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Towards Robust Onboard Control for Quadrotors via
Ultra-Wideband-based Localization

Evagoras Makridis and Themistoklis Charalambous

Abstract—This paper describes an indoor navigation approach
using estimation and control for horizontal translational mo-
tion and heading angle for quadrotor Unmanned Aerial Vehi-
cles (UAVs) via Ultra-Wideband (UWB)-based localization. In
particular, to cope with noisy measurements, emanating from
model uncertainties, and Non-Line-Of-Sight (NLOS) conditions,
a Linear Quadratic Regulator (LQR) is deployed along with
a Maximum Correntropy Criterion Kalman Filter (MCC-KF).
This approach has proven improved robustness compared to
the traditional Kalman Filter (KF) against non-Gaussian noise.
A testbed with a quadrotor was developed for evaluating the
performance of our proposed approach. We demonstrate, via the
experimental setup, that the MCC-KF outperforms the use of KF
in the presence of shots of mixed noise and communication delays,
enabling onboard robust estimation and control via UWB-based
localization.

Index Terms—Quadrotor control, ultra-wideband communica-
tions, linear quadratic regulator, maximum correntropy criterion
Kalman filter.

I. INTRODUCTION

During the past decades, multi-rotor UAVs managed to gain
the attention of commercial and scientific communities as a
result of the myriad indoor and outdoor applications, such as
monitoring and inspection, warehouse inventory management,
and delivery. Such tasks require autonomy, high accuracy, and
robustness which add extra constraints to the design and devel-
opment of control algorithms. The prospect of conducting such
tasks autonomously, has been driving research into automating
UAV navigation. Assigning to a UAV a target position or a
trajectory in space imposes the need for a feedback controller
to compute the control command based on the actual and the
target pose (note: pose, in contrast to position, contains also
orientation). The actual position of a UAV in space can be
measured using localization techniques, while the orientation
can be measured with Inertial Measurement Units (IMUs).

Several technologies for UAV localization such as
Global Positioning Systems (GPS), vision-based systems and
wireless-based systems have been proposed and evaluated in
the literature. Although GPS are the most common localiza-
tion systems for outdoor environments, they are not suitable
for indoor applications, as the satellite signals can not pass
through buildings, nor they are accurate enough to be used
for precision tasks [1]. Vision-based approaches to measure
a UAV’s pose in real-time also exist, fusing inertial sensing
together with either off-board or on-board visual sensing. The
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Fig. 1: Block diagram of the feedback loop.

former set of techniques rely on expensive motion-capture
systems with carefully calibrated off-board cameras [2]–[4],
limiting the portability and generality of such methods. On-
board techniques, on the other hand, rely on on-board cameras,
often monocular [5]–[8], creating a cheaper alternative, albeit
less robust to changes in illumination and viewpoint [9].
Although computer vision techniques are remarkably popular
to measure the position and the orientation of quadrotors,
several barriers (such as, the cost, the needed computational
power and lack of accuracy) prevent their use.

From another strand of research, Ultra-Wideband (UWB)
wireless technology for quadrotor localization has gained sig-
nificant attention during the past few years [10]–[13], because
of the low positioning error (i.e., usually < 20cm), the low
cost and the ease of installation. UWB for localization is a
large bandwidth radio technology which measures the position
of an object carrying a transmitter (tag) from several receivers
(anchors). Despite its accuracy in static scenarios, UWB-
based localization usually induces communication delays to
the sensor-controller links, which in addition to sensor faults,
measurement noise, and non-line of sight (NLOS), affect the
performance of UAV.

This paper presents linear optimal and robust control tech-
niques based on state estimation from a KF and a MCC-
KF to attenuate noise, reject external disturbances to track
a predefined reference horizontal position and heading (yaw
angle) of a quadrotor UAV using IMU and UWB-based
localization measurements.

The remainder of this paper is organized as follows: related
work regarding quadrotor control techniques are presented
and discussed in Section II. Notation and system description
including the definitions of the coordinate systems, quadrotor
dynamics and system identification are given in Section III and
Section IV respectively. Section V presents the proposed state
estimation algorithms and the controller. These control tech-
niques are evaluated with the experimental setup and results
presented in Section VI. Finally, conclusions and directions
for future work are given in Section VII.



II. RELATED WORK

Bouabdallah et al. in a series of works [14]–[16] were
among the first who designed and applied linear and non-
linear control for the position and orientation of quadrotors. In
particular, they used Lyapunov theory, Proportional-Integral-
Derivative (PID) controllers, optimal control theory, backstep-
ping, sliding-mode and integral backstepping techniques to
control the position and the orientation of a quadrotor.

Raffo et al. [17], [18] proposed non-linear robust control
strategies to track a reference trajectory of a quadrotor. In
[17] they used an integral model predictive controller with
disturbance rejection to control the translational movements
of the quadrotor, while in [18] they introduced a control law
based on backstepping approach. In both works, they used an
inner loop non-linear H∞ controller for the stabilization of
the rotational movements.

In [19], the authors studied the hovering performance of a
quadrotor after the performed dynamic system identification,
state estimation using a complementary filter and control us-
ing PID controllers. They presented computationally efficient
control algorithms comparable with the current state-of-the-
art techniques. Papastratis et al. in [12], studied the interplay
between communication and control of a quadrotor using
measurements from an Ultra-Wideband (UWB) positioning
system. In particular, they studied how the performance of
a PID controller affects the stabilization of a quadrotor (DJI
M100) with the presence of communication delays from the
UWB positioning system.

More recently, Sa et al. [4] performed dynamic system iden-
tification and control for the DJI M100. They used only a built-
in IMU to identify the dynamics of the vehicle and the DJI
M100 autopilot (N1 flight controller). Based on this model,
they designed a Model Predictive Controller (MPC) to control
the quadrotor using IMU and motion capture system (Vicon)
measurements. In [20], the authors proposed and evaluated a
state-depended Linear Quadratic Regulator (LQR) controller
which unifies the control of the rotational and translational
states from a Visual Inertial Odometry and IMU. A small
quadrotor using an onboard ARM platform and running the
full state estimation and the LQR computation was used for
evaluation.

III. NOTATION

In this work, vectors, matrices and sets, are denoted by
bold lowercase, uppercase and calligraphic uppercase letters,
respectively. Real and nonnegative real numbers sets are
denoted by R and R+, respectively. The transpose matrix of
matrix A is denoted with AT and its inverse with A−1. The
notation A � 0 (A � 0) means that matrix A is semi-positive
(positive) definite. The identity matrix is represented by I .
E{·} represents the expectation of its argument. Given any
vector norm ‖ · ‖, a weighted vector norm can be written as
‖x‖A , ‖Ax‖, where A is an arbitrary nonsingular matrix.
The sine and cosine of an angle θ is denoted by sθ ≡ sin(θ)
and cθ ≡ cos(θ), respectively.

IV. SYSTEM DESCRIPTION

A. Coordinate Systems

First, we determine two coordinate frames using the stan-
dard right-handed robotics convention as shown in Fig.2. The
Earth’s inertial frame {E} follows the East-North-Up (ENU)
reference system where +x axis points to the east, +y to the
north and +z points upwards based on the right-hand rule.
The quadrotor’s Body frame {B}, which is coincident to the
origin and thus to the absolute position of the quadrotor (i.e.,
[x, y, z]), follows the Forward-Left-Up (FLU) which gives
forward horizontal, left horizontal and up vertical movement
along its +x, +y and +z axis respectively.

Fig. 2: Quadrotor model with robotic frames diagram.

B. Quadrotor Rigid-Body Dynamics

The open-loop system of a quadrotor is an unstable non-
linear complex system. Each rotor consists a propeller and a
motor which produces an angular velocity ωi which implies
a thrust force fi, where i denotes the number of the motor
as shown in Fig.2. Note that, two rotors rotate clockwise,
while the other two rotate counter-clockwise to achieve a zero
net angular momentum and thus cancel the yaw (ψ) rotation
along the z-axis of the quadrotor’s body. With different values
of angular velocity on each motor, the quadrotor moves to
different translational (i.e., ξ = (x, y, z) ∈ R3) and rotational
(i.e., η = (φ, θ, ψ) ∈ R3) coordinates in the Earth’s frame
where x, y and z represent the position coordinates of the
center of mass of the quadrotor from the Earth’s inertial frame
{E}. The Euler’s angles φ, θ and ψ represent the orientation
of the quadrotor. As it can be seen from Fig.2; φ is the angle
about the x-axis and it is called “roll”, θ is the angle about
the y-axis and is called “pitch”, and ψ is the angle about the
z axis and is called “yaw”.

The translational equations of motion in the Earth’s frame
are given by the Newton-Euler formalism [21], [22]:

mξ̈ = fB − fG, (1)

where m denotes the mass of the quadrotor, fB denotes the
forces acting on the quadrotor in the Earth’s frame. Therefore,
it is needed to transform the thrust forces fi acting on the
quadrotor’s body, to the Earth’s inertial frame {E} using the
rotation matrix R given in (2). Multiplying the rotation matrix



R with the total thrust force fT (acting only on the vertical
z-axis), we have the forces acting on the quadrotor, in the
Earth’s frame {E}:

fB =

cψcθ sφsθcψ − sψcθ cφsθcψ + sψsφ
sψcθ sφsθsψ + cψcθ cφsθsψ − cψsφ
−sθ sφcθ cφcθ


︸ ︷︷ ︸

R

 0
0
fT

 , (2)

where fT = kF (ω2
1 +ω2

2 +ω2
3 +ω2

4) is the total thrust which in
hovering state is equal to the gravitational force mg, and kF is
the aerodynamic drag coefficient due to air density. Thus, the
total non-gravitational force acting on the quadrotor’s Body
frame is given by:

fB = fT
[
cφsθcψ + sψsφ cφsθsψ − cψsφ cφcθ

]T
. (3)

The gravitational force fG acts only on the z-axis when
hovering and it is described by fG =

[
0 0 mg

]T
, where g

is the acceleration of the gravity. Finally, substituting fG and
fB into (1) we get the translational equation of motion which
is given by:

mξ̈ = fT

(cφsθcψ + sψsφ)
(cφsθsψ − cψsφ)

(cφcθ)

−
 0

0
mg

 . (4)

Assuming that the quadrotor will be hovering, we can lin-
earize the aforementioned non-linear equations in (4) around
the hovering operating point using small angle assumptions
(i.e., fT ' mg; φ̇, θ̇, ψ̇ ' 0; sψ ' ψ, sθ ' θ, sφ ' φ;
cφ = 1). In addition, we assume the yaw angle (ψ) to be
fixed (i.e., ψ0), while the quadrotor is moving in the horizontal
plane (i.e., x and y axes) in order to cancel of the non-linear
term in (5). Finally, we assume that our control algorithms
will be applied only on the translational horizontal dynamics
and not on the vertical z-axis. Hence, the linearized equations
of translational motion for the horizontal plane are given by:

ẍ = g (cψ0θ + sψ0φ) , ÿ = g (sψ0θ − cψ0φ) . (5)

C. System Identification
For our experimental setup, we use a DJI Matrice 100

(M100) which runs a low level built-in N1 flight controller
to stabilize the roll, pitch angles, the yaw rate and the vertical
velocity. However, there is no information provided regarding
these dynamics in the project source code of DJI (Onboard-
SDK). Thus, to estimate the dynamic model of the low level
built-in Euler angles’ controller of the quadrotor we use system
identification as firstly done in [4] and [23]. Recording the
desired input signals (i.e., uφ, uθ and uψ̇) that are given
through the Onboard-SDK and the measured output signals
(i.e., φ, θ and ψ̇), we can identify the dynamical model
coefficients α0,φ, α1,φ, α0,θ, α1,θ, α0,ψ , β0,φ, β0,θ and β0,ψ .
The dynamical model to be identified is given by the following
differential equations (roll and pitch are described by a second
order transfer function, while the yaw rate by a first order):

φ̈ = −α0,φφ− α1,φφ̇+ β0,φuφ,

θ̈ = −α0,θθ − α1,θ θ̇ + β0,θuθ,

ψ̈ = −α0,ψψ + β0,ψuψ̇. (6)

V. OPTIMAL AND ROBUST CONTROL DESIGN

The continuous-time state-space model of the quadrotor is
given by:

dx(t) = Ax(t)dt+Bu(t)dt+ dw(t),

dy(t) = Cx(t)dt+ dv(t),
(7)

where x ∈ R10 is the system state vector (i.e., x =
[φ φ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ]T ), u ∈ R3 is the control input vector
(i.e., u = [uφ uθ uψ̇]T ), y ∈ R6 is the measurement vector
(i.e., y = [φ θ ψ z x y]T ), while w ∈ R10 and v ∈ R6

are zero-mean disturbance stochastic processes, representing
the process and measurement noise levels. The discrete-time
equivalent state-space model of the quadrotor is given by:

xk+1 = Φxk + Γuk +wk,

yk = Cxk + vk,
(8)

where the discrete equivalent system matrix Φ = eAh, and the
control input matrix Γ =

∫ h
s=0

eAsBds, and h is the sampling
period (i.e., control loop period). The measurement matrix
C ∈ R6×10. The process and measurement noise levels are
represented by wk and vk, respectively. Both are assumed
to be white Gaussian random sequences with zero mean,
with E{wk} = 0, E{vk} = 0, E{wwT } = W � 0, and
E{vvT } = V � 0.

The a priori and a posteriori state estimates are denoted
by x̂k|k−1 and x̂k|k, respectively. The corresponding error
covariance matrices are defined by:

Pk|k−1 , E{(xk − x̂k|k−1)(xk − x̂k|k−1)T }, (9)

Pk|k , E{(xk − x̂k|k)(xk − x̂k|k)T }. (10)

In this work, we propose the use of the optimal linear
controller (i.e., LQR) and a robust estimator (i.e., MCC-KF)
to compensate sensor noises and reject external disturbances
applied on an indoor flying quadrotor.

A. Maximum Correntropy Criterion Kalman Filter (MCC-KF)
In this section an alternative Kalman filter using the Max-

imum Correntropy Criterion (MCC) for state estimation is
used to deal with process and measurement noises that are
non-Gaussian, e.g. shot noise or mixture of Gaussian noise
[24], [25]. The correntropy criterion measures the similarity
of two random variables using information from high-order
signal statistics in contrast with the classical Kalman filter
that considers only the second-order moment of stability [26].
The equations for the MCC-KF are summarized below [25]:

x̂k|k−1 = Φx̂k−1|k−1 + Γuk, (11)

Pk|k−1 = ΦPk−1|k−1ΦT +Wk, (12)

Lmcck =
Gσ

(
‖ yk − Cx̂k|k−1‖V −1

k

)
Gσ

(
‖ x̂k|k−1 − Φx̂k−1|k−1‖P−1

k|k−1

) , (13)

Kk = (P−1k|k−1 + Lmcck CTV −1k C)−1Lmcck CTV −1k , (14)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (15)

Pk|k = (I −KkC)Pk|k−1(I −KkC)T +KkVkK
T
k , (16)



where Gσ is the Gaussian kernel, i.e.,

Gσ(‖ xi − yi ‖) = exp

(
−‖ xi − yi ‖

2

2σ2

)
,

with kernel size σ (representing a weighting parameter be-
tween the second and higher-order moments). Note that Lmcck

is the minimized correntropy estimation cost function and Kk

is the Kalman gain.

B. Linear Quadratic Regulator (LQR) Control
To follow a reference signal rk = [rx, ry, rψ]T , we augment

the state-space model by adding integral state, ik+1 = ik +
rk − Eyk:[
x̂k+1|k
ik+1

]
︸ ︷︷ ︸
x̄k+1

=

[
Φ −KkC 0

0 I

][
x̂k|k−1

ik

]
︸ ︷︷ ︸

x̄k

+

[
Γ
0

]
uk +

[
0 Kk

I −E

][
rk
yk

]
,

(17)

where E ∈ R3×6 is a matrix that selects the observations to be
controlled (i.e., E = [e1, e2, e3]T , where e1 = [0, 0, 0, 0, 1, 0],
e2 = [0, 0, 0, 0, 0, 1], e3 = [0, 0, 1, 0, 0, 0]). The optimal
control law u∗k = −Lx̄k = −Lx̂x̂k|k−1 − Liik can be found
by minimizing the linear quadratic criterion given in (18):

J = E

[
x̄T
N Q̄N x̄N +

N−1∑
k=0

(
x̄T
k Q̄kx̄k + uT

kRkuk
)]
, (18)

where Q̄N � 0, Q̄k � 0 are the final and stage state error
weighting matrices respectively, and Rk � 0 is the stage
control weighting matrix for the LQ problem. The optimal
control gain L =

[
Lx̂ Li

]
is the state-feedback controller

gain given by the solution of the Riccati equation.

VI. EXPERIMENTAL VALIDATION

To evaluate the performance of the proposed control algo-
rithms,we setup a real testbed1. For the following autonomous
flights, we setup an onboard Raspberry Pi 3 B+ running
Ubuntu server 16.04.6 LTS (Xenial Xerus) with the Robotic
Operating System (ROS) Kinetic on arm64. The ROS is used
to establish the communication between the main components
of the system (i.e., quadrotor, sensors and controller) running
the DJI Onboard-SDK ROS wrappers2.

A. Sensing, Estimation and Control

For measuring the orientation of the quadrotor, we utilized
the onboard IMU node of the Onboard-SDK. This node
publishes quadrotor’s attitude with a default update rate of
100Hz with respect to the quadrotor’s Body frame {B} in
quaternions which are then transformed to radians.

For calculating the position of the quadrotor we developed a
ROS node for publishing the measurements of the UWB Pozyx
positioning system. In this work, we configured the Pozyx with
the highest performance settings (i.e., bitrate of 6.81Mbits/sec,
pulse repetition frequency of 64MHz, and preamble length

1A demonstration of the controlled DJI M100 via indoor UWB-based local-
ization is available online: https://www.youtube.com/watch?v=I0dPAA83YNg

2https://github.com/dji-sdk/Onboard-SDK-ROS

of 64 symbols). For more detailed information about the
available UWB settings of Pozyx see [12]. To get the published
topics on the ROS node, we installed the Pozyx positioning
system by placing the anchors in different locations in space
and identifying their coordinates in space using the Pozyx
software. We then fixed the tag on the quadrotor, to perform
multilateration between the installed anchors and the tag and
calculate the position of the quadrotor in space. The position is
then published via the ROS node with a frequency depending
on the UWB settings, the number of installed anchors and the
pre-filtering strength of Pozyx. In this work, we considered
two cases: (a) position measurements with average median
pre-filtering and (b) no pre-filtering. The average median filter
removes outliers from the position measurements by passing
through the median value of the last kst-sampled time window.
Pozyx refer to this time window to be filtered, “filter strength”.
The higher the value of the filter strength, the longest the
induced delays on the measurements. Based on these settings,
the position is published with an average frequency of 20Hz
which is also used as the estimation and control frequency.

IMU low-level controller

N1 flight controller

DJI Matrice 100

Onboard computer (RPi 3 B+)

Estimator Controller

Onboard SDK u

x̂

Pozyx tag

x, y, z

φ, θ, ψ

y

UWB
Pozyx
anchor

Fig. 3: Experimental setup.

For the state estimation and control of the quadrotor we
developed a ROS node including the state estimators and the
controller. This node calculates the state estimation based on
the measurements (i.e., y) and the previous control signals,
and then it calculates the next control signals (i.e., u) based
on the current state estimate (i.e., x̂). When the control action
is calculated, the node publishes the control signals which are
then subscribed and applied to the quadrotor by the build-in
low-level N1 flight controller as shown in Fig.3.

B. Experimental Results

In all experiments that follow, the mission of the quadrotor
is to hover at a horizontal reference position with a fixed
heading (i.e., yaw angle). The reference point used for all
experiments was set at rk = [rx, ry, rψ]T where rx = 2m,
ry = 4m and rψ = 0rads. Note that the altitude is not
controlled by our control technique, instead it is controlled
by the embedded N1 flight controller. All experiments were
done with the linear quadratic cost weighting matrices set
to Qk = diag([q1, q2, . . . , q10]) where q1 = q3 = 10−5,



while the value of the remaining elements along the diag-
onal are equal to 10−3, and Rk = diag([10, 10, 1]). The
process and measurement noise covariance matrices set to
Vk = diag([v1, v2, . . . , v10]) where v1 = v2 = v3 = v4 = 1,
v5 = v7 = v9 = 5, v6 = v8 = v10 = 2 and Wk =
diag([500, 500, 1]) respectively. The control inputs are limited
to |uφ| ≤ 0.1rads, |uθ| ≤ 0.1rads and |uψ̇| ≤ 2rads/s. The
initial error covariance matrix were set to P0 = 4I while the
initial state vector were set to x0 = [0 0 0 0 0 0 3 0 3 0]T .
Although the initial position of both x and y is at 3, due to the
uncontrolled dynamics of the quadrotor for a couple of seconds
at the beginning of the experiments, it slightly diverges from
the initial position as shown in Fig.4 and Fig.5.

Before implementing the estimation and control algorithms,
the coefficients of the dynamic model are needed to be
identified as mentioned in Section IV-C. For the inputs of
the N1 flight controller to be identified, we use square wave
signals as they can describe sufficiently the behavior of first
and second order systems. The sampling frequency of the
signals is at 100Hz which corresponds to the rate that the
IMU topic of the Onboard-SDK ROS node is published. The
identified coefficients are presented in Table I.

roll (φ) pitch (θ) yaw rate (ψ̇)
β0,φ = 37.70 β0,θ = 36.14 β0,ψ = 2.339
α0,φ = 40.00 α0,θ = 38.24 α0,ψ = 2.338
α1,φ = 6.90 α1,θ = 6.51

TABLE I: Dynamic model coefficients.

Fig.4 shows results using both estimators with the measure-
ments (y) to be filtered by an average median filter. Although
this filter removes the outliers from Pozyx measurements by
filtering the last 5 measurements, it induces delays to the
measurements, due to computation time, that are then fed
through the estimators. Fig.5 shows results of both estimators
without any pre-filtering on the measurements. Note that,
in the latter case, if the positioning system is not able to
calculate the quadrotor’s position due to insufficient number
of anchors or increased computation time, then the published
measurements will be 0. This induces impulsive shots on
the measurements as shown in Fig.5 which pass through the
estimators. In both cases, we disturb the measurements by
covering one of the anchors around time 27s.

As it can be seen from both Fig.4 and Fig.5, both estimators
track the reference signal even though there is a disturbance
over the position measurements. In Fig.4 the overshoot is
induced as a result of the average median filtering of wrong
measurements from the Pozyx positioning system as there
are not enough sensors to compute the actual position of the
quadrotor in space. The MCC-KF performs better in estimating
the states than the KF, as it uses correntropy measure to
deal with non-Gaussian measurement noise. In Fig.5, the
Pozyx positioning system does not pre-filter the computed
measurements taken from the sensors, and thus impulsive shots
of noise are fed through the estimators. As it can be seen
from Fig.5, the KF is influenced by these impulsive shots of
noise and thus it passes wrong state estimation to the LQR

controller. In contrast, the MCC-KF detects the impulsive shots
by the correntropy measure, and it disregards these outliers.
This leads to a filtered state estimate signal that are fed through
the LQR to provide lower mean square error (mse) between
estimated and reference signal as shown in Table II.

Average median filter No filter
KF MCC-KF KF MCC-KF

(x, y)-plane (m) 0.066 0.057 0.107 0.048
mse decrease (%) 13.636 55.140

TABLE II: Mean squared error (mse).
Table II presents the mean squared error (mse) between the

reference point and the estimated position of the (x, y)-plane.
The mse with the average median pre-filtering when deploying
the KF is 0.066m, while for the MCC-KF 0.057m. Without
pre-filtering, for the KF and the MCC-KF, the mse is 0.107m
and 0.048m, respectively. These results show a decreased mse
by 13.636% when using the MCC-KF with the average median
pre-filtering and by 55.140% without pre-filtering, compared
to the KF.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we proposed and developed onboard state
estimation using MCC-KF to estimate the orientation and
horizontal translational states of a quadrotor using measure-
ments from IMU and wireless UWB positioning sensors. The
estimated states are fed through an LQR controller which
stabilizes the horizontal translational dynamics even when
the measurements are driven with non-Gaussian noise and
NLOS conditions. Finally, we compared the MCC-KF with
the traditional KF, and we showed that MCC-KF outperforms
the use of KF in the presence of shots of mixed noise and
communication delays.

A significant extension of this work would be to design
robust estimators from IMU, UWB and vision measurements
to steer robust controllers for fully autonomous and high-
precision flights. Based on these setup, different missions such
as rectangular and spiral path tracking, but also different con-
figurations of the UWB wireless network could be propitious
to study the influence of communication on the estimation and
control.
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