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ViTa-SLAM: A Bio-inspired Visuo-Tactile SLAM for Navigation while
Interacting with Aliased Environments

Oliver Struckmeier∗, Kshitij Tiwari∗, Mohammed Salman, Martin J. Pearson, and Ville Kyrki

Abstract— RatSLAM is a rat hippocampus-inspired visual
Simultaneous Localization and Mapping (SLAM) framework
capable of generating semi-metric topological representations
of indoor and outdoor environments. Whisker-RatSLAM is a
6D extension of the RatSLAM and primarily focuses on object
recognition by generating point clouds of objects based on
tactile information from an array of biomimetic whiskers. This
paper introduces a novel extension to both former works that
is referred to as ViTa-SLAM that harnesses both vision and
tactile information for performing SLAM. This not only allows
the robot to perform natural interactions with the environment
whilst navigating, as is normally seen in nature, but also
provides a mechanism to fuse non-unique tactile and unique
visual data. Compared to the former works, our approach can
handle ambiguous scenes in which one sensor alone is not
capable of identifying false-positive loop-closures.

I. INTRODUCTION

Robots are often equipped with off-the-shelf sensors like
cameras which are used for navigation, however, vision is
sensitive to extremes in lighting conditions such as shadows
or unpredictable changes in intensity as shown in Fig. 1a.
Whilst other on-board sensors like laser range finders can
be used in such situations they too are impaired by reflec-
tive and absorbing surfaces. Similarly, sensory systems as
they occur in nature are subject to impairments, e.g., a rat
moving through a maze in ill-lit conditions as illustrated in
Fig. 1b. However, through the process of evolution nature has
equipped animals to gracefully accommodate such scenarios.
Given the coarse vision and challenges of a rodent’s natural
environment, they are known to rely on tactile feedback
derived form whiskers aside from vision to decipher their
own location. Considering the example depicted in Fig. 1b,
a rat navigates a maze where in certain locations visual
or tactile information is ambiguous but combining tactile
and visual information can help to discern similar locations.
Conventional robots lack such a robust capability to interact
with their environment through contact. Thus, biomimetic
robots are gaining traction [1] which has now made it
possible to harness visual and tactile sensory modalities for
informed decision making. However, it still remains unclear
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how to best process and combine information from disparate
sensory modalities to aid in spatial navigation.

(a) Sudden lighting changes.
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(b) Rat in visually ambiguous
maze.

Fig. 1: Multiple sensory modalities can help in situations in
which one sensor alone is not sufficient. For example, a sudden
flash of sunlight can blind a drone’s camera in flight making
visual navigation impossible. A rat navigating through a maze sees
the same visual scene in multiple locations (marked as 1, 2, 3).
Corridors and corners in the maze can look the same, especially
considering the poor acuity of rodent vision. The blue polygons
represent indicative fields of view to highlight this ambiguity. Tactile
sensing can help the rat to distinguish ambiguous scenes in these
situations.

Previous works on visuo-tactile sensor fusion like [2],
[3] usually combine sensory modalities of varying sensing
ranges. The key requirement of these methods was the need
to have a redundant field-of-view. Other works in this domain
like [4]–[6] have mainly focused on creating dense haptic
object/scene maps. Whilst these methods allow for environ-
mental interactions, they are primarily designed for tactile
object exploration and grasping. Although, tactile sensing
is increasingly being used in these domains, it remains yet
to be applied for performing Simultaneous Localization and
Mapping (SLAM).

In the context of SLAM, previous works have demon-
strated the strengths of a bio-inspired SLAM system and
shown its application using single-sensory modalities such
as either vision [7], sonar [8] or WiFi [9]. However, such
methods rely on the uniqueness of the data and are thus
susceptible to false-positive place recognition. This problem
was previously addressed by fusing information from an
array of active sensors each providing rich information [10].
Despite the robustness to illumination changes, this method
is not capable of fusing non-unique sensory information.

To address the challenges of place recognition in aliased
environments using multiple sensors we present our novel
method of identifying and preventing false-positive place
recognition by combining long-range (unique) vision, with
short-range (non-unique) tactile information. Additionally,
the proposed method does not rely on sensory redundancy.
Our preliminary results presented in [11] showed that the



method presented herewith is capable of preventing false-
positive place recognition from a vision-only SLAM system.
Subsequently, a robust sensor fusion algorithm has been
developed to integrate information from unique and non-
unique sensory modalities such as cameras and whiskers,
respectively. Additionally, performance metrics are presented
herewith to compare and evaluate model performance against
vision or tactile only sensing.

II. BIO-INSPIRED SLAM

This work draws inspiration from two well-known bio-
inspired SLAM frameworks: RatSLAM, a rat hippocampal
model based visual SLAM architecture [7]; and Whisker-
RatSLAM, an extension of RatSLAM aimed primarily at
tactile object exploration [12]. This work relies on modified
variants of these models referred to as Visual-SLAM and
Tactile-SLAM. In this section these models are summarized
and the differences from the works in [7], [12] are shown.
Lastly, the proposed ViTa-SLAM model is introduced.

For each of the models, an overall system architecture is
provided using the following convention: nodes represented
by right isosceles triangles represent raw sensory data; nodes
represented by ellipse(s) represent pre-processing of sensory
data before they are converted to input features represented
by rounded boxes. The outputs from the models are rep-
resented by regular boxes, the pre-processing and feature
generation stages are highlighted in light blue and light red
blocks, respectively.

A. Visual-SLAM

When investigating the way rodents navigate from a bio-
inspired perspective, RatSLAM as introduced in [7], [10],
[13]–[15], has been proven to be a capable visual SLAM
method. RatSLAM is loosely based on the neural processes
underlying navigation in the rodent (primarily rat) brain,
more specifically the hippocampus. Fig. 2 shows an overview
of the visual-SLAM implementation used in this work.
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Fig. 2: The overview over the visual-SLAM implementation used in
this work.

During the preprocessing phase, the input of a camera
(visual data) is downsampled to reduce computational cost
and to simulate the coarse vision of rats. In this process the
incoming visual data is cropped to remove areas that do not
provide unique features, like for example the ground. The

cropped image is subsampled and converted to greyscale as
shown in Fig. 3.

Crop Subsample Greyscale Compare

Fig. 3: View template pre-processing

The preprocessed sensory information is now parsed
through 3 major components of the RatSLAM architecture:

• Pose Cells
• Local View Cells
• Experience Map

The pose cells [7] encode the robot’s current best pose
estimate. Pose cells are represented by a Continuous Attrac-
tor Network (CAN) [13, Ch. 4], the posecell network, to
resemble the grid cells as introduced in [16]. The grid cells
are neurons found in many mammals and are shown to be
used in navigation. In the 3D posecell network, the robot’s
pose estimate (x, y position and heading angle γ) is encoded
as a energy packet that is moved through energy injection
based on odometry and place recognition.

The local view (LV) cells are an expandable array of units
used to store the distinct visual scenes as a visual template
in the environment using a low resolution subsampled frame
of pixels. The visual template generated from the current
view is compared to all existing view templates by shifting
them relative to each other. If the current view is novel, a
local view cell is linked with the centroid of the dominant
activity package in the pose cells at the time when a scene
is observed. When a scene is seen again, the local view cell
injects activity into the pose cells.

The experience map is a semi-metric topological repre-
sentation of the robot’s path in the environment generated
by combining information from the pose cells and local
view cells into experiences. Each experience is related to
the pose cell and local view cell networks via the following
4-tuple: < x, y, γ, V > where x, y, γ represent the location
of the cell in the PC network while V corresponds to the
view associated with the LV cell that relates to the queried
experience [17].

Initially the robot relies on odometry which is subject to
an accumulating error. When loop closure events happen,
meaning a scene has been seen already, the pose estimate
based on the odometry is compared to the pose of the
experience and graph relaxation is applied [17].

The following differences to RatSLAM have been intro-
duced in the visual-SLAM implementation: first, we use
odometry from the robot instead of visual odometry as was
originally done to determine the translational and rotational
speeds of the robot. Second, the method of template match-
ing and generation has been modified to account for multiple
sensory modalities. Third, the posecell network (PC) is now



capable of handling a wider range of robot motion such as
moving sideways.

B. Tactile-SLAM

Whisker-RatSLAM is a 6D tactile SLAM algorithm in-
spired by RatSLAM. Instead of taking input from a camera,
it uses a tactile whisker-array mounted on a robot as its
only sensor [18], [19]. The whisker-array consists of 6 × 4
whiskers, each capable of measuring the point of whisker
contact in 3D space, and the 2D deflection force at their
base [20]. Whisker-RatSLAM [12] has been demonstrated
for mapping objects and localizing the whisker array rel-
ative to the surface of an object. Similar to RatSLAM,
Whisker-RatSLAM generates a semi-metric topological map,
the object exploration map, which contains complex 6DOF
experience nodes.

In [12], the authors proposed combining these object
exploration maps with simple 3DOF experience map gen-
erated using RatSLAM with the whisker-input resulting in
a topological terrain exploration map with two different
types of experience nodes. Fig. 4 shows an overview of the
Whisker-RatSLAM algorithm. The tactile data acquired by
whisking encompasses 3D contact point cloud of the object
(3D Cts.) and the deflection data (Defl.). The point cloud is
used to generate the Point Feature Histogram (PFH) while
the deflection data is used to generate Slope Distribution
Array (SDA). Both PFH and SDA are then fused to obtain a
6D Feature Cell (FC). Similar to the RatSLAM experience
map, the pose grid cells and FC that were active at a specific
6D pose of the whisker-array are associated with each other
and combined into experience nodes. The experience in
this case is defined as the 7-tuple: < x, y, z, α, β, γ, F >
where x, y, z, α, β, γ represents the 6D pose including euler
angles for orientation and F ← {PFH ∪ SDA} represents
the features associated with that experience. The experience
node form the object exploration map (Obj. Expl. Map). In
order to adapt the activation of the pose cell in accord with
the robot motion, the odometry information is also used in
the pose grid.

The tactile-SLAM implementation is based on Whisker-
RatSLAM, but instead of a 6D posecell network this work
uses the same 3D posecell network as the visual-SLAM
implementation to allow compatibility and to reduce com-
putation cost for navigation in 3D space. Furthermore, the
tactile-SLAM implementation used in this work does not use
feature cells, but instead combines the SDA and PFH data
into 3D tactile template that are used in a similar way as 3D
visual templates. Fig. 4 shows an overview of the tactile-
SLAM algorithm. The tactile data acquired by whisking
encompasses 3D contact point cloud of the object (3D Cts.)
and the deflection data (Defl.). The point cloud is used
to generate the Point Feature Histogram (PFH) while the
deflection data is used to generate Slope Distribution Array
(SDA). Both PFH and SDA are then fused to obtain a tactile
template (T). Similar to the RatSLAM experience map, the
pose grid cells and T that were active at a specific pose of the
whisker-array, are associated with each other and combined

into experience nodes. The experiences are, opposed to the
7-tuple used in Whisker-RatSLAM, defined as a 4-tuple: <
x, y, γ, T > and T ← {PFH ∪SDA} represents the tactile
template associated with that experience. The experience
nodes also form a semi-metric experience map similar to the
visual-SLAM method. Similar to the visual-SLAM method,
the robot’s odometry information is also used to move the
pose grid.

To generate tactile information using whiskers, one chal-
lenge is how to control the whisker-array in order to improve
the quality of the sensory information. Previous research on
rats [21] has identified a number of whisking strategies that
rodents use to potentially improve the sensory information
they obtain. One of these strategies is called Rapid Cessation
of Protraction (RCP) and refers to the rapid reduction in
motor drive applied to the whisker when it makes contact
with an object during the protraction phase of exploratory
whisking [22]. This effectively reduces the magnitude of
bend of the whisker upon contact which in artificial arrays,
such as shown in [23], improves the quality of sensory
information by constraining the range of sensory response
to a region best suited for signal processing. Furthermore,
damage to the whiskers from contact is significantly reduced.

3D Cts. PFH [24]
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Fig. 4: The overview over the tactile-SLAM implementation used
in this work.

As opposed to full 6D pose estimation in Whisker-
RatSLAM, the modified tactile-SLAM estimates only the
3D pose (x, y, γ) to maintain compatibility with the visual-
SLAM model. This also helps to reduce the computational
overhead of maintaining a 6D posecell network which is not
required for navigation on a mobile robot platform.

C. ViTa-SLAM

In this section, we present the details of our novel visuo-
tactile SLAM algorithm which we refer to as ViTa-SLAM.

The overall system architecture for ViTa-SLAM is shown
in Fig. 5: 3 kinds of raw sensory data: tactile, visual,
and odometry are now utilized simultaneously. Tactile and
visual data are converted into visuo-tactile templates (T,
V), respectively and hence, need to be pre-processed. A
3D pose cell network is maintained. The experience in this
approach is now defined as a 5-tuple: < x, y, γ, V, T >



where V is a visual template and T is a tactile template
at the 3D pose given by x, y and γ. The experience map in
this case will be referred to as vita map. In contrast with the
conventional experience map, the vita map’s nodes contain
visual and tactile data. The nodes are termed sparse node
if the tactile data is empty and dense node otherwise. As
an example, when the whiskers do not make contact, the
whisker tactile information is not providing any information
while the camera can still acquire novel scene information.
When the whiskers are whisking a wall/landmark, both the
camera and whiskers yield features that allow the creation
of informative dense nodes which greatly help visuo-tactile
SLAM. The properties of a vita-map node (dense or sparse)
are stored in the vita-map but not further used.

Tactile
data

. . . T

Visual
data

. . . V PC ViTa Map

Odometry

Pre-
processing
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Fig. 5: Overview of the Vita-SLAM architecture.

Algorithm 1 describes ViTa-SLAM in more detail. The
visual and tactile processes are running continuously in
parallel to the ViTa-SLAM node, as shown by the 			-symbol
and store the current visual and tactile templates Vcur and
Tcur. The visual process follows the same steps as shown
in Fig. 3. The resulting visual template is called Vcur.

Similarly, the Tactile process is pre-processing the in-
put data consisting of the xy-deflection angles and the
whisker contact points in world frame. In line 2, the point
feature histogram (PFH) is generated by creating a N -
dimensional histogram of the contact points with B bins
per dimension. The resulting histogram is then flattened
into a NB histogram. For each whisker, the slope of the
xy-deflection between the initial contact to the maximum
contact during one whisk cycle1 is computed. The result
is the slope distribution array (SDA). The current tactile
template containing PFH and SDA is saved as Tcur. The
two components can be extracted as [t]PFH and [t]SDA.

In the ViTa-SLAM process, if a whisk cycle has been
completed, the data stored in the visual and tactile processes,
Vcur and Tcur, is extracted. In line 4, Vcur and Tcur are
matched against all old visual and tactile templates and the
id with the closest match m and the corresponding error ε
are returned. Finally, the error ε is used to determine if a
novel template has been detected or a match with an old
template has occurred. In either case, energy is injected at
the template with match id m. After this process, the current
visual and tactile templates are appended to the memory

1One whisk cycle is defined as completing one full protraction/retraction
cycle.

and the template match ID is published for experience map
generation.

Algorithm 1 Pseudocode for ViTa-SLAM

1: Vold ← []; Told ← [] . Template Memory

Visual Process 			

Require: RGB camera image img
Output: Vcur

1: function VISUAL TEMPLATE(img)
2: img ←crop image(img)
3: img ←subsample(img)
4: img ← to greyscale(img)
5: Vcur ←normalize image(img)

Tactile Process 			

Require: Defl., Cts.
Output: Tcur

1: function TACTILE TEMPLATE(Defl., Cts.)
2: PFH ← multidim histogram(Cts.)
3: for each whisker w do
4: init ct← [Defl.w > 0][0]
5: max ct ← max(Defl.w)
6: SDAw ← slope(init ct, max ct)

7: Tcur ← PFH ∪ SDA
ViTa-SLAM 			

Require: Template match threshold τ , whisk
Output: m

1: procedure VITA-SLAM
2: Vcur, Tcur ← read data()
3: if whisk then
4: m, ε← COMP(Vcur, Vold, Tcur, Told)
5: if ε ≤ τ then
6: inject(match id)
7: else
8: m← create template()
9: inject(match id)

10: Vold ∪ Vcur . Append to memory
11: Told ∪ Tcur
12: publish(m) . Publish match ID

Template Matching

Require: Vcur, Tcur, Vold, Told
Output: m, ε

1: procedure COMP(Vcur, Vold, Tcur, Told)
2: ε← []
3: for ∀{v, t} ∈ {Vold, Told} do
4: Ve ← v diff(Vcur, v)
5: PFHe, SDAe ← t diff(Tcur, t)
6: α← 1

σV
;β ← 1

σPFH
; γ ← 1

σSDA

7: εcur ← error(α, Ve, β, PFHe, γ, SDAe)
8: ε ∪ εcur
9: ε,m← argmin(ε)

10: return ε,m



The template matching function computes ε by compar-
ing the current template to all visual and tactile templates in
the memory. The visual error Ve is computed as the pairwise
sum of absolute differences between Vcur and all visual
templates in the memory. For the tactile data similarly, the
PFH and SDA are treated separately and the respective errors
(PFHe and SDAe) are computed. A weighted sum of all
obtained error terms yields the error εcur between the current
visuo-tactile templates and the ones in the memory as:

εcur = α |Vcur − v|L1 + β |PFHcur − [t]PFH |L1

+ γ |SDAcur − [t]SDA|L1

where,

α =
1

σV

β =
1

σPFH

γ =
1

σSDA

(1)

In Eq. (1), | · |L1 represents the L1 norm between the
corresponding terms. α, β and γ are scaling factors for the
respective errors which represent the standard deviations of
the raw sensory data. Finally, the returned match ID (m), is
the ID of the combined template with the lowest ε.

III. EXPERIMENTAL SETUP

In this section, we describe the operational environment
and the robot platform that were used for empirical validation
of the proposed ViTa-SLAM algorithm.

A. Robot Platform

The robot platform used for this research is called the
WhiskEye (Fig. 6a) the design of which is based on a
previous whiskered robot [19]. WhiskEye is composed of a
Festo Robotino body, a 3 DoF neck, and a 3D printed head.
The robot is ROS compatible which allows for candidate
control architectures to be developed and deployed on either
the physical platform or the Gazebo simulation (shown in
Fig. 6b) of WhiskEye as used in this study. Mounted on
the head are the visual and tactile sensors. Two monocular
cameras with a resolution of 640× 480 pixels each provide
a stream of RGB images with 5 frames per second. An
array of artificial whiskers consisting of 24 macro-vibrissae
whiskers arranged into 4 rows of 6 whiskers provides tactile
information. Each whisker is equipped with a 2-axis hall
effect sensor to detect 2D deflections of the whisker shaft
measured at its base during, and is actuated using a small
BLDC motor to reproduce the active whisking behavior ob-
served in rodents. The tactile data from whiskers is extracted
during every whisk cycle, which takes 1 second to complete.

B. Operational Environment

As a proof of concept, the algorithm was primarily tested
in a simulated aliased environment to test visual-, tactile- and
ViTa-SLAM under the challenging conditions a rodent faces
in nature including: coarse vision, ill-lit tunnels, ambiguous
visual and tactile environments. Fig. 6c shows the used

simulated environment, a 6 × 6 m2 arena with 4 wall-
mounted visual and 3 tactile landmarks designed to be
qualitatively equivalent to the natural environment. In this
setting, the robot was made to revolve around the center of
the arena, with a radius of 1 m whilst facing outwards to the
walls.

IV. PERFORMANCE METRICS

The following metrics were used to evaluate the per-
formance of the proposed ViTa-SLAM against the Visual-
SLAM and Tactile-SLAM.

1) Localization Error Metric (LEM)

The localization error metric (LEM) measures the root
mean squared error (RMSE) between the true pose and the
estimated pose where the error is calculated separately for
position and orientation. Thus,

LEM(·) =

√√√√ 1

n

n∑
i=1

e2i ,

where,

ei = (̂·)− (·)

(2)

In Eq. (2), (̂·) refers to estimated position (orientation)
while (·) refers to true position (orientation).

2) Experience Metric (ExM)

The Experience metric (ExM) introduced in [23] provides
a performance measure for algorithms like RatSLAM that
produce semi-metric topological maps with loop closures.
The ExM is comprised of the average rate of re-localization
(ARR) and the average rate of correct re-localization
(ARCR). The ARR is defined as the ratio of re-localizations
to total number of experiences excluding the base set. The
base set is a set of initial experiences that has to be selected
to define the main loop closure and to provide a reference
for relocalization with future experiences. The ARCR is
defined as the ratio of correct re-localizations to the total
number of re-localizations. Higher values (close to 1) for
both factors indicate high certainty in the pose estimate. In
order to determine if a re-localization is correct or incorrect,
a threshold is used to compare the accuracy of the estimated
pose to the ground truth pose. An experience following an
incorrect re-localization is labeled as invalid until a correct
re-localization occurs. An experience following a correct re-
localization is labeled as valid.

3) Energy Metric (EnM)

In [26], energy metric was proposed as a generic metric
for evaluation of a variety of SLAM algorithms. The SLAM
performance was measured in terms of the energy required
to transform the SLAM trajectory to the true trajectory. Let
N represent the number of relations between experiences in
vita map and their corresponding sample points from the set
of collected pose data. Then, δi,j = xi 	 xj represents the
transformation from node xi to xj . If T (·) and R(·) represent



(a) Physical platform. (b) Simulated platform. (c) Operational environment.

Fig. 6: WhiskEye robot platform and its operational environment with the trajectory overlaid in magenta.

the translation and rotation operations, then the energy metric
(EnM) can be defined as:

EnM =
1

N

∑
i,j

T (δ̂i,j 	 δi,j)2 +R(δ̂i,j 	 δi,j)2 (3)

V. PERFORMANCE EVALUATION

In this section, we compare the performance of ViTa-
SLAM against Visual and Tactile SLAM approaches using
the metrics described above. The experience maps hence
obtained are shown in Fig. 7 while the empirical summary
of all the metrics is given in Table I.2

The Energy Metric (EnM) shows that ViTa-SLAM requires
less energy to transform the trajectory to the ground truth by
an order of magnitude. This confirms what can be seen from
Fig. 7, the experience maps of visual and tactile only SLAM
are highly skewed as the result of wrong loop closures.

To further evaluate the quality of loop closure detection
we use the Experience Metric (ExM) with the thresholds
for position and angular accuracy set to 0.08 m and 4.6◦

with the base set defined as the experiences generated during
the first full rotation. The ARR and ARCR for ViTa-SLAM
show that ViTa-SLAM is able to re-localize more often and
correctly in all cases while the other methods always fail.
The reason for this failure becomes evident in Fig. 8a and
8b. For the visual- and tactile-SLAM methods, false positive
re-localizations already occur in the base set as a result of
the aliased environment. As opposed to this, ViTa-SLAM
successfully completes one rotation and correctly closes the
loop.

The LEM further confirms these findings as the mean pose
estimation accuracy of ViTa-SLAM is clearly lower than the
state-of-the-art methods.

TABLE I: Performance Evaluation for RatSLAM, Whisker-
RatSLAM, and ViTa-SLAM

EnM ExM LEMMethod ARR ARCR pos (m) ori (rad)
Visual-SLAM 4.4024 0.121 0.0 0.9168± 0.6776 1.8872± 8.4155
Tactile-SLAM 3.8129 0.4643 0.0 1.1739± 1.2901 1.5604± 3.0061
ViTa-SLAM 0.4311 0.7778 1.0 0.1445± 0.0474 0.6404± 3.8371

2Video demonstration available here.

VI. CONCLUSION AND FUTURE WORKS

This work demonstrated a novel bio-inspired multi-
sensory SLAM mechanism for a robot exploring and inter-
acting with an environment that presents ambiguous cues.
While previous attempts had been made to propose bio-
inspired multi-sensory fusion, no prior research allowed for
either environmental interactions through contact or fusion
of unique and non-unique sensory information. To this
end, ViTa-SLAM was presented which utilizes long-range
visual and short-range whisker (tactile) sensory information
for efficient bio-inspired SLAM. When comparing against
earlier approaches that use only vision like RatSLAM or
only tactile information like the Whisker-RatSLAM, it was
shown that visuo-tactile sensor fusion can handle ambiguities
that would otherwise lead to false positive loop-closure
detection. However, similar to the previous methods, ViTa-
SLAM depends on hand-crafted features such as intensity
profiles, point feature histogram and slope distribution array.

Therefore, we plan to improve the generalizability of
ViTa-SLAM by applying predictive coding to replace the
hand-crafted features with learned features. We also plan to
improve the robustness and acuity of the whisking behaviour
whilst incorporating spatial attention mechanisms as is seen
in rats [27]. Additionally, active spatial exploration strategies
will be explored to improve the accuracy of localization and
speed of mapping.
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Fig. 7: Experience Map from various approaches.
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