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ABSTRACT

Surface currents provide a general way to model magnetic fields in source-free volumes. To facilitate the use of surface currents in
magneto-quasistatic problems, we have implemented a set of computational tools in a Python package named bfieldtools. In this work, we
describe the physical and computational principles of this toolset. To be able to work with surface currents of the arbitrary shape, we
discretize the currents on triangle meshes using piecewise-linear stream functions. We apply analytical discretizations of integral equations
to obtain the magnetic field and potentials associated with the discrete stream function. In addition, we describe the computation of the
spherical multipole expansion and a novel surface-harmonic expansion for surface currents, both of which are useful for representing the
magnetic field in source-free volumes with a small number of parameters. Lastly, we share examples related to magnetic shielding and
the surface-coil design using the presented tools.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0016090

I. INTRODUCTION

Modeling magnetic phenomena with surface currents has
various applications in physics and engineering.1–5 One large field of
applications is the surface-coil design, where continuous surface
currents are used to design coil winding patterns. Such designs are
made in plasma physics6–8 magnetic resonance imaging
(MRI),1,2,9–12 transcranial magnetic stimulation (TMS),13,14 magnetic
particle imaging (MPI),15 and in zero-field magnetometry.16 Further
applications of the surface-coil design include, e.g., field control in
physics experiments17,18 and pickup coils of magnetic sensors.19,20

The methods used in the coil design are also involved in mod-
eling eddy current patterns induced in thin conductive sheets2,4,21

and field fluctuations due to thermal noise currents.3,22 In addition,
surface currents could be applied as equivalent models in magnetic
shielding with high-permeability materials.23,24 Modeling the mag-
netic field in free space using equivalent current densities on the
volume boundary could also have various other applications. This
method can be used directly for modeling the field of uniformly
magnetized bodies,25 or the Meissner effect in superconductors, but

it could also be used as an equivalent model when interpolating
magnetic-field data, e.g., in geomagnetism26 and biomagnetism.27,28

Additionally, such a field model could be applied, for example,
when modeling magnetic fields for interference rejection.29

Although surface currents are useful in modeling magnetic
problems, their application has been limited because of a lack of
general computational tools. Most studies have also been restricted
to simple geometries. To facilitate surface-current-based methods,
we introduce a novel Python software package bfieldtools (available
at https://bfieldtools.github.io). This package provides tools for
representing currents on arbitrarily shaped surfaces and calculating
the associated magnetic field and potentials. Furthermore, tools for
designing current patterns that generate desired magnetic fields are
included. The whole software package is described in two papers.
In this paper, we present physical and computational principles
of the software and applications that showcase the capability of
the presented tools. Part II30 describes the Python-based imple-
mentation in detail and provides examples of its use in different
applications from the user perspective.
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As in many preceding works,1,2,4,8–10,14 in bfieldtools, we
model divergence-free surface currents with scalar stream func-
tions. We discretize these functions on a triangle mesh using
piecewise-linear basis functions equivalent to piecewise-constant
surface-current density. Compared to analytical methods31–33 that
require certain symmetries for the current distributions, discretizing
the stream function on a freely shaped triangle mesh allows study-
ing currents and magnetic fields in a wide range of geometries.

In this work, we first review the physics of the stream func-
tion. As an additional feature to previous works, we relate the
stream function to the harmonic potential theory. By introducing
the magnetic scalar potential to the computational framework,
analogies to other fields that utilize the potential theory can be
exploited, facilitating the formulation and solution of magneto-
quasistatic problems.

The main objective of this work is to describe the field calcula-
tions and their discretization as they are implemented in bfieldtools.
Based on previous studies that utilize the linear discretization of the
field source,1,34–36 we obtain a consistent analytical discretization of
the integral equations involved in the field calculations. The same
principles can also be used to obtain discrete differential operators
on a surface,37,38 which we utilize in the integral formulas.

We have also implemented computations for series representa-
tions of the magnetic field in a source-free volume. First, we review
the multipole expansion in terms of spherical harmonics, which is
the conventional way of describing such a field. We adapt the multi-
pole expansion of 3D current densities29,39,40 to obtain the expansion
for the field from a surface current on a mesh. In addition, we intro-
duce a novel field representation based on expanding the stream
function with the eigenfunctions of the surface-Laplacian,41,42 which
can be seen as a generalization of the multipole expansion.

Finally, we share a few examples demonstrating the capability
of these tools in the coil design and magnetic shielding. More
applications are described in Part II,30 including references to the
software implementation.

II. STREAM FUNCTION IN QUASISTATIC MAGNETISM

A. Divergence-free surface currents

A divergence-free current density~j(~r) on an arbitrary surface
can be expressed with a scalar stream function ψ on the surface2,4

~j(~r) ¼ ∇kψ(~r)� n̂(~r), (1)

where~r is the position on the surface, n̂ is the unit surface normal,
and ∇k is the tangential gradient operator,43 i.e., the 3D gradient
projected to a tangent plane on the surface: ∇k ¼ ∇� n̂(n̂ � ∇). As
∇kψ(~r)� n̂(~r) is perpendicular to ∇kψ(~r), the streamlines of the
current correspond exactly to the isocontours of ψ(~r). For conve-
nience, we define the operator ∇k(�)� n̂ as the rotated gradient.

By taking a line integral of ψ from ~r0 to ~r on the surface, we
find that the difference in the stream function between the two ends
of the path equals the flux of surface current~j(~r) passing the curve2

ψ(~r)� ψ(~r0) ¼
ð~r
~r0

~j(~r 0) � (d~l 0 � n̂0), (2)

where d~l0 � n̂0 is a path differential perpendicular to the direction of
the path. In consequence, a line integral from a reference point ~r0
determines the stream function uniquely on the surface.

From another point of view, the stream function can be inter-
preted as a surface density of magnetic dipoles normal to the
surface44,45 (see also Appendix A),

~m(~r) ¼ ψ(~r)n̂(~r): (3)

This interpretation of the stream function enables analogies to
dipole layers involved in, e.g., volume-conductor problems and the
calculation of magnetic scalar potentials for divergence-free surface
currents.

As the surface current density is assumed divergence-free
everywhere, the flux of current through any boundary on the
surface must be zero. Applying Eq. (2) on a boundary, we can
deduce that this condition is equivalent to ψ(~r) being constant on
the boundary. With only one boundary, the constant can be set to
zero since an additional constant in ψ(~r) does not affect ~j(~r).
When the surface contains holes, the hole boundaries can have
their own constants. These matters are further discussed in Sec. III
when discretizing the stream function.

B. Stream functions and the magnetic scalar potential

The magnetic field ~B originating from sources outside the
volume of interest can be expressed as the gradient of a scalar
potential U : ~B ¼ �μ0∇U . As the magnetic field is divergence-free,
the magnetic scalar potential U is harmonic, i.e., it satisfies
Laplace’s equation ∇2U ¼ 0. From the theory of harmonic poten-
tials,46 we know that U can be determined uniquely in the volume
(up to a constant) when either the potential or the normal deriva-
tive of the potential is specified on the boundary enclosing the
volume. Thus, any external source distribution whose potential
reproduces the boundary conditions of a given U can be used to
generate U in the volume.

In particular, the boundary condition can be satisfied by
the potential of a dipole density ψ(~r)n̂ on the same surface.47,48 In
the potential theory, this source distribution is known as a
double layer, equivalent to two parallel layers of opposite charge.
In magnetostatic calculations, as discussed above, such a layer
of magnetic dipoles corresponds to a surface-current density
∇kψ(~r)� n̂. Any magnetic field within a source-free volume can
thus be expressed with a stream function on the boundary of the
volume.

As the discussion above applies only to a closed surface, a
stream function on a surface with openings cannot generally repre-
sent all possible field patterns in the volume. This must be taken
into account in coil designs where the current may only be placed
in restricted regions as well as in field-interpolation tasks with
equivalent surface currents. However, the dipole-layer analogy still
applies to a stream function on an open surface: the stream func-
tion always corresponds to a discontinuity in the scalar potential4

similar to a dipole layer.47
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C. Integral equations

In the following, we layout the integral equations for calculat-
ing the quasistatic magnetic field and magnetic potentials from a
stream function. The integrations are discretized in Sec. III.

In source-free volumes, the magnetic field can be expressed
with either a vector or scalar potential46

~B(~r) ¼ ∇�~A(~r) ¼ �μ0∇U(~r): (4)

The vector potential of a surface current density can be written as
an integral over the surface S, where the stream function is defined
as

~A(~r) ¼ μ0
4π

ð
S

~j(~r 0)
j~r �~r 0j dS

0 ¼ μ0
4π

ð∇0
kψ(~r

0)� n̂0

j~r �~r 0j dS0: (5)

The vector potential can be equivalently written in terms of a mag-
netic dipole layer ~m ¼ ψ n̂ (see Appendix A), which is the more
convenient form to express the magnetic scalar potential

U(~r) ¼ 1
4π

ð
ψ(~r 0)n̂0 � ∇0 1

j~r �~r 0j dS
0: (6)

Similar dipole-layer potentials are used for the electric field in
volume-conductor problems.49 Finally, the Biot–Savart formula for
the magnetic field is obtained as the curl of the vector potential,

~B(~r) ¼ μ0
4π

ð
(∇kψ(~r 0)� n̂0)� ~r �~r 0

j~r �~r 0j3 dS
0: (7)

In computations, it is useful to expand the stream function
with a set of basis functions ψk(~r) as

ψ(~r) ¼
X
k

skψk(~r): (8)

The coefficients sk parametrize the stream function, enabling
linear-algebraic techniques for processing it. Furthermore, the basis
functions ψk(~r) can be made to satisfy possible boundary condi-
tions so that any combination of them satisfies the same condi-
tions. In some geometries, ψk(~r) can be chosen as, e.g., sinusoids
or spherical harmonics.4,18,44 The rotated gradients of the basis
functions provide a basis set of vector functions ~jk(~r) ¼
∇kψk(~r)� n̂(~r) that expand the current density.

The basis function coefficients sk, forming a column vector s,
can be used to write the inductive energy and resistive dissipation
power of a surface current as quadratic forms of s.4,15,44 The induc-
tive energy, i.e., the energy stored in the magnetic field, can be
written as s`Ms=2, where the matrix M consists of the mutual
inductances of the current patterns, which can be calculated as46

Mk,l ¼
ð
S

~jk(~r) �~Al(~r)dS ¼
ð
S
ψk(~r)n̂ �~Bl(~r)dS, (9)

where ~Al and ~Bl are the magnetic vector potential and the magnetic
field generated by the current pattern~jl(~r), respectively.

The power dissipation due to resistive heating can be written
as s`Rs, where

Rk,l ¼
ð
S
~ek(~r) �~jl(~r)dS ¼

ð
S

1
σs(~r)

~jk(~r) �~jl(~r)dS (10)

is the mutual resistance associated with the two current patterns.
Here,~ek is the electric field associated with~jk and σs(~r) ¼ σ(~r)d(~r)
is the surface conductivity defined by material conductivity σ and
surface thickness d. Furthermore, assuming constant surface con-
ductivity and using stream functions to describe~jk and~jl , we get

Rk,l ¼ 1
σs

ð
S
[∇kψk(~r)� n̂] � [∇kψ l(~r)� n̂]dS

¼ 1
σs

ð
S
∇kψk(~r) � ∇kψ l(~r)dS

¼ � 1
σs

ð
S
ψk(~r)∇

2
kψ l(~r)dS: (11)

Partial integration (Gauss theorem) was used to get the last identity,
where ∇2

k ¼ ∇k � ∇k is the surface Laplacian or the Laplace–
Beltrami operator.41,42 The possible boundary terms vanish similar
to the derivation in Appendix A. The relationship between the
mutual resistance and the Laplacian is utilized further in Sec. III.

III. DISCRETIZATION

A. Piecewise-linear stream function

In bfieldtools, surface-current densities are represented by
stream functions on triangle meshes. A triangle mesh consists of an
ordered collection of vertices~r1, . . . ,~rV , forming a point cloud in
a 3D space and of a set of triangular faces Δf , each defined by a
triplet (i, j, k) of vertex indices.

We discretize the integral and differential equations described
in Sec. II C by approximating the stream function as linear on each
face of the triangle mesh. Such piecewise-linear functions can be
conveniently expressed as in Eq. (8) by choosing the basis functions
ψk(~r) to be so-called hat functions hi(~r), where the index i corre-
sponds to the ith vertex of the mesh. The hat function hi(~r) has the
value 1 at vertex i and zero at all other vertices. Within triangles,
the value is interpolated linearly [see Fig. 1(a)]. As in Eq. (8), the
stream function can be written as a sum of the basis functions

ψ(~r) ¼
X
i

sihi(~r), (12)

where si, the weight for the vertex i, is equal to the current circulat-
ing around the vertex on the neighboring triangles. We obtain
current-density basis functions by taking the rotated gradient of
the hat function ~ji(~r) ¼ ∇khi(~r)� n̂ , which corresponds to an
eddy current circulating around vertex i as illustrated using black
arrows in Fig. 1(a).

In each neighboring triangle, the gradient and rotated gradient
of a hat function are constant and can be expressed using the local
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geometry37,38 as

∇khi(~r) ¼ n̂f � ~ei
2Af

, (13)

∇khi(~r)� n̂f ¼ ~ei
2Af

, (14)

where Af is the area of the neighboring triangle f , n̂f is the triangle
normal, and~ei is the edge opposing the vertex i in the triangle.

The constant condition on the outer mesh boundary can
be implemented by setting the boundary-vertex values to zero.

However, each hole boundary can float at an arbitrary value. To
satisfy the constant boundary condition on the hole boundaries, we
construct a combined basis function for each hole boundary Ck as

hCk (~r) ¼
X
i[Ck

hi(~r): (15)

These functions are constant along the hole boundaries and can be
conceptualized as eddy currents flowing within the triangles neigh-
boring the holes [Fig. 1(a)]. The stream function can now be
expressed as

ψ(~r) ¼
X
i

sihi(~r)þ
X
k

skhCk (~r), (16)

where the first part sums over the inner vertices of the mesh and
the latter sums over the holes of the mesh.

With this vertex-wise discretization of the stream function, we
can represent physical quantities using operators acting on the
vertex values si. Stacking the weights si into a column vector s,
linear operators (e.g., the surface-Laplacian) acting on ψ discretize
to matrices that can be used in linear mappings s ↦ As or in
quadratic forms s ↦ s`As, where ` denotes the transpose.
Additionally, fields originating from the discretized current can be
expressed as ~B(~r) ¼Pi

~Bi(~r) si ¼ ~B(~r)`s, where ~B(~r) is a column
vector of the magnetic field contributions at~r from each vertex in
the mesh.

B. Differential operators

With the hat-function discretization, the gradient of any scalar
function can be calculated on the faces of the mesh from the neigh-
boring vertex values.37,38 As this calculation is linear with respect
to the vertex values, we define a discrete gradient operator ~G as a
map from scalar values at the vertices (i) to Euclidean vectors at
the faces (f ). Since there are only three non-zero hat functions on
each triangle, the result of this operation can be expressed as

(~Gs)f ¼
X
l

~Gf ,lsl ¼ ~Gf ,isi þ~Gf ,jsj þ~Gf ,ksk, (17)

where i, j, and k are the vertices of Δf . One element of the operator
is obtained directly from the gradient of the basis function
equation (13) as

~Gf ,i ¼
n̂f � ~ei

2Af
, i [ Δf ,

0, i � Δf :

(
(18)

The elements of the rotated-gradient operator are defined as

~G?
f ,i ¼ ~Gf ,i � n̂f : (19)

Using the hat functions to discretize the surface-Laplacian
operator leads to the so-called cotan formula derived and applied
in the context of partial differential equations as well as in
geometry and graphics processing.50–53 As second derivatives are
ill-defined for hat functions (zero on the faces, infinite on vertices

FIG. 1. (A) In the lower left corner of the triangle mesh, the blue color indicates
a hat function with an increasing function value toward the center vertex. The
red arrows represent the gradient of the function. The black arrows correspond
to the rotated gradient constituting an eddy current around the vertex. The green
color around the hole indicates a basis function for the hole, constructed to
satisfy the constant boundary condition along the hole boundary. (B) Euclidean
vectors used in the differential operators and integral formulas. (C) Geometry for
the signed distance functions xi ¼ ~Gf ,i �~dj and df ¼ n̂ f �~dj used in the analyti-
cal integral formulas.
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and edges), the discrete Laplacian operator L is understood as the
weak (integrated) form of the surface Laplacian

Li,j ¼ �
ð
∇khi(~r) � ∇khj(~r)dS

¼ �
X
f

(~Gf ,i �~Gf ,j)Af : (20)

Using Eq. (18), the non-zero off diagonal elements of L can be
expressed as

Li,j ¼ � 1
2

~e1i �~e1j
2A1

þ~e 2i �~e 2j
2A2

 !

¼ � 1
2
[ cot (αij)þ cot (βij)], (21)

where i and j correspond to two neighboring vertices, angles αij and
βij are the angles opposing the edge connecting the vertices, and
indices 1 and 2 correspond to the two triangles that share the edge,
as illustrated in Fig. 2. Since constant functions belong to the null
space of the Laplacian, the diagonal elements can be obtained as

Li,i ¼ �
X
j=i

Li,j: (22)

When the surface has boundaries (outer edges or holes), the
Laplacian has to be modified. Elements that correspond to the
zero-valued boundary can be left out of the matrix. Using Eqs. (15)
and (16), it can be deduced that the elements that correspond to the
basis function of a hole boundary can be obtained by summing the
rows and columns associated with the vertices on the boundary.

C. Analytical integrals

The analytical integral formulas introduced in this section are
the basic building blocks of bfieldtools mesh operators for the mag-
netic field and magnetic potentials (Sec. II C). As the integrals
needed to compute the mesh operators involve singular quantities,
the analytical formulas behave more smoothly in the proximity
of the source mesh compared to numerical quadratures. These
formulas have been derived in the literature related to
boundary-element methods in bioelectromagnetism34–36 and in
antenna modeling.54–56 To introduce concepts and to unify nota-
tion, we review the analytical formulas, which can also be seen as

potentials of simple charge or dipole configurations visualized in
Fig. 3(a).

The first building block, used in all the field calculations, is
the solid angle subtended at~r by triangle Δ f consisting of vertices
i, j, and k. The solid angle can be calculated using the
two-argument inverse tangent function atan2 defined as in most
standard programming languages,34

Ω f (~r) ¼ �
ð
Δ f

~r �~r 0

j~r �~r 0j3 � d
~S 0 ¼ �2 atan2(N , D), (23)

where N ¼~di �~d j �~dk is the numerator and D ¼ j~dik~d jk~dkj þ
j~dij(~d j �~dk)þ j~djj(~dk �~di)þ j~dkj(~di �~d j) is the denominator of the
tangent. Here, ~di ¼~r �~ri is a vector pointing from the vertex i to
the evaluation point~r [see Fig. 1(b)]. The magnetic scalar potential
of unit (magnetic) dipole density on a triangle can be computed
using the solid angle as �Ωf =(4π).

The second building block is the potential of a line charge.
The potential of a unit line charge on edge ~ei [Fig. 1(b)] can be
obtained as35

γ i(~r) ¼
1
j~eij
ð~rk
~rj

1
j~r �~r 0j dl

0 ¼ �1
j~eij ln

j~d jk~eij þ~d j �~ei
j~dkk~eij þ~dk �~ei

, (24)

where~rj and~rk are the two ends of the edge~ei.
With the two integrals above, we can express the potential of a

unit charge density on a triangle Δ f as
36

f f (~r) ¼
ð
Δ f

1
j~r �~r 0j dS

0 ¼ df (~r)Ω f (~r)þ
X
l¼i,j,k

2Af xl(~r)γ l(~r): (25)

Here, df ¼ n̂f �~dlþ1 is the signed distance from the triangle plane
along the plane normal and xl ¼ ~Gf ,l �~dlþ1 is the normalized
signed distance from the line extended from the edge~el along ~Gf ,l

such that xl(~rl) ¼ 1. The geometry related to these distances can be
found in Fig. 1(c).

Finally, we present the potential of a linearly varying dipolar
density hi(~r) on a triangle Δ f as

35

~Ω f ,i(~r) ¼
ð
Δ f

hi(~r
0)

~r �~r 0

j~r �~r 0j3 � d
~S 0

¼ �xi(~r)Ω f (~r)þ
X
l¼i,j,k

ci,ldf (~r)γ l(~r), (26)

FIG. 2. Geometric quantities in the discretization of induc-
tance, resistance, and Laplacian operators. Laplacian and
resistance matrices are sparse: only the vertices whose
neighboring triangles overlap contribute to the matrix ele-
ments. The inductance matrix is dense with elements
describing the coupling between the currents circulating
the vertices.
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where ci,l ¼ ~ei �~el=(2Af ). As the notation in Eqs. (25) and (26)
differ from the literature, we provide alternative, concise
derivations of the formulas in Appendix B using the notation of
this work.

D. Magnetic field and magnetic potentials

We express the magnetic field and potentials using mesh
operators ~B(~r), ~A(~r), and U(~r) such that, e.g., the magnetic field
at ~r is ~B(~r) ¼Pi

~Bi(~r) si ¼ ~B(~r)`s, where the sum is taken
over the vertices of the mesh and ~Bi(~r) is the magnetic field
corresponding to hat function hi(~r). When a set of field evaluation
points {~rj} is given, the operators can be expressed as coupling
matrices, whose elements equal the coupling between the
hat-function currents and the field components at the evaluation
points.

The magnetic field ~Bi(~r) of a constant current density in a tri-
angle is derived in Appendix B and, using that result, the magnetic

field due to a single hat-function current becomes

~Bi(~r) ¼ μ0
4π

X
f[N i

ð
Δf

~G?
f ,i �

~r �~r 0

j~r �~r 0j3 dS
0

¼ μ0
4π

X
f[N i

Ω f (~r)~Gf ,i �
X
l¼i,j,k

ci,lγ l(~r)n̂f

0
@

1
A, (27)

where N i denotes the set of triangles neighboring vertex i as
shown in Fig. 2. A corresponding formula expressed in local coor-
dinates of a triangle has been derived by Pissanetzky.1

The vector and scalar potentials for the current of a hat
stream function hi can be obtained in a straightforward manner
using the integrals in Sec. III C. The vector potential [Eq. (5)] can
be expressed using the discrete rotated gradient [Eq. (19)] and the

FIG. 3. (A) Building blocks of the field operators visualized as source configurations and their respective potentials. The integral Ω corresponds to the potential of a
uniform dipole density (white arrows) on a triangle, γ is the potential of a line charge, f is the potential of a uniform charge density on a triangle, and Ω̂ is the potential of
a linearly varying dipole density on a triangle. In the colormap, red corresponds to positive and blue to negative values. The same convention is used in other figures. (B)
The magnetic field ~Bi , scalar potential Ui , and vector potential ~Ai calculated for a single stream-function element. The stream function (a hat function) is represented by
the gray color on the six triangles. The magnetic field ~Bi (black lines) and the scalar potential Ui (red–blue colors) are visualized on the same vertical plane, and the
vector potential (blue arrows) is shown on a horizontal plane above the stream function element. Due to the analytical formulas, the computed fields are well-behaving in
the vicinity of the mesh.
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integral ff (~r) [Eq. (25)],
1,13

~Ai(~r) ¼ μ0
4π

X
f[N i

ð
Δf

~G?
f ,i

j~r �~r 0j dS
0 ¼ μ0

4π

X
f[N i

~G?
f ,iff (~r): (28)

The scalar potential [Eq. (6)] of hi involves only the potentials of
linearly varying dipole densities ~Ω f ,i(~r) [Eq. (26)],

Ui(~r) ¼ 1
4π

X
f[N i

ð
Δf

hi(~r
0)n̂ � ~r �~r 0

j~r �~r 0j3 dS
0

¼ 1
4π

X
f[N i

~Ω f ,i(~r): (29)

The magnetic field and potentials due to a single hat-function
current are illustrated in Fig. 3(b).

E. Mutual inductance and resistance

The mutual inductance between two hat-function currents
(Fig. 2) can be calculated using Eq. (9) as

Mi,j ¼ μ0
4π

X
f[N i

X
f 0[N j

ð
Δf

ð
Δ f 0

~G?
f ,i �~G?

f 0 ,j

j~r �~r 0j dSdS0

¼ μ0
4π

X
f[N i

X
f 0[N j

~G?
f ,i �~G?

f 0 ,j

X
q

wqff (~rq), (30)

where the second integral is calculated using quadrature points ~rq
with weights wq as done by Koponen et al.13 We have implemented
this approach in bfieldtools, as it naturally handles the singularity
in the double integral when Δf ¼ Δ f 0 . Alternatively, the singularity
can be handled with an analytical formula for the self- element.57

On this basis, the mutual inductance operator M can also be
interpreted as a mapping from the discretized stream function s to
the magnetic flux (integrated normal component) at the mesh ver-
tices. This can be seen from the second identity in Eq. (9): by
replacing ~mk with the dipole density n̂hk, the matrix element Mk,l

corresponds to the normal magnetic field of current l integrated
over the hat function of vertex k.

For mutual resistance, we also have to model the surface con-
ductivity σs. Assuming piecewise-constant surface conductivity on
the triangles, and using Eq. (10), we obtain the mutual resistance
operator as

Ri,j ¼
ð

1
σ(~r)d

∇khi(~r) � ∇khj(~r)dS

¼
X
f

~Gf ,i �~Gf ,j

σ f d
Af ¼ 1

2d

~e1i �~e1j
2A1σ1

þ~e2i �~e2j
2A2σ2

 !
, (31)

where σ1 and σ2 are the conductivities in triangles 1 and 2 neigh-
boring the edge from vertex i to vertex j (see Fig. 2). When σ is
constant over the surface, the resistance operator is proportional to
the discrete surface Laplacian Ri,j ¼ � 1

σs
Li,j. Several studies9,10,45

use mutual resistance in this form, although the relation to the dis-
crete Laplacian has not been noted.

IV. MAGNETIC FIELD REPRESENTATIONS WITH
SOURCE EXPANSIONS

The magnetic field in free space can be expanded as a series of
components, each of which can be interpreted to correspond to a
certain type of a source-current pattern. A common series used for
the static magnetic field is the spherical multipole expansion. This
expansion can represent a spatially smoothly varying magnetic field
with a few parameters, which can be helpful, e.g., when designing
coils that generate these types of fields.18,40,58

A disadvantage of the multipole expansion is, however, that
the series can diverge in regions where the actual field is well-
behaving. For more general purposes, we introduce a representation
of magnetic fields based on a stream function, which can be viewed
as an equivalent source of the field. We expand the stream function
on a surface as a series of functions that we call surface harmonics.
The magnetic field patterns of the surface harmonics then yield a
representation of the field similar to the multipole expansion.

A. Multipole expansion with spherical harmonics

The general solution of Laplace’s equation in spherical coordi-
nates (r, θ, w) is46

U(r, θ, w) ¼
X1
l¼0

Xl
m¼�l

(αlmr
�l�1 þ βlmr

l)Ylm(θ, w), (32)

where αlm and βlm are the multipole coefficients and Ylm(θ, w) are
spherical harmonic functions with degree l and order m (jmj � l).
The αlm terms involve powers of the inverse distance, representing
sources close to the origin, whereas the βlm terms represent
far-away sources. In bfieldtools, we use the real spherical harmon-
ics,59 which are orthonormal with respect to integration over the
full solid angle, i.e.,

Ð
Ω YlmYl0m0dΩ ¼ δ ll0δmm0 .

We obtain the expansion for the magnetic field by taking the
gradient of the scalar potential,

~B(~r) ¼ �μ0∇U(~r)

¼ �μ0
X1
l¼0

Xl
m¼�l

[αlm∇(r�l�1Ylm(θ, w))

þ βlm∇(rlYlm(θ, w))]

¼ �μ0
X1
l¼0

Xl
m¼�l

[αlmr
�l�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l þ 1)(2l þ 1)

p
~Vlm(θ, w)

þ βlmr
l�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(2l þ 1)

p
~Wlm(θ, w)], (33)

where ~Vlm ¼ (� (l þ 1)Ylmr̂ þ ∇1Ylm)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l þ 1)(2l þ 1)

p
and

~Wlm ¼ (lYlmr̂ þ ∇1Ylm)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(2l þ 1)

p
are vector spherical harmon-

ics.29,60 Here, ∇1 is the angular part of the gradient on a unit
sphere.59 Both the set of vector spherical harmonics ~Vlm and
~Wlm and the set of tangential vector spherical harmonics
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~Xlm ¼ �r̂ � ∇1Ylm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l þ 1)

p
are also orthonormal with respect to

an inner product
Ð
Ω
~flm �~gl0m0dΩ.

Because the multipole expansion of ~B is linear with respect to
the coefficients, we can rewrite Eq. (33) using coupling fields
stacked into column vectors ~Bα(~r) and ~Bβ(~r) so that

~B(~r) ¼ ~Bα(~r)
`α þ~Bβ(~r)

`β, (34)

where the expansions coefficients, truncated at a certain degree l,
are stacked in the column vectors α and β and ` denotes the trans-
pose. When the magnetic field is evaluated at a specific set of eval-
uation points, ~Bα(~r) and ~Bβ(~r) can be expressed as coupling
matrices that map the given multipole coefficients to field values at
the evaluation points.

The coefficients αlm and βlm can be calculated directly from
any surface-current distribution~j(~r) with the help of the tangential
vector spherical harmonics ~Xlm as39,40

αlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l þ 1)

p
(l þ 1)(2l þ 1)

ð
(r0)l~Xlm(~r0) �~j(~r 0)dS0, (35)

βlm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l þ 1)

p
l(2l þ 1)

ð
(r0)�l�1~Xlm(~r

0) �~j(~r 0)dS0: (36)

Using these equations together with the stream function in Eq. (1)
and its discretization in Eq. (12), we define mesh operators (matri-
ces) Cα and Cβ that map the stream-function values to the spheri-
cal harmonic coefficients

α ¼ Cαs, (37)

β ¼ Cβs: (38)

The convergence of the multipole series may be analyzed by
inserting, for example, the inner multipole coefficients of Eq. (35)
into Eq. (32), which yields terms involving factors (r0=r)(l�1). If
there are any sources with radius r0 greater than the radius of the
field point r, the factors (r0=r)(l�1) approach infinity with growing l
and the series fails to converge. A similar analysis can be made for
the outer sources. These analyses result in convergence regions for
the expansions shown in Fig. 4(a). As the figures show, the choice
of the origin is crucial for the convergence, but it cannot be chosen
in such a way that the series would converge everywhere in the
volume where the scalar potential is defined.

B. Surface-harmonic expansion

With the tools presented in this work, we can generate a field
expansion that converges at all points where the magnetic scalar
potential is defined (Fig. 4). The expansion is based on the fact that
any potential satisfying the Laplace equation can be written in
terms of an equivalent stream function on a boundary of the
domain as described in Sec. II B. Expanding the stream function as
a linear combination of basis functions with increasing order of
spatial detail yields a field representation similar to the spherical
multipole expansion.

We base the expansion on the eigenfunctions of the (negative)
surface Laplacian. These eigenfunctions generalize a sinusoidal func-
tion basis, such as the spherical harmonics basis, to an arbitrary
surface (see Fig. 5). Generally, these functions are characterized by
the eigenvalue equation,41,42

�∇2
kvn(~r) ¼ k2nvn(~r), (39)

where the eigenvalue k2n corresponds to the squared spatial frequency
of the nth eigenfunction vn. The higher the order n is, the higher the
spatial frequency and the more zero crossings vn(~r) has (Fig. 5).
In relation to spherical harmonics, we call these functions surface
harmonics (SUHs). In geometry processing, they are also known as
manifold harmonics.61

For practical computations, we discretize the functions as
vn(~r) ¼

P
i Vi,nhi(~r), which leads to a discrete (generalized) eigen-

value equation42

�Lvn ¼ k2nNvn, (40)

where L is the Laplace operator in Eq. (21), N is a mass matrix
taking into account the overlap of hat functions, and vn corre-
sponds to columns of the matrix V. As the hat functions overlap
only with their immediate neighbors, both L and N are sparse
matrices and the vertex coefficient vectors vn can be solved effi-
ciently with sparse solvers. The resulting eigenfunctions vn(~r) are
orthonormal with respect to integration over the surface, which can
be expressed in the discrete form as v`n Nvm ¼ δn,m.

Substituting the surface-harmonics representation of a stream
function ψ(~r) ¼Pn anvn(~r) to Eq. (6), we can write the magnetic
scalar potential as

U(~r) ¼ 1
4π

ð
ψ(~r 0)n̂0 � ∇0 1

j~r �~r 0j dS
0

¼
X
i

an
1
4π

ð
vn(~r

0)n̂0 � ∇0 1
j~r �~r 0j dS

0

¼
X
i,n

anVi,n
1
4π

ð
hi(~r

0)n̂0 � ∇0 1
j~r �~r 0j dS

0

¼
X
i,n

anVi,nUi(~r) ¼ U(~r)`Va: (41)

Similarly, the SUH coefficients a can be mapped to the magnetic
field as

~B(~r) ¼ ~B(~r)`Va: (42)

Examples of the scalar potentials of the basis functions vn (SUH)
are displayed in Fig. 4(b) with a comparison to the multipole
expansion (SPH). Compared to the multipole potentials, in the
SUH expansion, the potentials are distributed more uniformly
around the corresponding surface.

The SUH expansion is not restricted to closed surfaces but can
be applied for stream functions on surfaces with boundaries and any
number of holes. Such bases can be used for the surface-coil design
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to decrease the degrees of freedom when optimizing surface currents,
as demonstrated in Part II.30

Instead of orthogonal stream functions, one may desire
orthogonality in their magnetic fields. In that case, the basis func-
tions can be solved from a discrete eigenvalue equation similar to
Eq. (40) by replacing the mass matrix N with the inductance
matrix M. To enable physical interpretations, L can be replaced by
R ¼ L=σs to get the following eigenvalue equation:

Rsn ¼ 1
τn

Msn: (43)

This equation is related to the independent modes of eddy currents
on the conducting surface; τn is the time constant of the nth mode.
These modes can be used, for example, to calculate the time
dynamics of eddy current induced fields4 or uncoupled current

patterns for thermal noise calculations.3,62 It should be noted,
however, that M is now a dense matrix, whereas N was very sparse,
disabling the use of sparse eigensolvers and increasing computation
time when building the matrix.

V. COIL DESIGN AND SHIELDING

In this section, we give examples that utilize the developed
tools. As the design of surface coils using distributed currents is
probably the most prominent application of these tools, we start by
giving a brief overview of the coil-design method. In the surface-
coil design using triangle meshes,9,10,14 the coil current is expressed
with a discretized stream function s on the mesh similarly as in our
tools. The stream-function s is optimized by minimizing a cost
function while taking into account given constraints for, e.g., the
field shape. Finally, the coil wires are placed on the isocontours of
the stream function to approximate the continuous current density.

FIG. 4. (A) Convergence regions of the spherical-harmonic multipole expansion (SPH) and the surface harmonic expansion (SUH) shown in gray. Blue regions depict the
volumes of magnetic sources and red regions the volumes where the expansions do not converge. (B) The magnetic scalar potential corresponding to different compo-
nents of the spherical harmonic (SPH) and surface harmonic (SUH) inner-source expansions. The scalar potential is depicted by the red–blue colors on the vertical plane,
and the field source is illustrated by the green–brown color. In both expansions, the first, fifth, 11th, and 16th components of the series are shown. The bunny surface
mesh was decimated from the original (http://graphics.stanford.edu/data/3Dscanrep/#bunny) and repaired for holes.
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Typically, a quadratic form of s such as the magnetic energy
s`Ms=2 or the dissipated power s`Rs is used as a cost function.
Constraints for the field pattern can be formulated using the mesh
operator ~B(~r) and they can be incorporated in quadratic program-
ming as demonstrated in Part II.30

Here, in the next examples, we take a more theoretical
approach to the surface-coil design and, in particular, to the design
of self-shielded coils. We also share an example of a calculation
related to passive magnetic shielding using the tools described in
this work.

A. Perfect shielding by surface currents on a closed
surface

When designing coils for target magnetic fields, it is often also
desired to control the field outside the volume of interest, e.g., to
shield the external environment from the field of the primary
current. For such a situation, a shielding current outside the
primary surface can be designed.

Let us consider a closed surface, inside which a desired field
pattern is to be designed and a second (outer) surface, the exterior
of which is to be shielded from the field. To derive a set of equa-
tions with a unique solution, we again discretize the surfaces using
triangle meshes. The shielded field pattern can be obtained by
designing suitable stream functions s1 and s2 on the two surfaces so

that their combined field satisfies desired boundary conditions.
Based on the discussion in Sec. III E, we can write the boundary
conditions for the normal component of the field at the surfaces
using stacked mutual-inductance matrices Mij as

Ms ¼ M11 M12

M21 M22

� �
s1
s2

� �
¼ bn

0

� �
, (44)

where the first row corresponds to the desired magnetic field bn at
the inner surface and the second row corresponds to the zero con-
dition for the outer surface. Because s`Ms is the total magnetic-
field energy of the system and M is a positive semi-definite matrix.
As the only zero eigenvalue is the one corresponding to a constant
stream function (zero current), the system can be solved by invert-
ing M deflated for the constant vector.

Two examples demonstrating the perfect shielding obtained
by solving Eq. (44) are shown in Fig. 6. The shielding by the outer
surface corresponds to the situation where the exterior volume
would be a superconductor that expels all fields so that no mag-
netic field crosses the outer surface. This is also analogous to an
electrical volume-conductor problem where the exterior volume is
insulating, confining the 3D current density.

When the outer current surface contains current-free regions
in it, perfect cancelation of the primary field is generally not possi-
ble due to a lack of degrees of freedom in the current-pattern

FIG. 5. Surface-harmonic basis functions, i.e., eigenfunc-
tions of the surface Laplacian, for three surfaces and their
eigenvalue spectra normalized with the square root of the
surface area (

ffiffiffi
A

p
). Shown are the first six basis functions

for each surface obtained by numerically solving Eq. (40).
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design. Next, we demonstrate a method to optimize the primary
and shielding currents applicable also to an open surface geometry.

B. Self-shielded currents with an open geometry

We now apply the tools presented in this work for the design
of self-shielded coils in a more realistic bi-planar geometry.
Consider a primary coil with stream function s1 and a shielding
coil with stream function s2. Demonstrated by Harris and
co-workers,11 a well-performing shielding coil can be designed by
minimizing the magnetic-field energy with respect to s2. Using s1
and s2, the field energy can then be expressed as

EM ¼ 1
2

s`1 s`2
� � M11 M12

M21 M22

� �
s1
s2

� �

¼ 1
2
s`1 M11s1 þ s`1 M21s2 þ 1

2
s`2 M22s2: (45)

The minimum (for given s1) can be found by equating the gradient
of EM with respect to s2 to zero, which yields a set of linear
equations,

M21s1 þM22s2 ¼ 0: (46)

Based on Eq. (44), we can now explain why this method works: the
equation can be interpreted as a condition that the normal self-field
of the shielding current M22s2 exactly cancels the normal field
component generated by the primary current M21s1 at the shielding
surface. By solving Eq. (46) for s2, we can rewrite the field energy
as EM ¼ 1

2 s
`
1 (M11 �M12M�1

22 M21)s1 ¼ 1
2 s

`
1 M̃11s1.

We will now optimize the primary current s1 for minimal
energy with an additional constraint. Instead of a hard equality
constraint for the desired field, we modify the cost function with
a term that penalizes for the residual in desired multipole

FIG. 6. Two examples of surface currents on two surfaces, generating a desired magnetic field confined in a closed volume. Top: Stream functions of two surface-current
configurations with a primary current on the sphere and a shielding current on the rounded cube. The currents are designed so that together they create a homogeneous
field (left) and a first-order gradient field (right). Bottom: the magnetic field lines (black) and the corresponding magnetic scalar potential are plotted on the horizontal plane
shown in the 3D plots on top.
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moments β,

E(s1) ¼ 1
2
s`1 ~M11s1 þ λkβ� Cβs1k2, (47)

where λ is a trade-off parameter between a perfect multipole
fit and a minimal field energy. The coupling matrix
Cβ ¼ Cβ,1 þ Cβ,2M�1

22 M21 is obtained using the constraint in
Eq. (46); Cβ,i are matrices that map si to the multipole moments.
The solution for s1 that minimizes the cost function can again be
found by equating the gradient ∇s1E(s1) to zero,

s1 ¼ (C`
β Cβ þ M̃11=λ)

�1
Cββ: (48)

Examples of shielded configurations generated using the
method above are shown in Fig. 7. Compared to the fields in Fig. 6,
which are solved for a closed geometry, these fields leak in the
directions where the shielding surface is missing. Thus, the place-
ment of the shielding surfaces is crucial for the self-shielding
performance.

C. Modeling a high-permeability magnetic shield

Magnetic measurements are usually shielded from the low-
frequency fluctuations of the outside magnetic environment with
soft ferromagnetic materials such as μ-metal. The purpose of these
materials is to guide the external magnetic field to create a

magnetic void inside the shield. A downside is that the shield also
distorts the fields generated inside the shield. When the relative
permeability of the shield is very large, the effect of the shield can
be approximated by a shield with infinite relative permeability.
This leads to a boundary condition stating that the magnetic field
must be normal to the inner surface of the shield or, equivalently,
the inner surface has to be at equipotential in terms of the mag-
netic scalar potential.46

Let us consider a primary potential Up(~r)
`sp generated by a

surface current with a (discretized) stream function sp inside the
magnetic shield. We can satisfy the equipotential condition on
the shield by placing a suitable equivalent surface current seq on
the shield surface. In other words, we require that U`

p (~r)sp þ
U eq(~r)

`seq ¼ 0 holds on the shield. To solve for seq, we apply the
condition at collocation points on the shield mesh. Because
U eq(~r)seq is discontinuous across the shield, we apply the condition
at collocation points slightly inwards from the shield surface as
~rj � ϵn̂j, where~rj are the vertex positions of the shield mesh, ϵ is a
small number compared to the mesh resolution, and ~nj are the
vertex normal vectors. After solving the resulting set of linear equa-
tions for seq, we can estimate the effect of the shield by U eq(~r)

`seq
at all points inside the shield.

Figure 8 shows an example of a magnetically shielded configu-
ration with a surface-current pattern on a bi-planar surface inside a
perfect cylindrical magnetic shield. The current patterns on the
planes are designed such that the field in the target volume, indi-
cated by the dashed circle, is as homogeneous as possible. The

FIG. 7. Shielded magnetic fields designed for bi-planar current-domains obtained by minimizing the quadratic objective in Eq. (47). Top left: Homogeneous field with
minimum inductance weighting (small λ). Top right: Homogeneous field with minimum multipole residual weighting (large λ). Bottom left: Gradient field with minimum induc-
tance weighting. Bottom right: Gradient field with minimum multipole residual weighting. In each case, the magnetic field is visualized using the streamlines and a contour
plot of the scalar potential on the horizontal plane shown in the middle. The associated stream functions on the primary and shielding surfaces are shown left from the
field plots.
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FIG. 8. (A) The stream function of a primary current distribution on bi-planar surfaces inside a perfect cylindrical magnetic shield. (B) The equivalent surface-current distri-
bution (stream function and surface-current density) representing the induced field source on the magnetic shield. (C) The primary magnetic scalar potential generated by
the primary source in (A). (D) The magnetic scalar potential generated by the equivalent current in (B), inside the shield surface. (E) The combined potential that satisfies
the constant-potential condition on the shield surface. The dashed circle surrounds the volume of interest. In (C)–(E), the colormap is scaled logarithmically on both nega-
tive (blue) and positive (red) sides due to the large range of potential values.
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secondary field due to the shield amplifies the magnetic field
(the gradient of the potential) in the vicinity of the shield outside
the target volume. The contribution from the cylinder cap also
produces minor inhomogeneity in the magnetic field inside the
target volume.

VI. DISCUSSION AND OUTLOOK

We have introduced a set of tools for static and quasistatic
modeling of divergence-free surface currents and their fields. The
tools can be used for a variety of tasks from the surface-coil design
and equivalent-source modeling to eddy current and thermal-noise
calculations. This work has covered the central computations
implemented in the software, the structure of which is described in
Part II.30

The computational and theoretical framework leverages the
interpretation of stream functions as magnetic dipole densities
normal to the surface. This analogy has been recognized previ-
ously44,45 but has not been fully exploited. In this work, we exploit
this interpretation further for the calculation of the magnetic scalar
potential of a stream function, which we use, e.g., for visualizing
the magnetic field. The scalar potential also enables the application
of the harmonic potential theory commonly applied in volume-
conductor problems in the form of boundary-element methods
(BEMs).63,64 The discretizations implemented in bfieldtools are
directly applicable for BEM computations. Namely, the potential of
a linearly varying dipole density can be used to calculate the
double-layer operator D for linear (hat) basis functions and the
potential of a constant charge density can be used for the single-
layer operator S with constant basis functions. Additionally, the
mutual inductance operator M corresponds to a yet another
integral operator called N47,63 also known as the hypersingular
operator,48 which maps a dipole density to the normal field
component.

In the future, it can be fruitful to exploit the analogy between
quasistatic magnetic problems and electric volume-conductor prob-
lems even further. The source of the field in the former can be
interpreted as magnetic dipoles, whereas in the latter, the sources
are current dipoles. The magnetic scalar potential is analogous to
the electric potential (both satisfy Laplace’s equation), and if we
interpret the permeability μ as the counterpart of electrical conduc-
tivity σ in a volume-conductor, the magnetic field is perfectly anal-
ogous to the volume current density. The vector potential in the
magnetic problem further corresponds to the magnetic field in a
volume conductor problem. This means that the tools presented in
this work could be applied to solve the electric potential in a
volume-conductor, e.g., for modeling transcranial magnetic stimu-
lation13,65 or for solving the bioelectromagnetic forward problem.64

The multipole and surface-harmonic expansions implemented
in bfieldtools are also suitable for applications in a more general
context, e.g., in biomagnetic experiments or geomagnetism. The
multipole expansion has been applied to source modeling in
bioelectromagnetism.49,66–68 In magnetoencephalography, it has
also been applied in signal space separation (SSS),29 which can be
used to design software spatial filters to reject external interference
fields. In principle, the surface-harmonic expansion could be used
for the same purpose with more general convergence properties.
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APPENDIX A: STREAM FUNCTION AS MAGNETIC
DIPOLE DENSITY

In this appendix, we demonstrate the equivalence of the
current-density and dipole-density interpretations of the stream
function ψ based on the magnetic vector potential. Let us start
from the vector potential of a surface-current density,

~A(~r) ¼ μ0
4π

ð
S

~j(~r 0)
R

dS0 ¼ μ0
4π

ð
S

∇0
kψ(~r

0)� n̂0

R
dS0, (A1)

where ~R ¼~r �~r 0 and R ¼ j~Rj to simplify the expression. Using the
product rule ∇0

k(ψ(~r
0)=R) ¼ ∇0

kψ(~r
0)=Rþ ψ(~r 0)∇0

k(1=R) on the
tangent plane, we get

~A(~r) ¼ μ0
4π

ð
S
∇0

k
ψ(~r 0)
R

� n̂0dS0
�

þ
ð
S
ψ(~r 0)n̂0 � ∇0

k
1
R
dS0
�
: (A2)

With Stokes’s theorem on the surface, the first integral can be con-
verted to a line integral of ψ(~r 0)=R over the boundary of S. As dis-
cussed in Sec. II B, the stream function must be constant on the
boundary. On a single boundary, this constant can be set to zero
and the line integral vanishes. When the surface contains holes, we
get rid of the line integrals by extending the constant values over
the holes. This redefinition does not affect ~j but enables us to
express the vector potential as

~A(~r) ¼ μ0
4π

ð
S
ψ(~r 0)n̂0 � ∇0 1

R
dS0, (A3)

where we have applied n̂� ∇0
k ¼ n̂� ∇0. This is the vector poten-

tial of a magnetic dipole density ~m(~r 0) ¼ ψ(~r 0)n̂(~r 0).
The two forms of the mutual inductance Mk,l in Eq. (9) can

be obtained using the equivalence of Eqs. (A1) and (A3). We start
from

Mk,l ¼
ð
Sk

~jk(~r) �~Al(~r)dS, (A4)

where~jk is one surface-current density and ~Al is the vector poten-
tial of surface-current density ~jl. By substituting the vector poten-
tial in the dipole-density form, Eq. (A3), we get a double integral,
the integrand of which can be manipulated as

~jk(~r) � μ0
4π

~ml(~r
0)� ∇0 1

R

� �
¼ ~ml(~r

0) � μ0
4π

~jk(~r)� ∇
1
R

� �
: (A5)
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Identifying the expression in the parenthesis on the right as the
integrand of the Biot–Savart law for~jk gives

Mk,l ¼ Ml,k ¼
ð
Sk

~mk(~r) �~Bl(~r)dS: (A6)

APPENDIX B: INTEGRAL FORMULAS FOR TRIANGLES

Here, we present simplified derivations of the integral formu-
las that involve the solid angle Ωf [Eq. (23)] and line-charge poten-
tials γ i [Eq. (24)]. The derivations share some common aspects,
which we would like to point out. The integrands are first manipu-
lated so that a term that contains the solid angle can be separated.
The rest of the integrand can be expressed as surface divergence on
the triangle, for which Gauss’s theorem can be applied, yielding
expressions containing the line-charge potentials. Finally, the coef-
ficients multiplying the analytical integrals are determined using
the geometry of the problem.

1. Magnetic field of a constant current on a triangle

Using a basic vector identity for the vector triple product, we
can write the integrand in the Biot–Savart formula in Eq. (7) for
∇0

kψ(~r
0)� n̂f ¼ ~Gf ,i � n̂f ¼ ~G?

f ,i as

~G?
f ,i �

~R
R3

¼ ~Gf ,i �
~R
R3

 !
n̂f � n̂f �

~R
R3

 !
~Gf ,i, (B1)

where ~R ¼~r �~r 0 and R ¼ j~Rj. We can further write the scalar part
of the first term on the right-hand side as

~Gf ,i �
~R
R3

¼ ~Gf ,i � ∇0 1
R
¼ ∇0

k �
~Gf ,i

R

 !
: (B2)

Now, we can integrate the expression over the triangle Δf . Using
Gauss’s theorem for the first term, and the definition of the solid
angle for the second, we get

ð
Δf

~G?
f ,i � ∇0 1

R
dS0

¼ n̂f

ð
@Δf

~Gf ,i

R
� �n̂f � d~l0
	 


þ~Gf ,iΩf (~r), (B3)

where �n̂f � d~l0 is a line differential on the triangle boundary @Δf

perpendicular to d~l0 pointing out of the triangle in the triangle
plane. Rearranging the scalar triple product inside the first integral,
we get

ð
Δf

(~Gf ,i� n̂f )�∇0 1
R
dS0 ¼ n̂f (�~Gf ,i� n̂f ) �

ð
@Δf

1
R
d~l0 �~Gf ,iΩf (~r),

¼Ωf (~r)~Gf ,i�
X
l¼i,j,k

ci,lγ l(~r)n̂f , (B4)

where ci,l ¼ ~G?
f ,i �~el ¼ (~ei �~el)=(2Af ).

2. Potential of a uniform charge density on a triangle

We decompose the displacement vector as ~R ¼ ~pþ df n̂f ,
where ~p is the component along the plane of the triangle and
df ¼ n̂f �~R is the signed distance from the triangle plane. This
leads to the following identity:

1
R
¼ �∇0

k �
~p
R
� d2f
R3

: (B5)

Integrating the expression over Δf , we get

ð
Δf

1
R
dS ¼ �

ð
@Δf

~p � (�n̂0f � d~l0)

R
þ dfΩ(~r), (B6)

where the first term has been obtained by Gauss’s theorem and the
second by applying the definition of the solid angle. Integrating
each triangle edge in @Δf separately and noting that the numerators
of these integrals do not depend on the integration variable, we can
express the line integral using the line-charge potentials,

ð
Δf

1
R
dS ¼ df (~r)Ωf (~r)þ

X
l¼i,j,k

2Af xl(~r)γ l(~r), (B7)

where xl ¼ ~Gf ,l �~dlþ1 is the normalized signed distance measured
in the triangle plane from the line defined by edge~el toward node l
so that xl(~ri) ¼ 1.

3. Potential of a linear dipole density

With identities df ¼ n̂f �~R and hi(~r 0) ¼ ~Gf ,i � (~r 0 �~rj) ¼ ~Gf ,i�
(~dj �~R), we can write the potential of a linearly varying dipole
density as

ð
Δ f

hi(~r
0)
~R
R3

� d~S 0 ¼ df

ð
Δ f

~Gf ,i � (~dj �~R)

R3
dS0: (B8)

Again, let us separate a term containing the solid angle,

ð
Δ f

hi(~r
0)
~R
R3

� d~S 0 ¼ �xi(~r)Ωf (~r)� df

ð
Δ f

~Gf ,i �
~R
R3

dS0: (B9)

For the latter integral, we can utilize the identity in Eq. (B2),

ð
Δ f

hi(~r
0)
~R
R3

� d~S 0 ¼ �xi(~r)Ωf (~r)þ
X
l¼i,j,k

ci,ldf (~r)γ l(~r): (B10)
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