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ABSTRACT

We present a novel open-source Python software package, bfieldtools, for magneto-quasistatic calculations using current densities on sur-
faces of arbitrary shape. The core functionality of the software relies on a stream-function representation of surface-current density and its
discretization on a triangle mesh. Although this stream-function technique is well known in certain fields, to date, the related software
implementations have not been published or have been limited to specific applications. With bfieldtools, we aimed to produce a general,
easy-to-use, and well-documented open-source software. The software package is written purely in Python; instead of explicitly using lower-
level languages, we address computational bottlenecks through extensive vectorization and use of the NumPy library. The package enables
easy deployment, rapid code development, and facilitates application of the software to practical problems. In this paper, we describe the
software package and give an extensive demonstration of its use with an emphasis on one of its main applications—coil design.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0016087

I. INTRODUCTION

Within many fields of engineering and science, there is a need
for modeling the relationship between magnetic fields and surface
currents in complex geometries. For example, to model eddy cur-
rents in conducting sheets, one needs to calculate the coupling
between the external field and the currents as well as the inductive
effects of the currents within the conductor.1,2 Such modeling is
also useful in computing the magnetic noise arising from thermal
fluctuations3–5 and designing surface-current patterns that generate
a desired magnetic field. Finally, through such field calculations,
surface currents can be used as equivalent sources in reconstruction
and interpolation of magnetic fields, e.g., in geo-6,7 and
biomagnetism.8

A current density is often represented using a set of basis
functions. For currents on simple domains (such as planes,
cylinders, toroids, or spheres), basis functions can be formed
analytically.3,9–16 Pissanetzky17 introduced a general stream-
function representation of the surface-current density on arbitrary
surfaces, which discretizes the current on triangle surface meshes in
a manner similar to finite-element and boundary-element methods
(FEM and BEM, respectively).

Within the field of magnetic resonance imaging (MRI),
triangle mesh-based stream-function methods have been applied to
the magnetic field modeling and coil design since the early
1990s.1,17–20 Similar methods have also been used in plasma
physics.21 More recently, the same principles have been used in the
design of coils for transcranial magnetic stimulation (TMS)22,23 as
well as magnetic nanoparticle imaging.24

Still, these coil-design techniques and surface-current models
have most often been applied to simple geometries and their imple-
mentations have not been available for wider audiences. While the
basic equations or concepts may be well known, implementing,
testing, and validating such software requires considerable time and
effort, something that may not be available for all prospective users.

In this paper, we present a novel open-source Python software
package for magnetic field modeling and coil design, bfieldtools
(available at https://bfieldtools.github.io). This paper focuses on
describing the software package itself and demonstrates its usage
through several examples. While we give a brief overview of the
working principles behind the software in Sec. II, for a more
thorough treatment of the underlying physics and computational
aspects, refer to Part I.25

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 063905 (2020); doi: 10.1063/5.0016087 128, 063905-1

© Author(s) 2020

https://doi.org/10.1063/5.0016087
https://doi.org/10.1063/5.0016087
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0016087
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0016087&domain=pdf&date_stamp=2020-08-12
http://orcid.org/0000-0002-5331-2521
http://orcid.org/0000-0003-3818-8347
http://orcid.org/0000-0001-6034-4604
http://orcid.org/0000-0003-1792-2215
http://orcid.org/0000-0002-3340-2618
http://orcid.org/0000-0002-0130-0801
mailto:rasmus.zetter@aalto.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0016087
https://bfieldtools.github.io
https://bfieldtools.github.io
https://aip.scitation.org/journal/jap


II. COMPUTATIONS USING THE DISCRETE STREAM
FUNCTION

bfieldtools uses the scalar stream-function representation of a
surface current density,1,17 which is discretized as a piecewise linear
function onto a triangle mesh. Compared to analytical methods
that require certain symmetries for the source-current distributions,
the use of triangle meshes as source domains provides the user
with considerable geometrical freedom.

The triangle mesh discretization is based on approximating the
stream functions linearly on the face of each triangle as in finite-
element methods (FEMs) and illustrated in Fig. 1. A piecewise linear
stream function is defined on the surface using so-called hat func-
tions, which are defined as having the value one at a single vertex
and falling linearly to zero at the edges of the triangles neighboring
the vertex. The stream function ψ can then be represented as a
linear combination of the hat functions hi with weights si,

ψ(r) ¼
X
i

sihi(r): (1)

The stream function weights si can be collected in a column vector
s [ RNv�1. All operations in bfieldtools involving the stream function
are linear and can thus be represented as matrices operating on s. For
convenience, we will refer to s as the stream function from here on.

The surface-current density is obtained as the rotated gradi-
ent25 of the piecewise linear stream function, which makes it

constant on each triangle face. Thus, we can express the current
density j [ RNf�3 on the faces of the mesh as

j[i, j] ¼
XNv

k

G?[i, j, k]s[k], (2)

where G? [ RNf�3�Nv is the rotated gradient operator, which maps
the scalar stream function defined on the Nv mesh vertices to a
3-vector defined on the Nf mesh faces. In Eq. (2), brackets are used
to index individual elements of the operator. In practice, we repre-
sent the operators using multidimensional NumPy ndarrays, which
are treated as a stack of 2D matrices and with matrix multiplication
applied with respect to their last two dimensions. Using ndarrays,
Eq. (2) can be written in shorthand notation as

j ¼ G?s: (3)

In this paper, we use bold lower- and upper-case symbols, e.g., r
and R, to refer to column vectors and matrices, respectively.

In the stream-function representation of surface-current
density, the magnetic field and other related quantities (such as the
magnetic potentials) at given points are linear functions of the
stream function. For example, knowing the coupling C~B [
RNp�3�Nv between the stream-function values s [ RNv�1 defined at
the Nv vertices of the mesh and the magnetic field B [ RNp�3 at
the Np field evaluation points r [ RNp�3, the magnetic field at r is
computed as

B ¼ C~Bs: (4)

Quantities related to energy can be obtained with quadratic
expressions of the stream function. Using the inductance matrix M
(for definitions, see Part I25), the quadratic expression s`Ms=2 is
the inductive field energy of the surface-current density. With the
resistance matrix R, the quadratic expression s`Rs gives the Ohmic
(heating) power of the surface current.

A. Stream-function optimization

When designing surface coils in the stream-function frame-
work, one must find such an s that fulfills the given requirements.
When requiring minimal power or energy, the problem can be for-
mulated as a convex optimization task which has a unique solution.
Other requirements for s can be included as inequality or equality
constraints [e.g., one can constrain the magnetic field using
Eq. (4)], thus maintaining the convexity when the constraint equa-
tions are linear. A solution can be found as long as the set of con-
straints defines a non-empty set of candidate solutions. The coil
design is discussed in more detail in Sec. IV.

B. Representations of fields and currents

In bfieldtools, the most flexible choice of basis for the stream
function on a triangle mesh is arguably the direct use of the hat
function basis, in which the surface current around each mesh
vertex is described independently. Alternatively, one can apply the
eigenfunctions of the surface Laplacian,26,27 which we call surface

FIG. 1. An example stream function (red–blue colormap) and its rotated gradi-
ent, i.e., the surface current density (arrows; white–green colormap) on a
surface mesh with a hole in it. The surface normal is oriented up toward the
reader. The white–green colormap and the size of the arrows indicate the mag-
nitude of the current density. The stream function colormap is linear and zero-
centered. Red corresponds to negative and blue to positive values.
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harmonics (SUH; Fig. 2; see Part I25). The surface harmonics can be
seen as a generalization of the more well-known spatial-frequency
representations: on a sphere, the surface harmonics are essentially the
spherical harmonics, and on a 2D plane, they correspond to the 2D
Fourier series.26 The series can represent smoothly varying functions
with a fairly small number of components, allowing the series to be
truncated at a low order. For example, a stream function defined by
the values on the 2000 vertices of a mesh might be expressed to a suf-
ficient accuracy by 100 coefficients of the SUH series. Due to this
compression, one can increase the mesh resolution without increasing
the number of degrees of freedom and the computational cost, e.g., in
optimization tasks. Truncating the SUH series also acts as an intuitive
way to limit the maximum spatial frequency of the stream function
and thereby in effect also its spatial gradient.

The surface harmonics are computed numerically using the
generalized eigenvalue equation of the discretized surface-Laplacian
operator L,26,27

�LV ¼ NVK, (5)

where N is a mass matrix taking into account the piecewise linear
discretization of the mesh and K ¼ diag(k21, . . . , k

2
Nh
) contains the

eigenvalues corresponding to the squared spatial frequencies of the

Nh � Nv surface harmonics, which are given by the columns of the
basis matrix V [ RNv�Nh .

The SUH representation a of a stream function s can be
obtained using the basis matrix V as s ¼ Va. Correspondingly, the
magnetic field [Eq. (4)] can be computed directly from a,

B ¼ C~Bs ¼ C~BVa: (6)

Thus, the SUH coefficients a can be used to specify any field that can
be produced by a surface current on the corresponding surface mesh.

Another way to represent the magnetic field is the spherical
multipole series.8 In this representation, the coefficients αlm and
βlm of the series can be used to specify the field in a source-free
volume. The coefficients can be computed directly from the stream
function with a linear mapping25

α ¼ Cαs,
β ¼ Cβs,

(7)

where Cα and Cβ are the coupling of the stream function to the
coefficient vectors α and β, respectively, containing the multipole
coefficients indexed linearly with increasing l and m up to a prede-
fined cutoff. As in Eq. (6), these coefficients can also be linearly

FIG. 2. The first 15 surface harmonics of a triangle mesh representing a curved square with a hole. The index and thus spatial frequency increases from left to right, row
by row. The tangential derivative is set to zero at the hole and outer boundaries. The mesh discretization is shown in the magnified inset on the right. The colormap is
linear and zero-centered. Red corresponds to negative and blue to positive values.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 063905 (2020); doi: 10.1063/5.0016087 128, 063905-3

© Author(s) 2020

https://aip.scitation.org/journal/jap


mapped to the magnetic field as

B ¼ C~Bα
α þ C~Bβ

β, (8)

where C~Bα
and C~Bβ

are the magnetic field coupling matrices repre-
senting spherical harmonic field components at the field evaluation
points. This representation of the magnetic field is very compact
for typical field profiles such as homogeneous or elementary gradi-
ent fields (which can be expressed with a single multipole coeffi-
cient) and can readily be applied, e.g., in the coil design. To use the
multipole series, the origin of the sphere used in the expansion has
to be specified.

The SUH and multipole series can both provide a compact
representation of the field. However, as discussed in Part I,25 they
have different convergence properties. The SUH and multipole
coefficients can be fit to data, after which the estimated coefficients
can be used to reconstruct and interpolate the magnetic field in
source-free space. In bfieldtools, we call the squared coefficients
(both SUH and multipole) the spectrum of the magnetic field.

C. Boundary conditions

For the stream function to represent a divergence-free surface
current (without current flowing in or out of the mesh), the deriva-
tive of the stream function along the boundaries of the mesh must
be zero. In other words, the stream function must be constant on
the boundary. It is typically convenient to set its value on the outer
boundary of the mesh to zero. When the mesh has inner boundar-
ies, the stream function value for the vertices on each boundary
should be equal (but not necessarily zero). To enforce this, the hat
functions along an inner boundary are combined into a single basis
function, the value of which is constant along the boundary.

D. Eddy currents

There are many ways to control eddy-current-induced fields
in a region of interest when quickly switching the applied magnetic
field.1,2,16 Here, we present a way to compute the secondary field
caused by eddy currents induced in some nearby conductor due to
a primary field generated by a current in a surface coil. For an ide-
alized case where the current waveform is a (Heaviside) step func-
tion, the instantaneous induced magnetic field ~B2 caused by the
eddy currents within a region of interest at time point t is28

B2(t) ¼ �C~B2
Ue�DtU�1(M12M

�1
2 )

`
s1, (9)

where C~B2
is the magnetic field coupling matrix of the conductive

object to the region of interest, M12 is the mutual inductance
matrix between the coil mesh (subscript index 1) and the conduc-
tor mesh (subscript index 2), and M2 is the self-inductance matrix
of the conductor mesh. Matrices U and D ¼ diag(1=τ1, . . . , 1=τN )
are determined by the generalized eigenvalue problem

R2U ¼ M2UD, (10)

where R2 is the resistance matrix of the conductor and τ1, . . . , τN
are the time constants of the N different eddy current modes corre-
sponding to the columns of U.

E. Magnetic shielding

High-permeability shields are often used to minimize the
effect of ambient magnetic fields on sensitive systems or experi-
ments. However, the shield also distorts any magnetic fields gener-
ated inside the shield. When the relative permeability of the shield
is high, the effect of the shield can be approximated by the boun-
dary condition that the magnetic scalar potential on the inner
shield surface is constant.25 We enforce this boundary condition by
setting the constant to zero and by introducing an equivalent
stream function s2 to the shield surface such that

CU1 s1 ¼ �CU2 s2, (11)

where CU1 and CU2 are the magnetic scalar potential coupling
matrices of the coil and the shield for collocation points slightly
inside the mesh. With the equipotential boundary condition, the
magnetic field expression takes the form

B ¼ C~B1
s1 þ C~B2

s2 ¼ (C~B1
� C~B2

C�1
U2
CU1 )s1, (12)

which allows for the effect of magnetic shielding to be computed
for any surface-current density within the shield.

III. SOFTWARE OVERVIEW

bfieldtools is implemented purely in Python and leverages a
large number of packages and libraries within the open-source
scientific Python community. We use the trimesh package29 for all
mesh-related functionality. For numerical operations and linear
algebra, we use NumPy30 and SciPy.31,32 Visualizations are gener-
ated using matplotlib33 and mayavi34 in two and three dimensions,
respectively. The quadpy package35 is used for quadrature scheme
generation for numerical integration, and the CVXPY package36,37

is employed in coil optimization.
bfieldtools has extensive online documentation, generated

using Sphinx (https://www.sphinx-doc.org). The documentation
includes an API reference, a large number of application examples
acting as tutorials as well as links to the background literature.

A. Software components

bfieldtools is constructed using separate submodules that form
a hierarchy ranging from low-level utility functions to high-level
user-facing wrappers and abstractions. This modularity enables
easy integration of new functionality into the software. A graphical
overview of the relations of the submodules in the package, and the
general software architecture is shown in Fig. 3.

A large portion of the user-facing functionality of bfieldtools
is centered around the use of MeshConductor objects that wrap a
Trimesh triangle mesh object. The MeshConductor wrapper adds
properties and methods such as the surface stream function, induc-
tance, and resistance matrices, as well as magnetic field and poten-
tial coupling matrices. Since the stream function may be
represented in several different bases, the MeshConductor class is
implemented such that it can internally handle basis changes, e.g.,
using the surface harmonics functionality implemented in the suh-
tools submodule. The MeshConductor class is also utilized by
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“add-on” submodules for specific applications, such as the coil
optimization submodule and the thermal noise computation sub-
module described in more detail by Iivanainen et al.5 The
LineConductor class can be used for field calculations associated
with polyline current segments similar to how MeshConductor is
used for surface-current densities.

The computational core of bfieldtools is formed by the inte-
gral submodule. Using the analytical integral equations imple-
mented in this submodule, most physical quantities used in the
software package can be computed without numerical quadratures,
yielding better accuracy in the vicinity of the mesh. In typical use
cases, these functions are not directly accessed. Instead, they are
used as building blocks for the mesh operators in other submod-
ules, such as the mesh magnetics and mesh impedance submod-
ules. For an in-depth description of the analytical integrals, see
Part I25 Another essential part of the software is the mesh calculus
submodule, which implements calculus functions such as the gradi-
ent and surface-Laplacian for triangle meshes.

IV. COIL DESIGN

One of the main applications of the bieldtools software
package is the coil design. There are many applications in which
one needs to design a coil fulfilling a set of requirements, e.g., on
the field profile or homogeneity, the mechanical dimensions of the
coil, stray field, coil heating, and manufacturability. As discussed in
Sec. II A, the coils can be designed by optimizing a stream function
such that a quadratic expression is minimized while some addi-
tional linear constraint(s) are met.

A. Optimization methods

In bfieldtools, the main optimization method for the coil
design is constrained quadratic optimization using a numerical iter-
ative solver. The use of a numerical solver allows the use of linear
inequality constraints (such as allowing for a specific tolerance in,
e.g., field profile). In bfieldtools, we employ the CVXPY convex
optimization modeling language for accessible and easily applied
optimization. When using CVXPY for optimizing the stream func-
tion s, the problem statement is of the form

minimize 1
2 s

`Psþ q`s
subject to Gs � h,

As ¼ b,
(13)

where P is the quadratic objective matrix (e.g., inductance M or
resistance R), q defines an optional linear penalty term, and the
linear equality and inequality constraints are applied as needed.
Multiple simultaneous constraints of the same type can easily be
applied by stacking the constraint matrices. Furthermore, due to
the flexibility of the CVXPY framework, one may also include addi-
tional constraints, such as constraining the p-norm (e.g., 1-norm or
1-norm, as done by Poole and Jon Shah38) of a linear expression
for s kDs� tkp � e, or by constraining the stream-function value
of specific vertices to be equal: si ¼ sj.

An alternative approach17 is to formulate the problem as a
quadratic optimization without hard constraints, and instead use
trade-off parameters. In this form, an example problem is

FIG. 3. Submodule relations of bfieldtools software.
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formulated as

minimize
1
2
s`Psþ λkq� Cqsk2, (14)

where q determines the desired values of some quantity in some
number of points and Cq is the coupling matrix for that quantity
and those points. Finally, λ is a scalar trade-off parameter, weight-
ing the solution either toward minimizing the primary objective
function or a penalty function. This formulation has a closed-form
solution

s ¼ C`
q Cq þ 1

λ
P

� ��1

Cqq

¼ P�1C`
q CqP

�1C`
q þ λI

� ��1
q, (15)

which may be familiar as the Tikhonov-regularized least-squares
formula. In the general case, multiple quadratic penalty terms may
be applied, each with their own λi. In order to include linear equal-
ity constraints, one may, e.g., employ a Lagrange multiplier method
as done by Lemdiasov and Ludwig18 and Poole.19 However, while
having good performance in problems with straightforward con-
straints, this inversion-based approach cannot accommodate hard
inequality constraints.

B. Objective functions

In bfieldtools, two main options for the quadratic objective are
directly implemented. These are the minimization of the resistive
power or the magnetic energy. Minimizing the resistive power s`Rs
results in a maximally smoothly varying stream function, as well as
minimizing the resistive losses in the coil. This reduces the need for
cooling the coil when large currents are used. Minimizing the mag-
netic energy s`Ms=2 results in minimal inductance of the coil.
This reduces the voltage involved in fast ramping of the current in
the coil.

Functions for magnetic and resistive energy minimization typ-
ically result in fairly similar stream functions. The two functions
differ in that magnetic energy minimization allows for somewhat
more variation at higher spatial frequencies of the stream function.
These would be penalized more in resistive energy minimization.
One may also form the quadratic objective as a weighted combina-
tion of resistive power and magnetic energy. Finally, bfieldtools
allows for use of any other user-specified quadratic objective
function.

C. Constraints

Minimizing the quadratic objective without any penalty terms
or constraints would lead to a trivial zero-current, zero-field solu-
tion. Thus, one must specify additional constraints to determine
the final current pattern.

In the coil design, constraining the magnetic field within a
target region is the most typical constraint. In addition to specify-
ing a target field, one may also want to explicitly limit the stray
field outside the coil. Using the spherical harmonics representation
of the magnetic field as presented in Sec. II B, one can also place

constraints on α and β. Using a multipole-based constraint for the
magnetic field naturally satisfies Maxwell’s equations in a source-
free volume, whereas multiple user-specified point-based field con-
straints are not guaranteed to do so. One may also add other con-
straints, e.g., related to eddy currents (see Sec. II D) or to
high-permeability shielding (see Sec. II E).

The use of inequality constraints in the optimization, as is
possible when using an iterative solver, allows directly specifying
the desired properties of the coil. This may be more intuitive than
the use of trade-off/penalty parameters employed in the
least-squares formulation. The use of inequality constraints also
allows for wiggle room in the coil specification. This wiggle room
decreases the need for apodization,15,39 i.e., post-optimization
smoothing of the stream function. Apodization has been applied
due to high spatial-frequency oscillations or “ringing” in the stream
function, which may arise when a target-field equality constraint is
used, especially when minimizing the magnetic energy.

More sophisticated methods to limit high-frequency ringing
directly constrain the gradient of the stream function; the spatial
gradient of the stream function defines the surface-current density,
and by extension, the spacing of the discretized coil windings.
Constraining the maximum gradient affects the minimum spacing
of windings, which can also be useful with regard to manufactur-
ability. Limiting the maximum current density can also decrease
local heating issues in high-power applications. The minimax jjj
method presented by Poole et al.40,41 should be similar in effect to
constraining the stream-function gradient, but works somewhat dif-
ferently from an optimization viewpoint. An alternative way to
reduce the minimum spacing of windings is to use a truncated
SUH basis limited to low spatial frequencies.

D. Discretization to wire segments and manufacturing

The surface-current density is obtained from the optimized
stream function with Eq. (3). To extract the geometry of discrete
conductor loops, one can simply use any number of stream-
function isolines with equal spacing in terms of stream-function
value. The number of isolines, i.e., current loops can be freely
chosen to fit the application; more loops will naturally result in a
larger magnetic field per unit current and larger inductance but
will also better approximate the continuous surface current, thus
having a smaller discretization error. Finally, the independent
current loops must be connected in series, with special care taken
to ensure that the current direction corresponds to the continuous
current density. The manner in which the loops are connected
should depend on manufacturing method and scale. For example,
on a printed circuit board, the loops may be connected using vias
and multiple layers, while larger-scale coils may even use soldered
wire segments.

Manufacturability is a key issue for distributed winding coil
designs. As the winding patterns can be complex, sophisticated man-
ufacturing techniques may be needed to avoid errors in the geometry
that lead to decreased performance. The manufacturing techniques
applicable will depend on many factors such as the physical size of
the coil, the geometry, the current amplitude, manufacturing scale
(lab prototype or mass production), etc. Practical implementations
for very small scales include different MEMS manufacturing
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techniques42 as well as related lithography techniques. For small- to
medium-scale planar coils, printed circuit boards offer inexpensive,
highly accurate and consistent manufacturing at any production
volume. Using flexible printed circuit boards (PCBs), this capability
can be extended to other geometries, e.g., by wrapping the flexible
PCB around a cylinder.43 For larger or more complex geometries,
one may need to design a coil former onto which the conductor is
wrapped. The former can be produced e.g., using 3D-printing44 or
by machining.45 With so many factors at play, it is difficult to give a
definite answer regarding “engineering optimality;” these choices are
not trivial, and must be made on a case-by-case basis.

V. EXAMPLES

The online documentation of bfieldtools (available at https://
bfieldtools.github.io) contains several examples of applications,
with code and accompanying explanatory text and figures. In this
section, we discuss a number of selected examples in detail,
walking through some of the software workflow, design decisions,
and rationale. However, for brevity and to focus on the essentials,
we omit most imports as well as some repetitive or trivial steps.
Online examples are provided in full.

A. Biplanar coils with minimal stray field

In this example, we design a biplanar coil that produces a
homogeneous field within a spherical target region between the
two square surface coils. In addition, we explicitly minimize the
stray field on a spherical surface surrounding the coils. We start by
importing the mesh file into a MeshConductor object. In this
example, we use a very dense mesh, with 12 442 vertices and 24
304 faces. To speed up computation and limit the coil winding
density, we use a truncated SUH representation for the stream
function with Nh ¼ 100.

We omit code lines for the generation of target and stray field
points, and instead visualize the whole geometry in Fig. 4(a). The
target points are on a Cartesian grid within a sphere around the
center of the biplanar coil (diameter 0.2 times the square side
length), and the stray field points are on a spherical surface
surrounding the coils (radius twice the square side length).

After having generated the geometry, we set the field specifica-
tion at the defined target and stray points. In this case, we specify a
homogeneous field along the x axis (within the target volume). We
allow for ,0:5% deviation in all three Cartesian components of the
field at all target points. For all components of the stray field, we
allow for ,1% deviation from the target field amplitude. The
homogeneous target field amplitude is set to a numerical value of 1
for convenience. The absolute value does not matter and will be
scaled appropriately in the numerical solver. Having set the field
specifications, we can run the numerical solver to optimize the
stream function. We use the Ohmic power as the primary quadratic
penalty and apply linear inequality constraints on the magnetic
field at the target and stray field points.

FIG. 4. (a) Biplanar coil surface meshes, target points (in blue) and stray field points (in red). (b) Optimized stream function on one of the coil planes generating homoge-
neous magnetic field along the X axis. The colormap is linear and zero-centered. Red corresponds to negative and blue to positive values. (c) Discretized coil windings.
The color and arrows indicate the current direction.
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Having computed the optimized stream function [see Fig. 4(b)],
we can now convert the continuous stream function (current density)
into discrete current loops and plot the result [as seen in Fig. 4(c)].

B. Eddy current minimization

Here, we use a geometry with a cylindrical coil surface similar
to a conventional MRI bore, surrounded by a larger conducting
cylindrical RF shield (both cylinder meshes have 4 764 vertices and
9 368 faces). We will design a reference coil which generates a
homogeneous field along the X axis (perpendicular to the long axis
of the cylinder) within a spherical target volume. Furthermore, we
will compute the eddy currents produced in the RF shield when
switching the current in the coil. We also design another coil
whose excitation generates minimal eddy-current field transients in
the target volume. To this end, we add the expression in Eq. (9) as
a constraint to the coil optimization procedure. We specifically do
not use an outer set of coils for self-shielding in order to showcase

the eddy-current-induced field minimization procedure. An alter-
native self-shielded solution is demonstrated in Part I.25

We omit the preparation steps shown in the previous example
and instead present the geometry in Fig. 5. First, we compute the
eddy-current modes and time constants of the cylindrical shield.
As no current enters or leaves the shield, we set the stream function
to zero at the boundary. The mesh boundary vertices are then not
included in the generalized eigenvalue problem of Eq. (5) and the
entries in U corresponding to boundary vertices are fixed to zero
by setting the MeshConductor object basis to “inner” (meaning
inner vertices only). In this example, we only compute the 500
longest-lived eddy current modes, as the faster modes will have
negligible effects past 1 ms.

FIG. 5. Cylindrical coils that are designed (a) ignoring or (b) minimizing the transient field that is generated by eddy currents in a surrounding cylindrical conductor when
switching the current in the coil. Loop color and arrows indicate the direction of the current. (c) Mean transient field amplitude induced into the region of interest.
Amplitudes are expressed as a fraction of the homogeneous field generated by the coil. (d) Eddy-current patterns induced into the cylindrical conductor at the time points
indicated by vertical lines in C. The upper row corresponds to the coil in A, and the lower row to that in B.
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Knowing the eddy-current dynamics, we can now define the
coil-design specification and run the optimization procedure. In
the static case, we allow for ,0:5% field deviation on all field com-
ponents from the target field at the target points. Additionally, we
limit all components of the eddy-current-induced transient field at
the target points at time points 1 ms, 3 ms and 5ms to ,5%, ,1%
and ,0:25% of the homogeneous field strength, respectively.

First, for the reference coil, we omit the eddy-current-related
parts of the coil specification. Then, for the second coil, we include
the eddy-current constraints. The resulting discretized windings for
the two coils are shown in Figs. 5(a) and 5(b). In Fig. 5(c), it is
evident how much the eddy currents are suppressed for the second
coil. The eddy-current field decays to below 1% of the static target
field in 2.6 ms, whereas for the reference coil this time is 16.7 ms.
Furthermore, Fig. 5(d) also shows the eddy-current pattern on the
shield surface at different time points. For the coil in Fig. 5(b), the
eddy currents initially take such a pattern that they do not induce
field in the target region. However, over time, the eddy-current
pattern spreads and eventually resembles that of the reference coil
in Fig. 5(a), as the longer-lived eddy-current modes also have lower
spatial frequencies.

C. Interactions with magnetic shielding

We consider the same square coil surfaces as in the first example,
except now within a closed cylindrical magnetic shield (2773 mesh
vertices and 5542 faces), see Fig. 6(a). To emphasize the field distor-
tion caused by the shield, we place the coils very close to the cylinder
end. Again, we omit the preparations and only present the steps that
lead to a coil in which the effect of the magnetic shielding is prospec-
tively taken into account. We start by defining collocation points
slightly inside the shield surface. We continue by solving Eq. (12),
corresponding to the equipotential boundary condition at the shield
(or at the collocation points). We include the solved field distortion in
the coupling in the target field coupling matrix. In the optimization,
we apply a linear inequality constraint for the target field.

The resulting coil windings are shown in Fig. 6(c) together
with a reference coil design, for which the effect of the high-
permeability shield was neglected [Fig. 6(b)]. The field distribution
within the target region is shown in Fig. 6(d).

D. Magnetic field interpolation using equivalent
surface currents

In this example, we represent a measured magnetic field using an
equivalent surface current density. We use the equivalent current
density to inter- and extrapolate the magnetic field in source-free
space. Specifically, we apply the equivalent surface current representa-
tion to magnetoencephalography (MEG), in which the magnetic field
produced by neural currents in the brain is measured using sensors
positioned around the head. We use MEG data from the sample
dataset of the MNE-Python software.46 The MEG data consist of mea-
surements from 102 SQUID magnetometers sampled at 1 kHz during
the presentation of repeated auditory beeps to the subject being mea-
sured. The magnetometers are oriented such that they measure the
magnetic field component roughly normal to the subject’s scalp
surface [see Fig. 7(a)].

We use the subject’s scalp surface (extracted from MR
images) as the domain for the equivalent currents. Note that any
surface that confines the “real” currents generating the measured
field would work. We use a regularized least-squares method
to estimate the equivalent current distribution (expressed using
the stream function s) that attempts to reconstruct the measure-
ments y

minimize E(s) ¼ s`(� L)sþ λkCBns� yk2

¼ C`
BnCBn þ

1
λ
L

� ��1

C`
Bn
y: (16)

Here, the first term measures the spatial variability of the stream
function with �L being the negative Laplacian operator, and the
second term represents the residual between the measurements
and the surface-current reconstruction. In the second term, CBn is
a coupling matrix that maps the stream function s to the mea-
sured magnetic field component Bn at the sensor positions and λ
is a trade-off parameter to control the penalty on the residual in
the reconstruction of the measurements.
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To express the equivalent surface current in a compact manner,
we apply a truncated surface-harmonic basis. The number of compo-
nents is chosen such that it is large enough not to affect the result.
For regularization, we use λ ¼ 0:1�max(L)=σmax, where σmax is
the maximum eigenvalue of the matrix product CBnC

`
Bn
.

Finally, using the estimated equivalent current density, we can
compute the field at any point outside the scalp surface. The esti-
mated surface stream function and its magnetic field reconstruction
surrounding the head during the first peak of the auditory evoked
response (t ¼ 0:080–0:090ms) is shown in Fig. 7(a). The use of

regularization allows us to balance fitting the measurement data
with fulfilling the prior of a maximally smoothly varying current
density. Higher regularization values will smooth out the higher
spatial frequencies. Assuming that the sensor noise is uncorrelated
across sensors, this will reject sensor noise. The used value for λ
resulted in �2% relative reconstruction error RE ¼ CBn s�yj j

yj j .

E. Field interpolation using spherical harmonics

In this example, we use the same data as in the previous
example, but now we fit the data using spherical multipole compo-
nents. We do not utilize the scalp surface but instead construct a
multipole series with the origin at the approximate center of the
sensor array. The inner expansion of the multipole series is
bounded by a sphere that fits between the scalp surface and the
sensor array. If all measurements are outside the inner expansion
volume, and all active sources are within the volume, the
α-coefficients will determine the entire field.8

We compute the fit for the inner expansion coefficients α
using the same regularized least-squares method as in the previous
example [Eq. (16)]. We replace the scalp surface Laplacian by
the surface Laplacian on a sphere. The regularization is set to
λ ¼ 10�6 σmax, where σmax is the maximum eigenvalue of the
matrix product CBα ,nC

`
Bα ,n. This regularization value led to �3%

relative reconstruction error RE ¼ CBα ,nα�yj j
yj j .

FIG. 6. (a) Biplanar coil within an ideal cylindrical ideal magnetic shield. (b) Coil designed to produce a homogeneous magnetic field along the axis of the cylinder, but
with the effect of the shield neglected. (c) Coil designed while prospectively taking the effect of the shield into account. (d) Component-wise field distributions of the coils
at the target points with and without taking the shield into account.
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Having computed α, we can now compute the magnetic field
at any point in the outer expansion volume. A comparison between
the magnetic field computed using the multipole series fit and the
surface harmonics fit (Sec. V D) at the sensor array surface can be
seen in Fig. 7(b). For comparison, the figure also shows a 2D inter-
polation of the sensor data using multiquadric radial-basis func-
tions, similar to the interpolation method used for visualizing
MEG data in the MNE-Python software package.46

VI. DISCUSSION

In this work, we have presented the features and different compo-
nents of the bfieldtools software. Furthermore, we have showcased its
usage by several examples, including code snippets and visualizations.

A. Software

Python has become a de facto standard language for scientific
software.32 We implemented bfieldtools in Python due to the rich

FIG. 7. (a) Equivalent surface current representation of an auditory evoked field measured with MEG. The stream function on the subject’s scalp surface (red–blue colors)
is shown in top and side views, while stream lines represent the magnetic field reconstruction. The MEG sensors are shown as gray discs. (b) Topographic magnetic field
map on the sensor array surface, flattened for visualization purposes. Shown is an interpolation of the measured field on the flattened 2D surface using radial-basis func-
tions (RBF; left) as well as the surface harmonics-based (SUH; middle) and the multipole series-based (SPH; right) reconstructions. The plots have identical color scales,
sensor positions are shown as black dots.
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open-source software ecosystem and large number of available
libraries. In addition, Python allows for easy deployment of the
software package across multiple platforms. Although the installa-
tion of the software depedencies is generally simple using official
package installers (e.g., pip, https://pip.pypa.io/en/stable/) for the
numerical solvers used in the coil optimization, the installation
may include more complicated steps and vary across platforms.

We strive to keep the software workflow straightforward and
transparent by not hiding the NumPy arrays and other workings
behind unnecessary layers of abstraction. For typical use, the
MeshConductor class does include convenience functions and
wrappers that reduce the need for explicit vertex indexing, function
calls, and extraneous variables. However, we also expose all inter-
mediate and lower-level functions for advanced use and for, e.g.,
implementation of new functionality.

B. Numerical operations and discretization

While bfieldtools does not include a meshing tool to create tri-
angle surface meshes, most meshing tools used for finite-element
modeling (FEM) or other physics modeling applications should
produce meshes usable in bfieldtools. Typical FEM meshing rules
of thumb also apply: the triangles should have small aspect ratios
(preferably equilateral) and the mesh should have high enough res-
olution for the piecewise linear stream function to accurately repre-
sent the phenomena of interest. Narrow areas or areas close to
mesh boundaries should generally have higher resolution.

When using functions employing quadrature approximation
to compute, e.g., the magnetic field coupling matrix, the user is free
to choose the quadrature scheme. In typical use, we recommend
using a dense mesh with a low-order quadrature scheme, e.g., the
centroid scheme, rather than using a sparse mesh with a high-order
quadrature scheme. Quadrature schemes with points at the face
corners or edges should be avoided, as they may cause numerical
issues due to singularities of the integrands.

When using CVXPY for (quadratic) optimization, the numerical
solver backend can be chosen freely. Available solvers for quadratic
programming include, e.g., MOSEK,47 CVXOPT,48 and OSQP.49 The
examples in this work were run using MOSEK, which we have found
to provide robust performance. However, MOSEK is a commercial
product, and its use may thus be limited for some users, especially
non-academic ones.

The solvers employed by CVXPY typically include (strict)
feasibility checks in their optimization procedure. Additionally,
they may specifically report which constraints are infeasible. The
user thus gets immediate feedback on the physical feasibility of the
design and can immediately respond, e.g., by altering the coil speci-
fication or the geometry.

C. Performance

The examples in this paper were run on a regular workstation
computer (4-core Intel Xeon E3-1230V5, 16 GiB RAM) with fairly
dense meshes (2000–12 000 vertices). The computation time of
these examples was in the order of a one to a few minutes (biplanar
coil example: 1 min 5 s; eddy current example: 5 min 49 s; magnetic
shielding example: 6 min 43 s). Besides stream-function optimiza-
tion, the most time-consuming part is generally the inductance

matrix computation. For the self-inductance matrix, the computa-
tion time is roughly quadratic with respect to the number of mesh
vertices with the approximate relation t � 5� 10�6 � N2:06

v s
(1000 vertices: 7 s; 10 000 vertices: 868 s).

The use of surface harmonics speeds up many numerical opera-
tions such as the stream-function optimization. In the first example
of this paper, instead of using the vertex-wise stream function repre-
sentation with one degree of freedom for each of the 12 442mesh
vertices, we used a truncated SUH expansion with 100 degrees of
freedom, which took 0.35 s for optimization and 3.7 s for construct-
ing the SUH basis. By contrast, when optimizing vertex-wise, the
solver ran out of memory (16 GiB) after �30min. When using a
more reasonably decimated mesh with 3184 vertices and 6076 faces,
the vertex-wise stream-function optimization took 118 s.

D. Outlook and future developments

In addition to the physical quantities and couplings described
in Sec. II, there are other quantities for which linear mesh operators
have been described previously and which could also be imple-
mented in bfieldtools. These include, e.g., torque due to a large
(static) magnetic field,18 temperature,50 and the electric field in
volume conductors.22 These quantities are useful in specific applica-
tions and fields, e.g., torque is relevant in the MRI coil design, and
the electric field is especially important in the TMS coil design.

The development of bfieldtools is ongoing. As the software is
open source, we welcome users from the community to contribute
to the development. With contributions from different fields of
science and engineering, the scope of the software could be
widened to new areas and use-cases.

Planned future work includes the development of, e.g., dedi-
cated data structures for different types of sensors and sensor
arrays. We further strive to keep improving the software documen-
tation and ease of access. The scope of the software could be
readily extended to electric volume conductor problems in the
form of the boundary-element method (BEM), where the existing
integral implementations in bfieldtools can be applied.

VII. CONCLUSION

We presented bfieldtools, a novel open-source software package
for magnetic field modeling with surface currents. The backbone of
the software is the stream-function representation of surface current on
a triangle mesh. As a key feature, the software implements a flexible
coil-design method applicable for a wide range of fields within physics
and engineering. The release of bfieldtools as open source enables
access to stream-function-based physics modeling with minimal effort.
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