments with real-world graphs. Finally, we
report decision and extraction times for the algebraic
algorithm on real-world data. Table 2 reports decision
and extraction time (in seconds) for the experiments
on real-world datasets. For each dataset we report the
maximum time among the five independent executions
by choosing multi-set colors at random. For multi-set
size k = 5, the extraction time is at most two seconds.
For larger multi-set size k = 10, the extraction time is
at most eight minutes in all the datasets. Additionally,
we pre-process the graphs by removing vertices whose
colors do not match with multi-set colors for both the
baseline and the algebraic algorithm.

9 Conclusions and future work

In this paper we introduce several pattern-detection
problems that arise in the context mining large tempo-
ral graphs. We present complexity results, and design
algebraic algorithms based on the constrained multilin-
ear sieving technique. Our implementation can scale to
large graphs up to hundred million edges despite the
problems being NP-hard. We present extensive exper-
imental results that validate our scalability claims.

As a future work we would like to consider problem
settings where we search for temporal arborescences and
temporal subgraphs. Furthermore, we would like to
explore the counting variants of these problems.

References

44
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[1] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdi-
ari, and S. C. Sahinalp, Biomolecular network motif
counting and discovery by color coding, Bioinformatics,
24 (2008), pp. 241–249.

[2] C. Aslay, A. Nasir, G. De Francisci Morales,
and A. Gionis, Mining frequent patterns in evolving
graphs, in CIKM, 2018, pp. 923–932.

[3] A. Benson, D. Gleich, and J. Leskovec, Higher-
order organization of complex networks, Science, 353
(2016), pp. 163–166.

[4] A. Björklund, T. Husfeldt, P. Kaski, and
M. Koivisto, Narrow sieves for parameterized paths
and packings, JCSS, 87 (2017), pp. 119–139.

[5] A. Björklund, P. Kaski, and L. Kowalik, Deter-
minant sums for undirected Hamiltonicity, SIAM J.
Comput., 43 (2014), pp. 280–299.

[6] A. Björklund, P. Kaski, and L. Kowalik, Con-
strained multilinear detection and generalized graph
motifs, Algorithmica, 74 (2016), pp. 947–967.

[7] A. Björklund, P. Kaski, L. Kowalik, and
J. Lauri, Engineering motif search for large graphs,
in ALENEX, 2015, pp. 104–118.

[8] M. Bressan, S. Leucci, and A. Panconesi, Motivo:
Fast motif counting via succinct color coding and adap-
tive sampling, PVLDB, 12 (2019), pp. 1651–1663.

[9] A. Casteigts, A. Himmel, H. Molter, and
P. Zschoche, The computational complexity of finding
temporal paths under waiting time constraints, CoRR,
abs/1909.06437 (2019).

[10] M. Cygan, F. V. Fomin, L. Kowalik, D. Loksh-
tanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh, Parameterized algorithms, 2015.

[11] M. DeChoudhury, M. Feldman, S. Amer-Yahia,
N. Golbandi, R. Lempel, and C. Yu, Automatic
construction of travel itineraries using social bread-
crumbs, in HT, 2010, pp. 35–44.

[12] H. Dell, J. Lapinskas, and K. Meeks, Approxi-
mately counting and sampling small witnesses using a
colourful decision oracle, in SODA, 2020, pp. 2201–
2211.

[13] E. Eiben, R. Ganian, and J. Lauri, On the com-
plexity of rainbow coloring problems, DAM, 246 (2018),
pp. 38 – 48.

[14] T. Gagie, D. Hermelin, G. M. Landau, and
O. Weimann, Binary jumbled pattern matching on
trees and tree-like structures, in ESA, 2013.

[15] M. R. Garey and D. S. Johnson, Computers and
intractability, vol. 29, W. H. Freeman and Co., 2002.

[16] B. George, S. Kim, and S. Shekhar, Spatio-
temporal network databases and routing algorithms: A
summary of results, in SSTD, 2007, pp. 460–477.

[17] E. Giaquinta and S. Grabowski, New algorithms
for binary jumbled pattern matching, IPL, 113 (2013),
pp. 538–542.

[18] A. Gionis, T. Lappas, K. Pelechrinis, and
E. Terzi, Customized tour recommendations in urban
areas, WSDM, 2014, pp. 313–322.

[19] M. Gupta, C. C. Aggarwal, and J. Han, Finding

top-k shortest path distance changes in an evolutionary
network, in SSTD, 2011, pp. 130–148.

[20] P. Holme and J. Saramäki, Temporal networks,
Physics reports, 519 (2012), pp. 97–125.

[21] , Temporal networks, Physics reports, 519 (2012),
pp. 97–125.

[22] P. Kaski, J. Lauri, and S. Thejaswi, Engineering
Motif Search for Large Motifs, in SEA, 2018, pp. 1–19.

[23] I. Koutis, Faster algebraic algorithms for path and
packing problems, in ICALP, 2008.

[24] , The power of group algebras for constrained
multilinear monomial detection, Dagstuhl meeting
10441, (2010).

[25] , Constrained multilinear detection for faster
functional motif discovery, IPL, 112 (2012), pp. 889–
892.

[26] I. Koutis and R. Williams, Limits and applications
of group algebras for parameterized problems, in ICALP
(1), 2009.

[27] I. Koutis and R. Williams, Algebraic fingerprints
for faster algorithms, Comm. of the ACM, 59 (2016),
pp. 98–105.

[28] L. Kovanen, M. Karsai, K. Kaski, J. Kertész,
and J. Saramäki, Temporal motifs in time-dependent
networks, JSM, 2011 (2011), p. P11005.

[29] L. Kowalik and J. Lauri, On finding rainbow and
colorful paths, TCS, 628 (2016), pp. 110 – 114.

[30] M. Latapy, T. Viard, and C. Magnien, Stream
graphs and link streams for the modeling of interactions
over time, Social Network Analysis and Mining, 8
(2018).

[31] P. Liu, A. Benson, and M. Charikar, Sampling
methods for counting temporal motifs, in WSDM, 2019,
pp. 294–302.

[32] A. Paranjape, A. Benson, and J. Leskovec, Motifs
in temporal networks, WSDM, 2017, pp. 601–610.

[33] S. Thejaswi and A. Gionis, 2019. https://github.

com/suhastheju/temporal-patterns.
[34] , Finding temporal patterns using algebraic fin-

gerprints, arXiv, abs/2001.07158 (2020).
[35] P. Vansteenwegen, W. Souffriau, and D. V.

Oudheusden, The orienteering problem: A survey,
EJOR, 209 (2011), pp. 1 – 10.

[36] B. Wackersreuther, P. Wackersreuther, A. Os-
wald, C. Böhm, and K. Borgwardt, Frequent sub-
graph discovery in dynamic networks, in MLG, 2010.

[37] R. Williams, Finding paths of length k in O∗(2k) time,
IPL, 109 (2009).

[38] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and
Y. Xu, Path problems in temporal graphs, Proc. VLDB
Endow., 7 (2014), pp. 721–732.

[39] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang,
and H. Wu, Efficient algorithms for temporal path
computation, TKDE, 28 (2016), pp. 2927–2942.

[40] J. Yang, J. McAuley, and J. Leskovec, Com-
munity detection in networks with node attributes, in
ICDM, 2013, pp. 1151–1156.

45
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

3/
20

 to
 1

30
.2

33
.1

91
.1

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/suhastheju/temporal-patterns
https://github.com/suhastheju/temporal-patterns

