
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Javed, Asad; Malhi, Avleen; Framling, Kary
Edge Computing-based Fault-Tolerant Framework

Published in:
2020 International Wireless Communications and Mobile Computing, IWCMC 2020

DOI:
10.1109/IWCMC48107.2020.9148269

Published: 01/06/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Javed, A., Malhi, A., & Framling, K. (2020). Edge Computing-based Fault-Tolerant Framework: A Case Study on
Vehicular Networks. In 2020 International Wireless Communications and Mobile Computing, IWCMC 2020 (pp.
1541-1548). Article 9148269 IEEE. https://doi.org/10.1109/IWCMC48107.2020.9148269

https://doi.org/10.1109/IWCMC48107.2020.9148269
https://doi.org/10.1109/IWCMC48107.2020.9148269

Edge Computing-based Fault-Tolerant Framework:
A Case Study on Vehicular Networks

Asad Javed∗, Avleen Malhi∗ and Kary Främling∗†
∗Department of Computer Science, Aalto University, Espoo, Finland
†Department of Computer Science, Umeå University, Umeå, Sweden

{firstname.lastname}∗@aalto.fi / †@umu.se

Abstract—With the evolution of vehicular networks, the Intel-
ligent Transportation System (ITS) has emerged as a promising
technology for autonomous road transport. For a successful de-
ployment of ITS, security and reliability are the most challenging
factors to be tackled to ensure Vehicle-to-Infrastructure (V2I) and
Infrastructure-to-Infrastructure (I2I) communications. Due to
unreliable communications in vehicular networks, implementing
fault-tolerant techniques for the Road Side Unit (RSU) infrastruc-
ture is an imperial need. Within this context, the contributions of
this paper are twofold: (i) we propose a distributed fault-tolerant
framework for V2I and I2I communications based on edge
computing to resolve hardware- and network connectivity-based
failures. The fault tolerance issue is addressed by employing open
messaging standards as a subscription-based data replication
solution at the edge. We also adopt Kubernetes for the fault-
tolerant management, combined with high-availability mecha-
nism, allowing automatic reconfiguration of the data processing
pipeline; and (ii) we implement a demonstrator system for
vehicular networks-based smart mobility to assess fault tolerance
capabilities. The experimental results show that our proposed
framework dynamically tolerates RSU-related failures during the
vehicular communication phase.

Index Terms—Internet of Things, vehicular network, roadside
unit, fault tolerance, edge computing

I. INTRODUCTION

The Internet of Things (IoT) technology has led to an
increased emphasis on vehicular networks in which vehi-
cles and smart devices communicate with each other by
exchanging user/vehicle data [1]. During the past decades,
the expansion of road mobility has over-flooded major cities
with vehicles, causing an increase in accidents and traffic
congestion with the resultant negative impact on the economy,
environment, and public health [2][3]. The Intelligent Trans-
portation System (ITS) has emerged as a part of IoT to en-
able the collection, processing, and dissemination of valuable
information in vehicular networks by exploiting Vehicle-to-
Infrastructure (V2I) and Infrastructure-to-Infrastructure (I2I)
communications, thereby providing safer and more coordi-
nated driving [4]. Such networks often need an Ethernet-based
setup between the Road Side Unit (RSU) stations despite
having an ad hoc connectivity for V2I communication. These
RSUs operate as wireless Access Points (APs), managing
data transmission and broadcasting to other wireless networks.
However, the real-time and fault-tolerant communication be-
tween the vehicles and RSU infrastructure is an important
aspect that still needs to be tackled in ITS, since the failure of

Fig. 1: Edge computing in IoT

any RSU could compromise the reliability of the entire system.
This raises the following four challenges: (i) The RSU can be
physically damaged by some malicious activity or other harsh
environments; (ii) the network connectivity during V2I and I2I
communications may be temporarily cut off, affecting imme-
diate data communication; (iii) the vehicular network should
be sufficiently scalable to adapt to the increasing number of
vehicles; and (iv) data processing needs to be performed closer
to the data sources to minimize network latency. In this regard,
the fault-tolerant design for RSU infrastructure is required
to ensure the reliability of the network. In many vehicular
systems, the data are transmitted to the remote server for
processing as the computational capabilities of the vehicles on-
board unit are limited. It is often necessary to process real-time
data by allowing the cloud-enabled networks to run either on
local vehicle/RSU terminal or can be off-loaded to the remote
cloud. Edge computing has emerged as a promising solution
for pushing the cloud service to the edge of the network [5][6],
as illustrated in Fig. 1. Thus, providing data computation off-
loading closer to the vehicle terminals.

Within this context, the major contributions of this work
are: (i) to propose a distributed fault-tolerant framework for
V2I and I2I communications, combined with the modular
characteristics of edge-centric computing, providing a highly
dynamic and fault-tolerant design. It adopts state-of-the-art
cloud technologies including Docker, Kubernetes, and the
Open Group standards: Open Messaging Interface (O-MI) and
Open Data Format (O-DF) [7][8], which are both managed as

O-MI node1; and (ii) to implement a demonstrator system of
vehicular networks-based smart mobility in the Aalto Univer-
sity lab containing five RSUs, which are then analyzed by
considering the four possible real-case scenarios.

The rest of the paper is organized as follows. Section II
presents the related work in ITS domain. Section III proposes
a new fault-tolerant framework based on edge computing along
with the use case scenarios and implementation in Section IV.
Section V displays the experimental results for analyzing fault
tolerance, followed by the conclusion in Section VI.

II. RELATED WORK

Several studies have been conducted in the literature con-
cerning the fault tolerance, reliability, and security of vehicular
networks. Faults can be mainly classified into three categories:
transient, intermittent, and permanent [9][10]. The transient
faults eventually disappear without any apparent intervention,
whereas the intermittent faults are difficult to diagnose. On
the other hand, the permanent faults will always remain in
the network unless the external administrator repairs/removes
them. These permanent faults are considered crucial in the
literature, which needs to be resolved for correct system
execution. In this regard, TABLE I provides state-of-the-
art comparative analysis of our framework with some of
the earlier fault-tolerant techniques based on various IoT
characteristics. These selected papers in TABLE I are well
aligned with our proposed solution. As can be seen, a fault-
tolerant distributed path recommendation protocol is proposed
by Younes et al. [9] for tolerating faults which occur between
nodes and communication links. Similarly, Lygeros et al. [11]
develop a fault-tolerant architecture to resolve network failures
in the automated highway system. Once a fault has occurred,
its classification is performed by considering the capabilities
of the vehicle or roadside unit. Hiraiwa et al. [12] propose a
communication control scheme for solving the handover mech-
anism in the roadside network which may lead to end-to-end
throughput degradation. To enhance the fault-tolerant behavior
of RSUs, Almeida et al. [13] propose a replica determination
mechanism which ultimately impacts the real-time properties
of vehicular networks. Another architecture is proposed by
Almeida et al. [14] to improve the network dependence on
roadside infrastructure for real-time data guarantee. For secure
communications, Malhi and Batra [15][16] propose a security
framework which addresses most of the security requirements,
also providing reliability to the vehicular system. To offer a
low latency solution on the edge, Zhang et al. [17] present an
efficient predictive scheme based on mobile edge computing
for vehicular networks in which the tasks are off-loaded to
the edge servers. Further, Liu et al. [18] propose an edge
computing-based architecture by integrating different types of
access technologies to enable low latency and high-reliability
communication. Although these solutions fulfill application-

1O-MI reference implementation developed by Aalto University: https://
github.com/AaltoAsia/O-MI, last accessed April, 2020

TABLE I: Comparative Analysis: 3 means supported, 7 means not supported,
and ρ means partially supported.

IoT Characteristics [18] [11] [9] [13] [14] Proposed
Scalability 3 7 7 3 ρ

Layered design 3 3 7 3 3

High availability 7 7 7 3 3

Fault tolerance (data) 7 7 3 7 3

Fault tolerance (network) ρ 3 3 3 3

Fault tolerance (server) 7 3 3 3 3

Container virtualization 7 7 7 7 3

Data replication 7 7 7 3 3

specific requirements and offers better responsiveness, there
is no mechanism for handling hardware fault tolerance.

To the best of our knowledge, none of the previous mecha-
nisms in vehicular networks have resolved the fault tolerance
issues on data, network, and node level, while enhancing the
scalability and availability of the system. Therefore, in this
paper, we propose a distributed fault-tolerant framework, com-
bined with the edge computing capabilities, to handle network-
and RSU-based failures, which are dynamically tolerated at
each level of the vehicular communication pipeline.

III. FAULT-TOLERANT FRAMEWORK

We propose a generic fault-tolerant framework for smart
applications, accompanied by edge computing, to tackle
hardware- and network connectivity-based failures. This
framework is designed to dynamically overcome node, net-
work, and data fault tolerance by allowing automatic reconfig-
uration of the data processing pipeline and enabling data pro-
cessing in an edge-centric environment (i.e., closer to the data
sources). Additionally, data computation on the edge ensures
low latency and reduces a large amount of network bandwidth.
The framework also considers the limited resources available
at the edge by employing software containers. It should also
be noted that the proposed design is hardware-based, which
incorporates the underlying cloud technologies rather than
algorithmic aspects. Our proposed framework is composed of
four layers: A) Device, B) Communication, C) Management,
and D) Application layer, as illustrated in Fig. 2. This layered
design is inspired by our earlier fault-tolerant IoT architec-
ture [19], ensuring: (i) subscription-based local data replication
on the edge, (ii) fault-tolerant management for data processing
pipeline, and (iii) application-level software portability.

A. Device Layer

The Device Layer of our proposed framework provides vari-
ous computing devices, sensors, and other information systems
for collecting a large amount of real-time data. These devices
are capable of performing computation on the logical extremes
of the network by executing specified cloud technologies.
In the case of sensors with no data processing and storage
capability, the layer can integrate these sensors with other
external cost-efficient processing module to perform heavy
computation and other processing tasks.

O-MI/O-DF

D
ev

ic
e

La
y

e
r

C
om

m
u

ni
ca

ti
o

n

La
ye

r

O-MI/O-DF

Data subscribe
O-MI/O-DF

Data broadcast

AP

M
a

n
ag

e
m

e
n

t
La

ye
r

Kubernetes

O-MI/O-DF

Ed
ge

-c
en

tr
ic

C

om
pu

ti
n

g

Smart
Transport

Smart
Buildings

Smart
Grid

A
p

p
lic

at
io

n

La
ye

r
Smart
Cities

Smart
Industry

Fig. 2: A bottom-up overview of fault-tolerant distributed framework with
edge-centric computing

B. Communication Layer

The Communication Layer is responsible for providing a
unified publish/subscribe data communication pipeline which
publishes real-time data, replicates them, and stores them lo-
cally on the edge. Other nodes can also subscribe to these data
and publish them based on the application requirements. In
this layer, the devices are subscribed to an Access Point (AP)
for obtaining the latest sensor values which then broadcasts
to other nearby devices. Thus, resolving network and data
fault tolerance by replicating the data in the entire cluster.
We adopt O-MI and O-DF messaging standards [7][8] as a
unified subscription-based data replication solution for im-
plementing the needed functionality. These standards provide
peer-to-peer communication and real-time interaction between
heterogeneous systems. They reside independently at the com-
munication and format levels of the OSI Application layer
in which O-MI provides a generic open API for transporting
data payloads in nearly any format. The complementary O-
DF standard is currently the most common text-based payload
format due to its flexibility [20]. O-DF is defined as a simple
ontology, specified using XML schema, which is sufficiently
generic for representing any object in the IoT. In contrast to the
Web which uses HTTP to transmit HTML-coded information
mainly intended for human users, O-MI is designed to transmit
O-DF payload that is dedicated for information systems. TA-
BLE II lists the basic operations for sending O-MI requests in
which we consider “Read (Subscription)” operation to provide
replication-based mechanism.

C. Management Layer

The Management Layer enables the deployment of data pro-
cessing pipeline and configures it to operate as a fault-tolerant
system. This layer simplifies the problem of node failures
by rescheduling failed processing stages on other available
nodes, providing node fault tolerance on the hardware-level.

We use the Kubernetes framework to orchestrate the placement
of processing stages, as it enables fault-tolerant management
and ensures high-availability solution. One of the key design
ideas of Kubernetes is to have no single point of failure. All
configuration data is stored in a replicated fashion, allowing
Kubernetes to survive any single node failure (e.g., in the
cluster of three nodes). Hence, this layer offers a fault tol-
erance functionality that is fully transparent to the application
programmer.

D. Application Layer

The Application Layer of our proposed framework is ca-
pable of providing various IoT and ITS applications that can
be integrated with rest of the layers to ensure fault-tolerant
behavior. In this article, we focus on the vehicular network-
based smart mobility application.

IV. CASE STUDY: SMART MOBILITY IN VEHICULAR
NETWORKS

The fault tolerance capabilities of our proposed framework
are applied to a smart mobility use case, which deals with
safer and more coordinated V2I and I2I communications. In
this case study, RSUs play an important role due to their
capabilities of: (i) delivering valuable information to vehicles,
(ii) forwarding received messages to the final recipients, and
(iii) providing Internet access to vehicles. Indeed, the RSU
infrastructure is configured to extend vehicle coverage and
improve network performance [22]. These RSUs are controlled
by the trusted authorities’ middleware, which assigns a unique
ID to each RSU along with the communication range. As
a result, each RSU handles the vehicles under its dedicated
range, and communicates with other RSUs through the secure
Ethernet channel. Furthermore, the communication between
vehicles are performed via IEEE 802.11p technology in the
bandwidth spectrum of 5.850 to 5.925 GHz. In this regard,
Section IV-A describes the fault tolerance scenarios, followed
by the implementation details in Section IV-B.

A. Scenarios Description

We consider the four possible smart mobility scenarios in
the lab environment due to the limitations of hardware and
software resources. Fig. 3(a) demonstrates a normal scenario
in which the vehicles communicate with their nearest RSU
to retrieve traffic information. In the case of RSU failure,
the vehicles will not receive recent updates, thus potentially
leading to disastrous situations. RSUs can malfunction due
to transient power spikes, unexpected power interruptions,
software failures, or intermittent network dis-connectivity. We
describe one of the failure scenarios in Fig. 3(b) in which a
single RSU fails, thereby halting communication with other
available nodes. Consequently, the data load and computation
handled by this RSU need to be distributed to other RSUs.
Another scenario is depicted in Fig. 3(c) in which two RSUs
are down, causing the vehicles to collide with each other. The
same is the case in Fig. 3(d), which shows the communication
link failing between two RSU nodes. This scenario represents

TABLE II: O-MI Basic Operations [21]

Operation Description
1- Write Used to write information updates from sensors, events, or other devices to O-MI nodes.
2- One-Time Read Used to retrieve immediate or old information from the O-MI nodes.
3- Read (Subscription) A specific read operation for retrieving information at regular intervals. Two types of subscription can be

performed:
• Subscription with callback address: The requested data are sent to the callback address with a specified

interval (interval-based and event-based are supported).
• Subscription without callback address: The data are stored on the subscribed node until the subscription

is valid. The data can then be retrieved (polled) by issuing a new read request.
4- Cancel Used to cancel subscription before it expires.
5- Delete Used to delete parts of O-DF hierarchy.

(a) Scenario-1: A normal scenario

X

(b) Scenario-2: A scenario with single RSU failure

XX

(c) Scenario-3a: A scenario with two RSU failures (d) Scenario-3b: A scenario in which communication link is
down between two RSUs

Fig. 3: Real-case scenarios for the smart mobility use case

the data connectivity issues that may lead to system degrada-
tion in terms of data sharing and broadcasting.

B. Implementation Details

A demonstrator system has been implemented in the Aalto
University lab by using five Raspberry Pi (RPi) boards, to-
gether acting as a clustered system of five RSUs. We select
RPi for testing purpose as it is a fully functional ARM-based
Linux edge device, allowing the same Linux-based application
software to run without any modifications. Fig. 4(i) shows
a running implementation of the selected use case in which
we have five RPi nodes, configured as RSUs. These nodes
are located at fixed positions and each RSU is assumed to
have dedicated coordinates, accordingly at (100, 50) (300, 50)
(450, 200) (200, 250) (50, 200), in the square grid. In the
implementation, the Communication Layer is realized by run-

ning O-MI/O-DF standards inside Docker containers, provid-
ing software portability and replication-based communication
pipeline. The Management Layer is logically observed by
adopting the Kubernetes high availability framework, which
configures the three Kubernetes master and two worker nodes.
We use the kubeadm tool to spread Kubernetes on five
RPi nodes. It performs the actions necessary to configure a
minimum viable cluster in a user-friendly manner. TABLE III
lists the specifications of hardware/software tools used in our
implementation.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

For performance assessment, we simulate the smart mobility
scenarios of Fig. 3, then analyze the fault-tolerant behav-
ior, throughput, and latency measurements. The experimental
setup, depicted in Fig. 4, consists of four parts: (i) Our frame-

TABLE III: Specifications of hardware/software tools

No. of nodes RPi OS Docker Kubernetes
5 v3 Raspbian 9.4 v18.09 v1.13.3

response

request

(ii)

(iv)

RSU-4

RSU-3

RSU-2RSU-1

(50,200)

(200,250)

(450,200)

(100,50) (300,50)

RSU-5

(i)

(iii)

LAN Internet

Smart Mobility Implementation

Fig. 4: Running implementation of our framework with five RPi nodes
connected through LAN switch

work as described in Section IV-B; (ii) the open-source soft-
ware Apache JMeter2 (v4.0) runs on HP EliteBook Windows
laptop with a memory of 8GB and Intel Core i5 2.40GHz CPU,
which enables us to simulate V2I and I2I communications. For
evaluation purposes, we only consider 10 vehicles in the use
case implementation, which send concurrent requests through
JMeter; (iii) the user interface of one of the O-MI nodes which
shows the O-DF objects hierarchy that we formulate with
respect to our case study; (iv) the magnified version of O-
DF hierarchy in which each vehicle has a unique ID assigned
by the trusted authority middleware.

A. Fault Tolerance Assessment

We consider iptables as an assessment tool for testing the
fault-tolerant behavior. This tool allows the configuration,
maintenance, and inspection of a set of IP packet rules for
the network. Such rules enable the system to accept or reject
specific network traffic. The following command is used to
disable network connectivity:

iptables -A INPUT -j DROP

TABLE IV lists the observations for four different cases
in which the network connectivity between RPi nodes is
temporarily cut off using the aforementioned command. For
each case, the results of CPU and memory usage are collected
in Fig. 5 for the fault-tolerant analysis as these become directly
affected by a single or multiple-node failure. These graphs
provide the time in MM:SS format on the horizontal axis and
the aggregated CPU cores, which are dedicated to the entire
cluster, on the vertical axis. We have in total 20 CPU cores

2[Online]. http://jmeter.apache.org/, last accessed March, 2020

in which each RPi has 4 cores. Similarly, the memory usage
graphs provide a similar time duration on the horizontal axis
and the aggregated memory in-use (out of total 5 Gbytes) on
the vertical axis. These results are plotted on the Kubernetes
Dashboard (web-based UI) using the Heapster metrics tool,
which enables cluster monitoring and performance analysis
for Kubernetes. Fig. 5(a) displays a normal behavior of all five
RSUs when they are active. In the beginning (at around 14:41),
the cluster initializes data communication pipeline through
O-MI/O-DF read/write requests, thus increasing CPU usage
from 2.75 cores to around 10 cores (at time 14:43). Similarly,
the cluster occupies around 3.91 Gbytes out of 5 Gbytes
as shown in Fig. 5(b). When one RSU fails, the CPU and
memory usage decreases to around 8.25 cores and 2.93
Gbytes (at time 14:52) in Fig. 5(c) and Fig. 5(d), respectively.
Consequently, the system continues to operate and the data
communication remains uninterrupted through other available
RSUs. Fig. 5(e) and Fig. 5(f) show the behavior of two RSUs
when they are inactive. Both the CPU and memory usage
decrease significantly to around 2.0 cores and 2.1 Gbytes,
respectively. The system is still able to handle new requests
as our implementation tolerates two RSUs failure. Similarly,
Fig. 5(g) and 5(h) correspond to the case when both the RSUs
come back online. The CPU and memory usage increases
to 7.0 cores and 4.1 Gbytes, respectively, at around 15:10
to achieve normal behavior. As a consequence, the cluster
continues to perform data processing tasks by self-adapting
and independently recovering from the failures.

B. Throughput Analysis

In addition to the CPU and memory usage, we calculate the
throughput for analyzing fault-tolerant behavior. The graphs in
Fig. 6 and Fig. 7 represent the network traffic for O-MI and
Kubernetes providing throughput in bytes/s over the period of
time. We execute tcpdump on each RPi to capture and filter
the network traffic. Similarly, this command is also executed
on our laptop (where we execute Apache JMeter), which is
plotted in Fig. 6(a). As can be seen, all five RSUs handle O-
MI requests initially with the average throughput of around
3000 bytes/s. When one RSU fails at around 80s, the O-MI
traffic is diverted to other available nodes and the vehicles
continue to publish and consume traffic information. When
the failed RSU comes back online at around 260s, the RSU-
1 begins to handle new requests. Likewise, Fig. 6(b) shows
the throughput of Kubernetes API traffic for the three RSU
nodes, which proves that the system will not halt and the
requests can be answered by other RSUs between 80s to 300s.
On the other hand, Fig. 6(c) and Fig. 6(d) show the O-MI
communication that are captured inside RSU-1 and RSU-2,
respectively. As seen in Fig. 6(c), RSU-1 handles requests
till 80s and afterwards the node becomes inactive, thus no
further communication is performed between 80s and 260s.
Nevertheless, when RSU-1 comes online at around 260s, the
system continues to operate and the data from other RSUs
are instantly replicated to RSU-1. This shows the data fault
tolerance which renders the communication pipeline active.

TABLE IV: Four cases for analyzing fault tolerance: Xmeans active, × means inactive

Case RSU-1 RSU-2 RSU-3 RSU-4 RSU-5 Observations
1 X X X X X The default condition in which all RSUs are up and running.

2 × X X X X
The cluster tolerates one node failure. Other master nodes handle the
API requests.

3 × X X × X
No effect on the high availability mechanism. However, the cluster
reduces to three nodes.

4 X X X X X The cluster continues to operate once the nodes become online again.

(a) Case 1: CPU usage (normal case) (b) Case 1: Memory usage (normal case)

(c) Case 2: CPU usage (RSU-1 is inactive) (d) Case 2: Memory usage (RSU-1 is inactive)

(e) Case 3: CPU usage (RSU-1 and RSU-4 are inactive) (f) Case 3: Memory usage (RSU-1 and RSU-4 are inactive)

(g) Case 4: CPU usage (h) Case 4: Memory usage

Fig. 5: CPU and Memory usage for fault tolerance cases. CPU (cores): the aggregated sum of active cores for the entire Kubernetes edge cluster, Memory
(bytes): the aggregated memory in-use of the edge cluster, and Time: the time duration in MM:SS (minutes:seconds)

The same is the case in Fig. 6(d) in which other RSUs handle
requests and the data is replicated to RSU-1 at around 260s.
This graph is only plotted to show that the communication
pipeline is active at all times and the requests are handled
without any interruption. Furthermore, Fig. 7(a) and Fig. 7(b)
plots the O-MI traffic for Scenario-3. Although both RSU-
1 and RSU-4 are down between 40s to 180s, the system
still handles the requests and the traffic information can be
consumed from other RSU nodes. Once both the RSUs have
restarted at around 180s, the data is automatically replicated
to the entire vehicular system.

C. Latency Measurements

The experimental results of fault tolerance impact on latency
are illustrated in Fig. 8. These graphs represent a boxplot
providing minimum, 1st quartile, median, 3rd quartile, and
maximum of the latency calculated over each 100-second
period. In this paper, latency is the time taken to execute a
Python script from JMeter, which includes concurrent requests
(in O-DF) for reading and writing random traffic information
along with a delay of 2 seconds. Fig. 8(a) shows a normal
scenario in which the latency is less than 3s in each 100-
second period. As compared to Fig. 8(a), Fig. 8(b) shows

0 40 80 120 160 200 240 280
Time (s)

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

rsu1
rsu2
rsu3
rsu4
rsu5

(a) RSU-1 is down. O-MI traffic diverts to other RSUs

0 40 80 120 160 200 240 280 320 360
Time (s)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

105

rsu1
rsu2
rsu3

(b) Kubernetes API traffic

40 80 120 160 200 240 280
Time (s)

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

rsu1
rsu2
rsu3
rsu4
rsu5

(c) The O-MI communication traffic captured in RSU-1

40 80 120 160 200 240 280
Time (s)

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

rsu1
rsu2
rsu3
rsu4
rsu5

(d) The O-MI communication traffic captured in RSU-2

Fig. 6: The throughput for Scenario-1 and Scenario-2 in which RSU-1 becomes inactive after the normal operation

0 40 80 120 160 200 240 280
Time (s)

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

rsu1
rsu2
rsu3
rsu4
rsu5

(a) RSU-1 and RSU-4 are down. O-MI traffic diverts to other
RSUs

10 40 70 100 130 160 190 220 250 280
Time (s)

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

rsu1
rsu2
rsu3
rsu4
rsu5

(b) The O-MI communication traffic captured in RSU-2

Fig. 7: The throughput for Scenario-3a in which RSU-1 and RSU-4 are inactive

the behavior of one RSU when it is inactive [180:360s], the
latency increases accordingly to 23s in the interval [200:300s].
This high latency is due to the concurrent read/write requests
sent by 10 vehicles, which are now being handled by four
RSUs (instead of five nodes). Thus, the load increases as well.
Overall, it can be seen from latency measurements that the
vehicular system will not halt in the case of one or more
RSU failures, and the latencies return to normal once the RSU
becomes active again.

To conclude, it has been observed that the proposed frame-
work is capable of tolerating RSU-based failures. This can be
seen in the experimental results of fault tolerance, throughput,
and latency measurements for the smart mobility use case. Let
us note that the selection of this specific case study and the
software/hardware tools reduced the possibilities of comparing

our solution performance with the earlier discussed techniques
in the literature. Therefore, due to the limitations of hardware
resources, we implemented our framework by considering the
four possible real-case scenarios in the lab environment and
tested the robustness of the proposed system.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a distributed fault-tolerant framework
based on edge computing for V2I and I2I communications
in the vehicular networks. It adopts state-of-the-art cloud
technologies including Docker, Kubernetes, and the Open
Messaging Interface (O-MI) standards, which are also de-
ployed for edge computing. This framework consists of four
layers: (i) Device, (ii) Communication, (iii) Management, and
(iv) Application layer. An edge-based layered design for the
RSU infrastructure provides fault-tolerant management and

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600

La
te

nc
y

(s
)

Time (s)

(a) Latency in Scenario-1

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0 100 200 300 400 500 600

La
te

nc
y

(s
)

Time (s)

(b) Latency in Scenario-2. RSU-1 is down between 180:360s

Fig. 8: Fault tolerance impact on latency

allows the data to be processed on the edge (i.e., closer to
the data sources), enhancing the fault tolerance and reliability
of the network. The fault tolerance capabilities of our proposed
framework are then evaluated by considering a smart mobility
use case, which is implemented as a demonstrator system of
five RPi nodes (operated as five RSUs) in the Aalto University
lab. The experimental results in terms of fault tolerance cases,
latency, and throughput have validated the effectiveness of our
framework in the vehicular networks.

In future work, the fault tolerance for Vehicle-to-Vehicle
(V2V) communication will be addressed, particularly the
real-time traffic information that exchanges between vehicles.
Further, the framework will be evaluated for network and
resources scalability by simulating more than 10 vehicles.

ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme (grant
688203) and Academy of Finland (Open Messaging Interface;
grant 296096). The authors would like to thank Aalto ASIA
team at the Computer Science department at Aalto University.

REFERENCES

[1] N. Shrestha, S. Kubler, and K. Främling, “Standardized Framework
for Integrating Domain-Specific Applications into the IoT,” in 2014
International Conference on Future Internet of Things and Cloud.
IEEE, 2014, pp. 124–131.

[2] M. Alam, J. Ferreira, and J. Fonseca, “Introduction to Intelligent Trans-
portation Systems,” in Intelligent Transportation Systems. Springer,
2016, pp. 1–17.

[3] G. Dimitrakopoulos and P. Demestichas, “Intelligent Transportation
Systems,” IEEE Vehicular Technology Magazine, vol. 5, no. 1, pp. 77–
84, 2010.

[4] F. Perry, K. Raboy, E. Leslie, Z. Huang, D. Van Duren et al., “Dedicated
Short-Range Communications Roadside Unit Specifications,” United
States. Dept. of Transportation, Tech. Rep., 2017.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–
646, 2016.

[6] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling Collaborative Edge
Computing for Software Defined Vehicular Networks,” IEEE Network,
vol. 32, no. 5, pp. 112–117, 2018.

[7] “Open Messaging Interface (O-MI), an Open Group Internet of Things
(IoT) Standard,” http://www.opengroup.org/iot/omi/, [Online]; last ac-
cessed March 2020.

[8] “Open Data Format (O-DF), an Open Group Internet of Things (IoT)
Standard,” http://www.opengroup.org/iot/odf/, [Online]; last accessed
March 2020.

[9] M. B. Younes, A. Boukerche, R. De Grande, and H. Xie, “An efficient
fault tolerant distributed path recommendation protocol for next genera-
tion of vehicular networks,” in 2015 IEEE International Conference on
Communications (ICC). IEEE, 2015, pp. 5783–5788.

[10] C. Huang, K. Wardega, W. Li, and Q. Zhu, “Exploring weakly-hard
paradigm for networked systems,” in Proceedings of the Workshop on
Design Automation for CPS and IoT, 2019, pp. 51–59.

[11] J. Lygeros, D. N. Godbole, and M. Broucke, “A fault tolerant control
architecture for automated highway systems,” IEEE Transactions on
Control Systems Technology, vol. 8, no. 2, pp. 205–219, 2000.

[12] M. Hiraiwa, H. Asakura, T. Narita, T. Yashiro, H. Shigeno, and
K. Okada, “Dynamic communication zone control method on au-
tonomous decentralized based roadside network infrastructure,” IEICE
transactions on fundamentals of electronics, communications and com-
puter sciences, vol. 88, no. 7, pp. 1786–1799, 2005.

[13] J. Almeida, J. Ferreira, A. S. Oliveira, P. Pedreiras, and J. Fonseca,
“Enforcing Replica Determinism in the Road Side Units of Fault-
Tolerant Vehicular Networks,” in International Conference on Future
Intelligent Vehicular Technologies. Springer, 2016, pp. 3–12.

[14] J. Almeida, J. Ferreira, and A. S. Oliveira, “Fault Tolerant Architecture
for Infrastructure based Vehicular Networks,” in Intelligent Transporta-
tion Systems. Springer, 2016, pp. 169–194.

[15] A. Malhi and S. Batra, “Privacy-preserving authentication framework
using bloom filter for secure vehicular communications,” International
Journal of Information Security, vol. 15, no. 4, pp. 433–453, 2016.

[16] A. K. Malhi and S. Batra, “Fuzzy-based trust prediction for effective
coordination in vehicular ad hoc networks,” International Journal of
Communication Systems, vol. 30, no. 6, p. e3111, 2017.

[17] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-Edge
Computing for Vehicular Networks: A Promising Network Paradigm
with Predictive Off-loading,” IEEE Vehicular Technology Magazine,
vol. 12, no. 2, pp. 36–44, 2017.

[18] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A scalable and
quick-response software defined vehicular network assisted by mobile
edge computing,” IEEE Communications Magazine, vol. 55, no. 7, pp.
94–100, 2017.

[19] A. Javed, J. Robert, K. Heljanko, and K. Främling, “IoTEF: A Federated
Edge-Cloud Architecture for Fault-Tolerant IoT Applications,” Journal
of Grid Computing, vol. 18, no. 1, pp. 57–80, 2020.

[20] A. Javed, N. Yousefnezhad, J. Robert, K. Heljanko, and K. Främling,
“Access Time Improvement Framework for Standardized IoT Gateways,”
in IEEE International Conference on Pervasive Computing and Commu-
nications Workshops (PerCom Workshops). IEEE, 2019, pp. 220–226.

[21] J. Robert, S. Kubler, Y. Le Traon, and K. Främling, “O-MI/O-DF
standards as interoperability enablers for industrial internet: A perfor-
mance analysis,” in IECON 2016-42nd Annual Conference of the IEEE
Industrial Electronics Society. IEEE, 2016, pp. 4908–4915.

[22] J. Tao, L. Zhu, X. Wang, J. He, and Y. Liu, “RSU Deployment Scheme
with Power Control for Highway Message Propagation in VANETs,” in
IEEE Global Communications Conference. IEEE, 2014, pp. 169–174.

