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Extended Adjacency and Scale-dependent Graph
Fourier Transform via Diffusion Distances

Vitor R. M. Elias, Wallace A. Martins, Senior Member, IEEE and Stefan Werner, Senior Member, IEEE

Abstract—This paper proposes the augmentation of the ad-
jacency model of networks for graph signal processing. It is
assumed that no information about the network is available,
apart from the initial adjacency matrix. In the proposed model,
additional edges are created according to a Markov relation
imposed between nodes. This information is incorporated into the
extended-adjacency matrix as a function of the diffusion distance
between nodes. The diffusion distance measures similarities
between nodes at a certain diffusion scale or time, and is a metric
adopted from diffusion maps. Similarly, the proposed extended-
adjacency matrix depends on the diffusion scale, which enables
the definition of a scale-dependent graph Fourier transform.
We conduct theoretical analyses of both the extended adjacency
and the corresponding graph Fourier transform and show that
different diffusion scales lead to different graph-frequency per-
spectives. At different scales, the transform discriminates shifted
ranges of signal variations across the graph, revealing more
information on the graph signal when compared to traditional
approaches. The scale-dependent graph Fourier transform is
applied for anomaly detection and is shown to outperform the
conventional graph Fourier transform.

Index Terms—diffusion distances, diffusion maps, extended ad-
jacency, graph signal processing, scale-dependent graph Fourier
transform.

I. INTRODUCTION

LARGE quantities of heterogeneous data are constantly
collected by numerous sensors, which are often geo-

graphically dispersed. Real networks and their corresponding
data come in vastly different shapes and applications, ranging
from genetic interaction networks [1] and the human brain [2]
to sensor networks and smart cities [3]. The increased connec-
tivity and availability of abundant data calls for methods that
can uncover hidden connections between seemingly unrelated
things in complex and irregular structures.

Graph signal processing (GSP) explores pairwise relations
between signals residing on nodes of a graph [4]–[6]. In GSP,
elements of networks are modeled as vertices (or nodes) of
a mathematical structure – the graph – and relations between
two connected elements are represented by edges [1]–[4]. The
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dimensionality of the data matches that of the graph, such that
each entry is associated with a vertex.

Most GSP tools are functions of a graph-shift operator
(GSO) matrix [7]–[9] that encodes relations between the graph
nodes. For instance, the graph Fourier transform (GFT) is
defined as the signal expansion in terms of the eigenbasis of
the GSO. The literature contains several GSO definitions that
suit different applications [2]–[20]. The two most commonly
used GSOs are the adjacency matrix of the graph [7], and the
graph Laplacian [6].

The application dependency of the GSO is related to the
more fundamental problem of modeling the original network
by a graph; different models have different properties that
can be explored by GSP tools [11]–[20]. For a particular
network and application, it is desirable to define a GSO
that best describes node relations, so that the corresponding
network signals can be better analyzed/processed. Consider,
for instance, the frequency analysis yielded by the GFT. The
spectrum of a graph is directly related to the eigenvalues
of the GSO. As a consequence, changes in the GSO en-
tries are reflected in the graph spectrum, possibly allowing
the discrimination of different frequency contents of a same
network signal. We assume here that adjacency matrices are
initially sparse, rendering GSOs with a reduced number of
edges. This is due to sparsity constraints commonly im-
posed upon adjacency matrices or application limitations, e.g.,
sensors identifying their own neighbors. Moreover, if only
the adjacency information is available but accurate network
information is unknown, updating or deriving a new GSO
becomes a challenging task. This work proposes a method for
augmenting an initial adjacency matrix for frequency analysis
of networked data.

We derive virtual Markov relations between nodes and
incorporate the Markov property into the GSO as a function of
diffusion distances (DDs) between network elements. Markov
relations occur naturally in some applications, such as in
consensus [21]–[23] and random-walk-driven networks [24],
[25]. For generic networks, we propose a derivation of the
Markov matrix based on the consensus algorithm [21]. DDs
are part of the diffusion-maps (DMs) framework introduced
in [26]. DMs are applicable to datasets composed by states
of high-dimensional data points. These data points can be
interpreted as data states as they vary with time. As a function
of the Euclidean distance between data points, a Markov
matrix can be defined by describing transition probabilities of
a random walk between data states. Here, the set of data states
can be represented by the nodes of a graph. Note that each
node of the graph is associated with an entire data state of the
network, such that edges define transition relations between



2

these high-dimensional data states. This view is in contrast
with that of GSP, where edges associate individual network
elements. Using eigenvectors of the corresponding Markov
matrix, DMs uncover descriptions of the underlying geometry
of the dataset [27]–[29]. In this framework, DDs provide a
metric for relating two states of data according to the random
walk.

We consider elements of the network as nodes of a graph,
as in the GSP framework, and the relations between these ele-
ments depend on a concept of transition-probability distance,
as in the DM framework. The use of DDs yields an augmented
version of the initial adjacency model. For instance, DDs
relate nodes that are beyond the local reach of the physical
neighborhood. This relation depends on how many transition
steps of the Markov chain are considered in the computation of
the DD. The resulting GSO, called extended-adjacency matrix,
depends on the number of transition steps. We demonstrate
the benefits of the extended adjacency by implementing a
method that uses the proposed model together with the GFT
to get a scale-dependent graph-frequency analysis, which we
call scale-dependent graph Fourier transform (sGFT). We
note that the proposed GSO model can be used with other
GSP tools, including other graph-frequency representations.
Moreover, the proposed mapping is not restricted to networks
that inherently present the Markov property; indeed, it is
possible to derive a Markov chain from a generic adjacency
matrix as we show in Section V-A.

The combination of DM and GSP has been considered
in [30] and [31]. The work in [30] proposes the use of
Markov matrices as GSO. In the context of GSP, Markov
matrices, of the form in [30], have desirable properties, e.g.,
they are diagonalizable and the inverse eigenvector matrix can
be computed efficiently. The use of Markov matrices also
allows DM-related tools, such as dimensionality reduction and
clustering, to be incorporated in GSP [30]. Furthermore, the
work in [30] studies the similarities between both frameworks,
making explicit how some operations from GSP can be
interpreted from a DM perspective. For instance, both graph-
shifting and graph-filtering operations can be written in terms
of embeddings from the DM framework. In [31], a method
for graph-signal interpolation is derived using the Nyström
extension [32] when employing a Markov matrix as GSO.

The use of DM for classical digital signal processing (DSP)
tasks has been studied in different applications in [29]. The
authors introduce two filtering schemes that leverage on prop-
erties of DMs: non-local filtering updates a state xi according
to the affinity between xi and other states xj , while this
affinity is computed by using the Gaussian kernel over the
DD between xi and xj ; and graph-based processing explores
subsets of eigenvectors acquired by DMs to extract the desired
component of noisy data states. Moreover, the authors in [29]
present applications of DMs in single-channel source localiza-
tion and in the suppression of transient interference for speech
enhancement.

In contrast to previous works, we incorporate DDs into the
GSP framework and construct a graph model that captures
the interaction between elements of the Markov network.
Specifically, while the work in [30] proposes a Markov matrix

as GSO, we use a Markov matrix only as the starting point of
our work. Moreover, the Markov matrix proposed in [30] is not
symmetric, whereas we adopt a doubly-stochastic matrix based
on the discrete-time consensus algorithm [21]. The proposed
model is derived by further implementing concepts of DMs
given the initial Markov matrix. Namely, we use the Markov
matrix to compute DDs between nodes and generate additional
edges. The main contributions of this paper are as follows:
• We propose an extended-adjacency matrix that captures

dependencies between non-adjacent nodes of the graph.
The model augments the original adjacency using DDs
between nodes. We show that the extended-adjacency
matrix can be derived for a non-Markov network for
which an associated Markov model can be constructed.

• We present a scale-dependent graph Fourier transform
(sGFT), as a function of the extended-adjacency matrix,
that describes the frequency content of the graph signal.
The sGFT reveals the graph frequency versus time, or
scale, of the associated Markov chain. The sGFT is
applied for anomaly detection using synthetic and real
data, and we show that the proposed GSO improves the
GFT in the anomaly-detection task when compared to
other GSO models.

The rest of the paper is organized as follows. Sections II
and III present the fundamentals of graph signal process-
ing and diffusion maps. Section IV introduces the proposed
extended-adjacency matrix and scale-dependent graph Fourier
transform. In Section V we present numerical experiments that
validate the proposed methodology. In Section VI we consider
the application of the scale-dependent graph Fourier transform
to the problem of anomaly detection in sensor networks.
Finally, conclusions are given in Section VII.

II. GRAPH SIGNAL PROCESSING

This section introduces the notation adopted throughout this
work and some fundamental concepts of GSP.

A. Graphs and network modeling

Let a graph be represented by G = {V, E}, where V =
{v1, . . . , vN} denotes the set of vertices (or nodes) and
E = {e11, . . . , eNN} denotes the set of edges. Each vertex
corresponds to one element of the network [3], [4], [6],
[10], [19], [20], [33]. Each edge eij represents a pairwise
connection between nodes vi and vj . Edges reflect the relation
between elements of the original structure, if this relation
exists. Nodes connected by an edge are adjacent nodes. A
mapping w : E → C is used to model weighted edges, such
that wij denotes the weight value for edge eij . A graph is
often represented by the adjacency matrix A ∈ CN×N , whose
(i, j)th element is Aij = wij .

The set of vertices that are adjacent to a vertex vj is referred
to as the neighborhood of vj . The setNj comprises the indexes
of vertices in the neighborhood of vj . For an undirected graph,
where wij = wji, the weighted degree of node vj is given
by deg(vj) =

∑
i∈Nj

wij and we define the diagonal degree
matrix D, such that Djj = deg(vj). The graph Laplacian
matrix of an undirected graph is defined as L = D−A.
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B. Signals over graphs and GSP

Data collected from or generated by elements of the net-
works can be viewed as a graph signal. A complex-valued
graph signal is given by the mapping s : V → C. We represent
a graph signal as a vector s ∈ CN , where the ith entry si is
given by s(vi), i.e., the signal component at vertex vi. The
graph signal represents a snapshot of the network state.

The graph shift operator (GSO), denoted by S, is an
N ×N matrix employed to generate the graph-shifted signal
s̃ = Ss. That is, the graph-shifted signal on node vi is a
combination of signals sj , given by s̃i =

∑N
j=1 Sijsj . One

choice of S, presented in [10], is the adjacency matrix A. This
choice is partly motivated by direct analogy with discrete-time
processing of periodic signals. In this case, the resulting graph-
shifted signal at node vi is a local combination of the signal
in its neighborhood.

Another popular choice for S is the graph Laplacian, L,
which is a local difference operator. The choice is motivated by
graph spectral theory [34]. Motivations and applications using
the graph Laplacian as GSO are thoroughly reviewed in [6].
As we show in Section II-C, the eigenvectors of the GSO
compose the Fourier basis in graph domain. This construction
of the Fourier basis has a particular link with conventional
DSP, since the classical Fourier transform may be interpreted
as the expansion of a continuous-time function in terms of
complex exponentials, which are the eigenfunctions of the one-
dimensional Laplace operator.

The aforementioned approaches yield local operators, i.e.,
Sij > 0, for i 6= j, if and only if Aij 6= 0 [6], [10]. We
note that other matrices than A or L can be used as GSO,
and the choice of the GSO depends on the application at
hand [12], [13]. In this work, we propose non-local GSOs
that extend the initial adjacency relations between nodes.
Once a shift is defined, many results and techniques from
conventional DSP theory can be extended to graph domain,
e.g., convolution, filtering, transforms (Fourier and wavelets),
and spectral analysis.

C. Graph Fourier transform

We assume a graph with real-valued weighted edges. Con-
sider the diagonalizable GSO matrix S = UΛU−1, where Λ
is a diagonal matrix whose entries are the eigenvalues λi of
S, and U has as columns the eigenvectors ui of S. The GFT
coefficients of a graph signal s are obtained from the analysis
equation [6], [10]

ŝ = U−1s, (1)

and the graph signal is recovered from the synthesis equation

s = Uŝ. (2)

The eigenvalues λi of S, with i ∈ {1, . . . , N}, correspond
to the graph-frequency spectrum. The eigenvectors ui, with
i ∈ {1, . . . , N}, are the graph-frequency components [6], [10],
[35]. In this work, we adopt the graph Laplacian as GSO, i.e.,
we set S = L. We show next that larger eigenvalues of the
graph Laplacian correspond to higher graph frequencies. For

this purpose, consider a variation metric for signal x 6= 0 on
G given by

ν(x) =
xTLx

xTx
(3)

=
xT
(
D−A

)
x

xTx

=

∑
i6=j

Aij
(
xi − xj

)2
xTx

, (4)

which measures the total difference between the signal values
on different vertices, weighted by the edge values. Equation (3)
is the Rayleigh quotient of L, which is bounded below and
above by the extreme eigenvalues of L, λ1 = 0 and λN ,
respectively. As the GFT is defined as the expansion of a
signal over the eigenvectors of L, λ2 and λN correspond,
respectively, to the smallest and the largest non-zero variations,
or graph frequencies. The eigenvalue λ1 = 0 corresponds
to frequency equal to zero, associated with a constant graph
signal. The eigenvalue λ2 is called graph spectral gap, and
λN is called graph spectral radius.

As indicated by (4), the graph frequencies provide infor-
mation on how fast a signal varies across the vertices. In this
context, the signal is a single snapshot of the network state.
High frequency means that the signal sample on a given vertex
differs considerably from samples on neighboring vertices.
Low frequency means that the graph signal is smooth across
all nodes. Here, we highlight a fundamental motivation for
our work: the adjacency model of a network directly affects
its graph-frequency analysis, given the definition of the graph
spectrum and its dependency on the elements of the adjacency
matrix, as shown in (4). However, this implication of (4) is
often neglected when adjacency models are constructed. Thus,
we aim for a model that is capable of capturing node relations
while taking into account its influence on GSP applications.

III. DIFFUSION MAPS

This section introduces the basics of diffusion maps (DMs)
and diffusion distances (DDs) [26], necessary for the develop-
ment of the proposed extended adjacency and sGFT.

Let X = [x1, . . . ,xK ] ∈ RL×K be a data matrix with
K data points, also called states, each of dimension L. For
example, matrix X can describe the evolution of the state xk of
a network with L elements for time instants k ∈ {1, . . . ,K}.
It is assumed that there is an underlying (hidden) process that
relates the different data points, possibly driving the way data
is generated. However, note that there is no underlying graph
associated with X. The objective of the DM framework is to
make this underlying process explicit [26], [29], [30].

A. Construction of the similarity graph

The first step when constructing a DM is to create a
graph that associates data points xi with nodes, and quantifies
their interrelationship [26]. In contrast to the GSP framework,
this association is merely an alignment of the data with the
structure. That is, the data point is not treated as a signal
on the node, but rather as the node itself. In order to make
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the contrast between the GSP and DM approaches clear, we
highlight that, throughout this section, the number of data
states K corresponds to the number of nodes in the graph
constructed for the DM framework.

Let X ⊂ RL represent the dataset that contains the columns
of X. The edges are created through a symmetric kernel
k : X × X → R+, i.e., k(x,y) = k(y,x) ≥ 0. The obtained
graph is undirected and possibly weighted, and serves as a
preliminary geometric description of the data based on the
underlying driving process [26]. The choice of the kernel
depends on the application. For instance, a common choice
is the radial-basis-function (RBF) kernel

k(xi,xj) = exp

(
−‖xi − xj‖22

2σ2
RBF

)
, (5)

where σRBF > 0 is a free parameter that controls the
bandwidth of the kernel.

The RBF kernel expresses a relationship based on the affin-
ity between data points xi and xj , in terms of the Euclidean
distance. Once a metric for similarity is established for the data
points, an adjacency matrix A ∈ RK×K can be defined with
entries Aij = k(xi,xj). The corresponding degree matrix is
D ∈ RK×K such that Dii =

∑
j∈Ni

k(xi,xj).

B. Construction of the random walk

To capture how data is influenced by an underlying process,
a random walk on the data is defined. The idea is to character-
ize how one state of the high-dimensional data transitions into
another state [26]. For this purpose, the similarity between two
data points is normalized as [26]

p(xj |xi) =
k(xi,xj)∑
j

k(xi,xj)
=
Aij
Dii

, (6)

where p(xj |xi) is interpreted as the transition probability from
xi to xj , which establishes a Markov chain. Using matrix
notation, the Markov chain can be described in terms of a
right-stochastic matrix M = D−1A, commonly referred to as
a Markov matrix, with entries Mij = p(xj |xi). Taking t steps
of the random walk is captured by Mt, i.e., the (i, j)th entry
of Mt gives the transition probability, denoted by pt(xj |xi),
from xi to xj in t steps. The probability pt(xj |xi) considers
all possible paths composed of t edges that connect xi to
xj , including self-loops. The probability in (6) is the same as
pt(xj |xi) for t = 1.

Consider the decomposition of M in terms of its right and
left eigenvectors ψk and φk and the eigenvalues γk, with k ∈
{1, . . . ,K}.1 The transition probabilities can be written as [26]

pt(xj |xi) =
K∑
k=1

γtkψk,iφk,j . (7)

The eigenvalues of a right-stochastic matrix satisfy |γk| ≤ 1.
Assuming the graph is connected, the Markov chain is irre-
ducible and γ1 = 1 [26]. We adopt the ordering γ1 = 1 >

1Not every Markov matrix is diagonalizable, but M = D−1A =

D− 1
2 (D− 1

2 AD− 1
2 )D

1
2 is, for it is similar to the symmetric matrix

D− 1
2 AD− 1

2 .

|γ2| ≥ · · · ≥ |γK |. Consequently, a random walk driven
by these transition probabilities has an asymptotic behavior
governed by γ1 [26], i.e.,

lim
t→∞

pt(xj |xi) = φ1,j , (8)

where φ1,j is the jth entry of the first left eigenvector of M,
φ1, normalized as ‖φ1‖1 = 1. In other words, φ1,j is the
asymptotic probability of reaching state xj from any initial
state. As the graph is connected, this quantity is non-zero for
every j, as given by (7). Note that the right eigenvector ψ1,
associated with γ1 = 1, is a constant vector, as M · 1 = 1.

C. Diffusion distances

The diffusion distance (DD) at a certain diffusion, or time,
scale t [26] is a metric for the (inverse) affinity between two
data points as a function of transition probabilities, and is given
by

D2
t (xi,xj) =

K∑
k=1

(pt(xk|xi)− pt(xk|xj))2

φ1,k
. (9)

The DD extends local relations, in terms of adjacency
and direct similarity between nodes, into a global metric by
assimilating probabilities of diffusion paths [27]. If two points
have similar posterior distributions, they are well connected
through the end-points, indexed by k, of these distributions.
This means that if there are high-probability paths between
two data points, they are considered to be close in terms of
diffusion distance, even if not adjacent. Conversely, the diffu-
sion distance between xi and xj is large when the probability
of reaching xj from xi is small even by considering non-direct
paths through xk. An alternative interpretation for the diffusion
distance between xi and xj is to consider a limited amount
of energy placed on both nodes. This energy is then diffused
through the network for t diffusion steps according to Mt.
Finally, the distance is computed as the difference between
the contributions from these two nodes to the network, in
the sense of how much energy was diffused to each node.
If the two points have similar contribution to a given node, it
means that they are well connected through that node. Note
that the diffusion distance depends on t, which serves as a
diffusion-scale parameter. An increased t equals more steps of
the random walk, which corresponds to a larger-scale diffusion
over the network.

IV. GSP FOR MARKOV NETWORKS

The DM framework in [26] treats the entire network signal
as a state of a Markov chain and generates a Markov-based
graph over these states. In contrast, we adapt the diffusion
distances to develop a comprehensive network model by
treating the original network itself as the Markov-based graph.
That is, the states of the Markov chain are no longer associated
with the data (entire network state), but with the vertices
(individual network elements).

We introduce the extended-adjacency matrix, which cap-
tures node collaboration of Markov networks. Some common
cases of these networks are consensus networks [21]–[23],
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conservative diffusion networks [18], [36], [37], and random-
walk driven networks [24], [25]. Moreover, we introduce the
sGFT and analyze the spectral behavior of the graph through
the perspective of the extended-adjacency model.

A. Extended adjacency

The networks considered here are initially constrained by
adjacency rules of the network topology. For example, the con-
nections between nodes in a wireless sensor network (WSN)
depend on their communication capabilities, usually dictated
by physical distance. Furthermore, the sum of the weights
of the edges connecting a node to its neighbors is equal to
unity, yielding a stochastic adjacency. Nodes communicate
directly with their immediate neighbors. However, nodes that
are not initially connected can be related to each other through
collaboration. In other words, network adjacency is associated
with one step of the collaboration process, such that the net-
work operates on the data through iterative multiplications of
the stochastic matrix. Similarly to the conventional adjacency,
which depends on the physical distance between nodes, we
develop the extended adjacency based on diffusion distances.

Let the network be represented by a connected graph
G = {V,B} with a symmetric, irreducible, and stochastic
adjacency matrix B with positive real edges. In analogy with
the theory presented in Section III, this matrix is equivalent
to M and the states of the Markov chain are the nodes of the
graph. The diffusion distance between nodes vi and vj of the
graph is given by

D2
t (vi, vj) =

N∑
n=1

(
B

(t)
in −B

(t)
jn

)2

(1/N)
, (10)

where (1/N) corresponds to the elements of the first left
eigenvector q1 of B, as in (9), and B

(t)
ij denotes the (i, j)th

entry of Bt. Since we assume B symmetric, its left and right
eigenvectors are the same and q1 = (1/N)1. Similar to the
DM framework, the DDs between network elements depends
on the scale t. The metric in (10) expresses distances between
nodes, including nodes that are not neighbors as defined by
B. We derive similarity from diffusion distances in similar
manner as conventional adjacency matrices are derived from
geographic distances. The extended-adjacency matrix Ā(t) is
such that

Āij(t) =

{
Bij + exp

(
−D

2
t (vi,vj)
ρN

)
i 6= j

0 i = j,
(11)

where ρ > 0 is a free parameter and N is the size of
the network. The term Bij in (11) guarantees that original
edges are maintained, whereas the RBF term is responsible
for extending the adjacency. The term ρN makes the argument
of the RBF kernel independent of the network size (cf. (10)).
The range of the kernel output can be adjusted for different
applications according to the free parameter ρ. Moreover,
although the extended adjacency is defined for ρ > 0, it is
possible to obtain Bij , with i 6= j, through (11) by making
ρ→ 0+. That is, the original adjacency is a particular case of
the extended adjacency.

Although traditional GSOs are local with respect to net-
work connections, we note that this property is not present
in the proposed adjacency model. A local GSO offers a
straightforward visualization of the physical structure of the
graph and facilitates the implementation of distributed GSP
algorithms. However, in many applications, the definition of
locality is unknown, or a local GSO fails to model implicit
node relations. In this work, we aim to derive a model
that is not restricted by locality assumptions and is useful
for networks where non-adjacent nodes interact. Hence, we
propose a non-local model that offers a trade-off between
locality and representation of node interactions. As we show in
the next section, this trade-off is indirectly controlled via the
diffusion-scale parameter. In this same context, other desirable
features inherent to specific graph structures might be lost after
the implementation of the extended adjacency. For instance,
the correspondence between the GFT over a ring graph and
the conventional discrete Fourier transform (DFT) is lost when
the extended-adjacency matrix is considered. Our proposal,
however, is aimed at graphs whose topologies are not well-
structured or perfectly known and we show that some GSP
tools can benefit from the proposed model.

Moreover, the proposed extended-adjacency matrix models
a graph with no self-loops. Although this assumption is
also common in the GSP framework, we note that it is not
necessary. Further modifications of Ā(t) are possible, such
as imposing an upper bound on edge values, or applying a
threshold on the matrix values to enforce sparsity.

B. Analysis of the extended-adjacency matrix

The resulting extended-adjacency matrix Ā(t) is a symmet-
ric matrix with positive entries that depend on the diffusion-
scale t and bandwidth ρ.

Proposition 1. The DD given in (10) is a non-increasing
function of the diffusion scale t.

Proof. The symmetric matrix B can be decomposed as B =∑N
l=1 σlqlq

T
l , where σl and ql, with l ∈ {1, . . . , N}, are the

eigenvalues and orthonormal eigenvectors of B. We can write

B
(t)
in −B

(t)
jn =

N∑
l=1

σtl (ql,i − ql,j)ql,n. (12)

Substituting (12) into (10), we have

D2
t (vi, vj) = N

N∑
l=1

N∑
m=1

σtlσ
t
m(ql,i − ql,j)(qm,i − qm,j)ζl,m,

(13)
where ζl,m =

∑N
n=1 ql,nqm,n = δ(l − m) and δ(·) is the

Kronecker delta function. Thus,

D2
t (vi, vj) = N

N∑
l=1

σ2t
l (ql,i − ql,j)2. (14)

Since (ql,i − ql,j)2 ≥ 0 and σ2
l ∈ [0, 1], then D2

t (vi, vj) ≥
D2
t+1(vi, vj), ∀t ≥ 1.

In accordance with Proposition 1, the following corollary
and lemma can be established:
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Corollary 1. Edge weights are non-decreasing with t accord-
ing to (11). Assuming that an edge exists only if its weight
exceeds a given threshold, the number of edges is also non-
decreasing with increasing t. In other words, increasing t for
a fixed ρ possibly creates new edges, given the reduction in
the DD.

Lemma 1. The entries of the asymptotic extended-adjacency
matrix Ā = limt→∞ Ā(t) are given by

Āij =

{
Bij + 1 i 6= j

0 i = j,
(15)

and correspond to those of an adjacency matrix of a complete
graph without self-loops. That is, each node vi is connected
to every node vj in the graph, with i 6= j, by an edge of value
1 +Bij .

Proof of Lemma 1. From (14), t → ∞ implies that the dif-
fusion distance between any two vertices tends to zero, since
σ2t
l tends to zero for l 6= 1 and the only remaining non-zero

term σ2t
l corresponds to l = 1, for which (q1,i − q1,j) = 0,

since q1 = (1/N)1. With D2
t (vi, vj) = 0, we have Āij(t) =

Bij + 1, ∀i 6= j, and Āii(t) = 0, with i, j ∈ {1, . . . , N}.

C. Scale-dependent graph Fourier transform

Similar to the extended-adjacency matrix Ā(t), the defi-
nition of other graph-related matrices and the graph Fourier
transform also depend on the scale t. For each diffusion scale,
there is a corresponding Laplacian matrix defined as

L̄(t) = D̄(t)− Ā(t), (16)

where D̄(t) is the diagonal degree matrix associated with
Ā(t). Given the eigendecomposition L̄(t) = Ū(t)Λ̄(t)ŪT(t),
we define the scale-dependent graph Fourier analysis of signal
x as

x̂(t) = ŪT(t)x, (17)

where, in contrast to the conventional GFT, the coefficients
x̂(t) depend on the diffusion-scale t. The scale-dependent
graph Fourier synsthesis equation is given by

x = Ū(t)x̂(t). (18)

Remark 1. Note that the analysis and synthesis equations
result from the use of the conventional GFT together with the
proposed extended-adjacency model. Thus, (17) and (18) do
not establish a novel transform. However, we will refer to
(17) as the scale-dependent graph Fourier transform (sGFT)
for simplicity throughout the text.

D. Analysis of the sGFT

Now, we analyze how the proposed adjacency model affects
the graph-frequency analysis. Recall that graph frequencies are
directly associated with the eigenvalues of the graph Laplacian,
as shown in (4). Hence, the analysis is conducted in terms of
which graph frequencies are discriminated by the Laplacian

eigenvalues for varying diffusion scales. For this purpose, we
determine bounds for the spectral gap and spectral radius of the
graph in function of t. Let the eigenvalues of the Laplacian be
λ̄1(t), λ̄2(t), . . . , λ̄N (t), in ascending order with λ̄1(t) = 0.
The spectral gap is λ̄2(t) and the spectral radius is λ̄N (t),
and both depend on t. Let θ2 denote the smallest non-zero
eigenvalue of LB, the Laplacian of B, and θN denote the
maximum eigenvalue of LB. Moreover, let LC denote the
Laplacian of the unweighted complete graph with N nodes,
whose entries are given by

LCij
=

{
−1 i 6= j

N − 1 i = j.
(19)

Proposition 2. For a graph with N nodes, if t is increased, the
range of graph-frequencies discriminated by the sGFT shifts
into higher frequencies. Asymptotically, the sGFT discrimi-
nates graph-frequency ranges up to the interval [N + θ2,N +
θN ].

Proof. The eigenvalues of the Laplacian of a connected graph
are non-decreasing with the addition of new edges in the
graph [38]. As follows from Corollary 1, edges can only be
added, and not removed, as t increases. Consequently, the
spectral gap and radius are non-decreasing for increasing t.

As follows from Lemma 1, the asymptotic extended adja-
cency Ā corresponds to that of a complete graph. The resulting
graph Laplacian is LĀ = LB + LC. Given the structure of
LC and the fact the LB is symmetric, these matrices commute
and the eigenvalues of LB + LC are given by the sums of
eigenvalues of each matrix. Eigenvalues of LC are: 0 with
multiplicity 1 and the eigenvalue N with multiplicity N − 1.
Consequently, for LĀ, the spectral gap achieves the value
N + θ2, and the spectral radius achieves N + θN .

As t increases, the interval of graph frequencies discrim-
inated by the sGFT is shifted into higher frequencies. We
note that the maximum frequency discriminated by the sGFT,
N + θN , matches the largest possible variation, according to
(4), of signals defined over the proposed adjacency matrix.

The sGFT is a frequency-analysis tool tailored for each
stage of the Markov chain. From a node-collaboration perspec-
tive, the effect of node collaboration on the graph spectrum
can be interpreted in an intuitive manner: if more steps of
collaboration are taken, more edges are introduced. Conse-
quently, variations in graph signals are observed by additional
node pairs and are perceived as larger frequencies. Hence, by
incorporating node collaboration into the graph model, we pro-
vide a frequency-analysis tool that reveals more information
on the network signal than that offered by the conventional
GFT.

Remark 2. The proposed implementation of the Fourier anal-
ysis based on the extended adjacency adds a degree of freedom
for tools that use the graph-spectrum. Therefore, some applica-
tions may require training data along with a hyperparameter-
training method, such as grid-search and cross-validation, for
determining the adequate diffusion scale.
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Original [Average degree: 2.6] t = 1 [Average degree: 4.2] t = 3 [Average degree: 8.5] t = 500 [Average degree: 19.5]

Fig. 1. Connectivity versus diffusion scale. Only edges of Ā(t) that exceed 30% of the highest edge value are shown.
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Fig. 2. Average and maximum degrees versus diffusion scale t. For t = 0,
the values correspond to those of the original network.

V. NUMERICAL EXAMPLES

In this section we verify through numerical examples the
analyses conducted in Section IV-B and Section IV-D.

A. Nearest-neighbors and consensus network

We consider a sensor network with N sensors that collec-
tively estimate a common parameter through collaborations,
more specifically through consensus averaging [21], [22].

In an average consensus algorithm, the global average of
initial sensor states, xi[0], with i ∈ {1, . . . , N}, is computed
in a distributed fashion through local computations and local
message exchanges. More specifically, sensor vi implements
the following iterative algorithm

xi[k + 1] = Piixi[k] +
∑
j∈Ni

Pijxj [k], k ∈ N (20)

where Pij are weights given to local and neighbor node values.
In the case of sensor networks, the neighborhood Ni is usually
defined by sensor nodes within the transmission radius of
sensor vi. Equation (20) can be written as

x[k + 1] = Px[k], (21)

where x[k] = [x1(k) . . . xN (k)]T. If P is doubly stochastic,
then the sensor states will converge to (1/N)1T · x[0].

Let the network be modeled by an unweighted and undi-
rected graph G = {V,A} with graph Laplacian L. One par-
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Fig. 3. Histogram of eigenvalues of diffusion Laplacian matrices L̄(t), for
t ∈ {1, . . . , 6}.

ticular form of P, which leads to Laplacian based consensus,
is given by

P = I− εL, (22)

where ε is the consensus step size. In this work, we set
ε = 1/(1.25∆max), where ∆max is the maximum degree in
G (more information on convergence of consensus algorithms
and the choice of ε can be found in [21]). Thus, we are able
to associate the network with a stochastic matrix P, since
P · 1 = 1− εL · 1 = 1.
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B. Increasing connectivity

Given matrix P, the diffusion distances between sensors,
with B = P, and the extended-adjacency matrix Ā(t) are
given by (10) and (11), respectively. We consider a sensor
network with N = 20 sensors, with an average node degree
equal to 2.6, and ρ = 0.35, Fig. 1 shows the connections
of the original network and the new edges introduced at
larger diffusion scales. As expected, the network becomes
more connected tending to a complete graph as t grows large.
Fig. 2 shows the increase in average and maximum degrees
versus diffusion scale. This experiment illustrates the effects
of changing diffusion scales presented in Proposition 1 and
Lemma 1.

C. Spectrum analysis

For a network with N = 100 nodes, we conduct an exper-
imental analysis of the sGFT spectrum for different diffusion
scales, while the DDs are computed for ρ = 0.4. Fig. 3 shows
histograms of the eigenvalues of the graph Laplacian L̄(t)
versus diffusion scale. An increase in the diffusion scale yields
an increase in the spectral gap (Proposition 2), from around
14 for t = 1 up to around 55 for t = 6, and in the spectral
radius, from around 34 up to over 74. At each scale, the sGFT
yields a different spectrum according to the number of steps of
node collaboration. In contrast, the conventional GFT yields
a fixed spectrum. The additional information provided by the
sGFT can benefit applications that make decisions based on
spectrum-related features, such as classifiers and detectors.

Numerical results indicate that the new eigenvectors ūi(t),
with i ∈ {1, . . . , N}, virtually preserve the notion of smooth-
ness with respect to the initial Laplacian matrix L. For
this analysis, consider v = [uT

1 Lu1 . . .u
T
NLuN ], where

ui, with i ∈ {1, . . . , N}, are the eigenvectors of L, and
v̄(t) = [ū1(t)TLū1(t) . . . ūN (t)TLūN (t)]. We assess the
cosine similarity between v̄(t) and v given by

cv̄(t)v =
(v̄(t)− µv̄(t))

T(v − µv)

‖v̄(t)− µv̄(t)‖2‖v − µv‖2
, (23)

where µv denotes the mean of v. For a total of 1000 random
graphs, with N in the interval [20, 200] and number of
neighbors in the interval [2, 16], we obtain an average value
for cv̄(1)v of 0.92 when t = 1. This value decreases slightly
as the scale increases: cv̄(2)v = 0.90 and cv̄(3)v = 0.86.

VI. APPLICATION

In this section, we illustrate how the sGFT can be used for
anomaly detection in synthetic and real networks. The appli-
cation is motivated by increasing connectedness of real-world
elements [39]–[42], which demands security and reliability in
networks [43]–[49]. The free parameters of the sGFT allow
for a tailored frequency decomposition when constructing an
anomaly detector based on spectral information of the network
state. We compare results from detectors based on the sGFT
with detectors based on other different GSO approaches.

Given an initial adjacency matrix A, the proposed method
is compared to the GFT based on the eigenvectors of the cor-
responding Laplacian and to the GFT using the eigenvectors

of the Markov GSO as proposed in [30]. Additionally, a scale-
dependent GSO model based on shortest-path distances is
implemented and used for comparison. This GSO depends on
the length of the shortest-paths as follows: for A, the shortest-
paths and corresponding distances from each node to the rest
of the graph are computed using Dijkstra’s algorithm [52].
Once the paths are computed, a GSO can be constructed
by connecting each node to other nodes reachable through
shortest-paths no longer than a given length, with edge-weights
equal to the inverse of the shortest-path distances. Note that,
given an unweighted adjacency matrix, the GSO based on
shortest-paths for lengths up to 1 is equal to A.

In the following simulation results and figures, the GSO
approaches are coded as follows:
• GFT: conventional GFT using the graph Laplacian;
• DF1: sGFT using scale t = 1;
• DF2: sGFT using scale t = 2;
• SP2: GFT using shortest-path-based GSO with paths up

to length equal to 2 hops;
• SP3: GFT using shortest-path-based GSO with paths up

to length equal to 3 hops;
• MRK: GFT using the eigenvectors of the Markov matrix

from [30].

A. Anomaly detection task

We construct classifiers based on the graph-spectral infor-
mation generated by the sGFT and the conventional GFT
along with the aforementioned GSO-construction methods.
The approach for constructing the anomaly detector is similar
to those in [35], [50], [51]. In particular, [35] and [50] compute
the respective high-frequency components from the adjacency
matrix and the graph Laplacian. On the other hand, in [51], the
Laplacian eigenvectors are obtained from a constrained opti-
mization problem that enforces properties not considered here,
such as sparsity. More specifically, assuming that smoothness
is expected in the healthy signal, we apply a high-pass filter
with cut-off frequency λcut and conduct the classification
based on the filtered coefficients. If one of the coefficients
exceeds a threshold τ , the signal is classified as anomalous.
Consider a training dataset Xtrain = {XH, XA}, where XH and
XA indicate the healthy and anomalous parts of the training
dataset, respectively, with “healthy” indicating a signal free
from anomalies. Elements of these sets are graph signals, that
is, vectors with length equal to the number of nodes. The
detection threshold is determined as follows:

1) graph-frequency coefficients are computed for each
healthy signal in XH;

2) high-pass filter is applied, so that coefficients corre-
sponding to graph-frequencies higher than λcut are kept;

3) for each signal, we select a partial τp that corresponds
to the largest coefficient after filtering;

4) Once τ
p

is computed for all signals, the detection
threshold is computed as:

τ = µτp + αστp , (24)

where µτp is an estimation of the average value and στp
is an estimation of the standard deviation of all partial
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Fig. 4. Experiment 1 – setup and results: (a) spatial distribution of the sensors and their interconnections plotted over a snapshot of the observed signal; and
(b) f1-scores achieved by each of the GSO-construction approaches.

τp computed. The non-negative parameter α scales a
confidence factor associated with the standard deviation
of the partial thresholds.

Using the conventional GFT, with the graph Laplacian, and
the GFT from the Markov matrix, λcut and α are the param-
eters that require training. The scale-dependent approaches,
however, have more free parameters: the path length for the
shortest-path-based approach, and both the diffusion scale t
and the normalization parameter ρ for the sGFT. Two different
diffusion scales t ∈ {1, 2} are tested separately, as well as
two maximum path lengths equal to 2 and 3. Parameters
λcut, α, and ρ are optimized via grid-search. That is, a set
of pre-determined values is given for each parameter and all
combinations are tested according to some metric. We choose
the f1 score as metric, which is given by

f1 =
precision · recall

precision + recall
, (25)

where
precision =

TP

TP + FP
, (26)

and
recall =

TP

TP + FN
, (27)

with TP indicating true positives (correctly classifying
anomaly as anomaly), FP indicating false positives (wrongly
classifying healthy signal as anomaly), and FN indicating false
negatives (wrongly classifying anomaly as healthy signal).
Moreover, we conduct cross-validation with 5 folds, such that
the training data is split into 5 sets and, for each combination
of parameters, the training (computing τ ) is performed over 4
sets and the metric is evaluated over the remaining set. The
combination of parameters yielding the best average result
across the folds is selected. Our simulations are conducted in
Python and we use the GridSearchCV class (which performs
the grid-search with cross-validation) from the scikit-learn
library to train the classifier.

Once the classifiers are trained, their performance is as-
sessed by measuring the f1 score achieved over a test dataset
Xtest. All simulation results presented in the next subsections
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Fig. 5. F1 scores achieved by each GSO approach for the two cases of
Experiment 2.

are averaged over 50 random training and test datasets, which
are specified according to each simulation.

B. Simulations over synthetic networks

1) Experiment 1: spatially-spread anomaly: We consider
first N = 100 sensors randomly distributed in the square
space [0, 1] × [0, 1]. A network is constructed by connecting
each sensor to its 4 nearest-neighbors, and the corresponding
adjacency matrix A is known. The sensors measure a spatially-
smooth wave signal given by s(δx, δy) = cos(2πδx + θx) +
cos(2π2δy + θy), where δx, δy ∈ [0, 1] are, respectively, the
horizontal and vertical spatial coordinates and θx and θy are
varying phase values uniformly and independently sampled
from [0, 2π]. The graph structure and a snapshot of the signal
s are depicted in Fig. 4a.

We consider the problem of detecting an additive (space-
wise) high-frequency interference signal given by si(δx, δy) =
0.1 (cos(2π5δx + θx) + cos(2π6δy + θy)). Training and test
datasets, Xtrain and Xtest, have 150 healthy samples and 150
anomalous samples each. Results for the f1 score achieved
over the 50 independent runs are presented in Fig. 4b. Results
show that the detector based on the spectral information
provided by the extended-adjacency matrices outperform de-
tectors based on other GSO approaches. Additionally, using
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Fig. 6. Experiment 3 – setup and results: (a) graph structure for the Intel Lab dataset; and (b) f1 scores achieved by each of the GSO-construction approaches.
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Fig. 7. Experiment 4 – setup and results: (a) graph structure for the GSOD dataset; and (b) f1 scores achieved by each of the GSO-construction approaches.

the Markov matrix alone offered worse results than using the
Laplacian of the original adjacency matrix.

2) Experiment 2: anomaly/attack on few sensors: Consider
now a network with N = 150 sensors in the same square
space [0, 1]× [0, 1], each connected to its 6 nearest neighbors,
that measure healthy signals x ∼N (20·1, 0.4·I). Up to two
sensors are randomly selected as anomalous, i.e., the network
will have one or two out of 150 sensors with anomalous data.
This selection is conducted independently for each snapshot,
such that the anomalous sensors of a given graph signal
do not depend on the anomalous sensors of other signals.
Each anomalous sensor measures a random value 20 ± b,
with b drawn uniformly from {1, 2, 3, 4, 5} and independently
for each sensor and each signal. The possible values for b
are heuristically chosen so that the anomaly is sufficiently
strong to be detected, but still not be trivially detected, by
all approaches.

We assume the anomaly is present in the initial data mea-
sured by the network and that the network performs consensus
over the data according to (20). This makes the anomalies
smoother as they are diffused according to the consensus
algorithm. We conduct the anomaly-detection task before the
consensus step is taken, and also after the consensus step is
taken. These simulations are independent of each other. For
each case, training and test datasets have 200 data samples
each, of which 100 are anomalous samples, and experiments

are run for 50 independent randomizations of these datasets.
Fig. 5 shows results for the f1 scores obtained by the best

classifiers over the test datasets. Results show that the sGFT
achieves better detection scores than using the other GSO
approaches, before and after consensus. In both cases, the
detectors based on the shortest-path approaches outperform
the conventional GFT, whereas using the eigenvectors of the
Markov matrix yields the worst results for both cases.

C. Simulations over real networks

Two real networks are used and their structures are pre-
sented in Fig. 6a and Fig. 7a. For both cases, sensors’
positions and healthy data are extracted from the available
databases [53], [54]. Networks used in this example are basic
sensor networks for which a Markovian relation is not ini-
tially defined, and we construct a Markovian relation between
sensors as in (22).

For these databases, we assume that all data available
are healthy. Thus, anomaly must be manually introduced in
the data. For Experiments 3 and 4, this is conducted with
minor differences from the method described for anomaly
construction in Experiment 2. The anomaly is given by an
additive Gaussian noise with non-zero mean over the healthy
data. The mean value of the noise is allowed to vary according
to a discrete uniform distribution, assuming non-zero integer
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values in the interval [−bmax,+bmax]. Similar to the synthetic
case, a maximum possible number of anomalous sensors is
defined and specified next for each simulation. For Experi-
ment 5, we generate an anomaly similar to the one used in
Experiment 1. The anomaly is given interference signal given
by si(δx, δy) = 5 (cos(2π0.1δx + θx) + cos(2π0.1δy + θy)).
For all cases, training is conducted in similar manner as
that employed for the synthetic data, with 5 folds in cross
validation.

1) Experiment 3: Intel lab data [53] - sensor malfunction:
The network is modeled as a κNN sensor network with κ = 3
according to the available sensor positions. We use temperature
data, in degrees Celsius, from 52 of the 54 sensors measured
between 00 AM and 07 AM during the week from March 01,
2003 to March 05, 2003. Sensors named 5 and 15 are not used
due to unavailable measurements. Healthy data range from
13.6 ◦C to 21.2 ◦C. The anomaly is described by bmax = 3 ◦C,
noise variance equal to 0.4 ◦C2, and up to 2 anomalous sensors

The total number of available samples from the database
is 373. For each independent run, 350 samples are randomly
selected, of which half receive the anomaly. The 350 samples
are then equally split into training and test datasets.

Results for the Intel lab data are presented in Fig 6b. In
this case, the conventional approach is competitive against
the scale-dependent methods. Still, the detectors based on
the extended-adjacency for scale t = 1 outperform all other
approaches. Moreover, using the eigenvectors of the Markov
matrix also yields competitive results, with average f1 score
approximately 0.02 behind the conventional approach.

2) Experiment 4: Global Surface Summary of the Day
(GSOD) [54] - sensor malfunction: The database provides
measurements from weather stations distributed across the
territory of the United States of America. We use temperature
measurements, converted from degrees Fahrenheit to degrees
Celsius, obtained during the year 2010 by 150 randomly-
selected stations from the conterminous United States (exclud-
ing Alaska, Hawaii, and other off-shore insular areas) in order
to keep the graph connected. Network structure is derived from
available stations’ latitudes and longitudes. Healthy data range
from -29.4 ◦C to 38.6 ◦C. We use κ = 3, bmax = 7 ◦C, noise
variance equal to 1 ◦C2, and up to 7 anomalous sensors.

Daily samples are available, for a total of 365 signals.
From these, we randomly select 350 signals for each run and
generate training and test datasets as in Experiment 3.

In Fig. 7b, results show that the proposed approach outper-
forms the oher approaches for both scales t = 1 and t = 2,
while the latter offers the best result. Here, the Markov-matrix-
based approach outperforms the ones using the conventional
Laplacian and the shortest-path-based GSOs.

3) Experiment 5: GSOD - spatially-spread anomaly: Us-
ing the GSOD data and network, we simulate the pres-
ence of a spatially-spread additive interference signal, given
by si(δx, δy) = 5 (cos(2π0.1δx + θx) + cos(2π0.1δy + θy)),
where δx and δy correspond to weather station’s longitude
and latitude, respectively, and with θx and θy randomly
sampled from [0, 2π]. For each independent experiment, the
interference is constrained to a randomly selected interval of 5
degrees of longitude, such that only the sensors in that interval
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Fig. 8. F1 scores achieved by each GSO approach for Experiment 5.

are anomalous. Training and test datasets are generated as in
Experiment 4.

Results are presented in Fig. 8 and show that the GFT con-
siderably benefits from the proposed model when compared
to the conventional approach. Moreover, the approach based
on shortest-paths, for maximum length equal to 3, exhibits
competitive results, while the approach based on the Markov
matrix yields results similar to those of the conventional
approach.

VII. CONCLUSION

We proposed the extended-adjacency matrix, which incor-
porates relations between non-adjacent nodes on a certain
diffusion scale or time. We use the extended adjacency to
augment the modeling of node relations in order to improve
the efficiency of GSP tools. We also presented the scale-
dependent graph Fourier transform for data defined over these
networks, by using the conventional GFT together with the
proposed scale-dependent model. We showed that increasing
the diffusion scale results in an increased connectivity in
the network, such that each different scale for the sGFT
yields a different perspective of graph frequency, as a tailored
connectivity is considered. We developed a theoretical analysis
that shows that changing the diffusion scale shifts the spectral
range yielded by the sGFT and corroborated the analysis
with numerical experiments. Tools that operate on the graph
spectrum can leverage on the additional information. For
instance, we employed the sGFT for anomaly detection in
synthetic and real networks. We used the free parameters of
the sGFT to conduct a frequency analysis tailored for the given
network. The proposed method was compared to the GFT
based on the conventional graph Laplacian and to the GFT
based on other augmented GSO models, and results showed
that anomaly detectors based on the sGFT achieved better
results than the other approaches.
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