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Deep Form Finding

Using Variational Autoencoders for deep form finding of structural
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In this paper, we are aiming to present a methodology for generation,
manipulation and form finding of structural typologies using variational
autoencoders, a machine learning model based on neural networks. We are
giving a detailed description of the neural network architecture used as well as
the data representation based on the concept of a 3D-canvas with voxelized
wireframes. In this 3D-canvas, the input geometry of the building typologies is
represented through their connectivity map and subsequently augmented to
increase the size of the training set. Our variational autoencoder model then
learns a continuous latent distribution of the input data from which we can
sample to generate new geometry instances, essentially hybrids of the initial input
geometries. Finally, we present the results of these computational experiments
and lay out the conclusions as well as outlook for future research in this field.

Keywords: artificial intelligence, deep neural networks, variational
autoencoders, generative design, form finding, structural design

INTRODUCTION
In recent years, we are witnessing a proliferation of
machine learning tools and methods in both aca-
demic as well as professional fields. In this paper,
we are aiming to present a methodology for gen-
eration, manipulation and form finding of structural
typologies using variational autoencoders. Machine
learning and especially neural networks are already
widely implemented for solving problems of geo-
metrical complexity and data manipulation inher-
ent to pattern recognition of 2D images (Krizhevsky,

Sutskever and Hinton, 2012) as well as various types
of manifolds such as 3D geometry and graphs (Kelly
et al, 2018) (Wang et al, 2018). Depending on the
problem and the discipline, these manifolds can fall
within a wide variety of geometrical domains. How-
ever, beyond the training involved in the initial tasks
of recognizing patterns to streamline complex pro-
cesses (Luo, Wang and Xu, 2018) (Yetiş et al, 2018)
(WuandKilian, 2018), weargue that themost promis-
ing implementation techniques of neural networks
in design rely on their ability to become generative.
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Figure 1
Output of VAE
trained model
obtained by taking
a series of locations
within the
continuous latent
distribution. These
locations are then
reconstructed
following their
resulting
connectivity map.

Some work within the design community that maps
the potential of this approach has already been con-
ducted (Cudzik and Radziszewski, 2018). Powerful
techniques inherent to these models like sampling
(White, 2016) and feature vector arithmetic (Radford,
Metz and Chintala, 2016) show great promise in the
context of design. Variational autoencoders, which
are a recent development of neural networks, are
shown to be able to generatemany types of complex
data. Although initially trained on sets of labeled im-
ages, proliferated use of these models in wider dis-
ciplines has driven the need for working with vector
data and 3D geometry (Gregor et al, 2015) (Ha and
Eck, 2015). To reduce the dimensionality of the input
data, some neural networkmodels transform the raw
3D geometry input into its voxelized representation
(Wu et al, 2016).

Our approach involves taking the centerlines of
the interconnected structural elements that com-
pose a building to obtain a wireframe that is rep-
resentative of its core geometry. Represented as a
connectivity map, we used this geometry as an in-
put data for a variational autoencoder, opening up a
methodology within 3Dmachine learning that is ap-
plicable to thefieldof structural design. After training

on an augmented data set, the network learned to
identify various types of wireframes. In the last stage
of the process, we made use of the generative capa-
bility of the network by sampling new points from
the continuous latent distribution that themodel has
learnt. The autoencoder then outputs their corre-
sponding connectivitymaps that result in newly gen-
erated wireframes.

VARIATIONAL AUTOENCODER
Our variational autoencoder network is takendirectly
from the paper “Auto-encoding variational Bayes”
by Diederik P. Kingma and Max Welling from 2014
(Kingma and Welling, 2014). We also consulted a
very good summary of variational autoencoders and
their innerworkingswrittenbyKevin Frans from2016
[2] as well as “Tutorial on Variational Autoencoders”
paper (Doersch, 2016). For implementation of the
model in Keras we consulted the work by Francois
Chollet from 2016 [1]. We adapted the number of
neurons in intermediate layers to accommodate for
our input layer dimension and added custom parts
for data input and output. Code is implemented in
Pythonusing Keras as a high-level API for TensorFlow,
amachine learning library developedbyGoogle. Our
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Figure 2
Diagram of VAE
model architecture
with 150 million
trainable
parameters.

variational autoencoder architecture therefore con-
sists of an encoder and a decoder network with a la-
tent layer in between that encodes two latent vari-
ables of the probability distribution.

The encoder network consists of the input layer
with 35,100 neurons, 3 intermediate fully connected
layers consisting of 2,000, 1,000 and 500 neurons re-
spectively. This number of neurons in each interme-
diate layer is derived from a grid search approach.
The decoder network is the inverse of the encoder
network, ending with an output layer of the same di-
mension as the input layer. All neurons use rectified
linear unit (ReLU) as an activation function, except in
the output layer that uses sigmoid activation. The
output of the network is fully reconstructed from the
in-between latent layer that encodes the input data
probability distribution. Results from thenetwork are
directly written into a connectivity map in plain text
format, which is later read in Rhino to reconstruct the
wireframe geometry.

Figure 3
Our loss function is
summing two
separate losses: the
reconstruction loss
and KL divergence.

Reconstruction loss is measuring how well do the
outputs of the network match the inputs and is cal-
culated as amean squared error between the two. KL

divergencemeasures the difference between the dis-
tribution of the latent variables and a unit Gaussian.
Added together, these two losses force the network
to generate latent vectors that roughly follow a unit
Gaussian distribution (Doersch, 2016). As the latent
layer contains only two variables, we can sample the
distribution and plot its results on a 2D grid. For net-
work training, we used the GPU cluster at the Univer-
sity of Seville. It took approximately 20-30minutes to
train a network for 25 epochs.

DATA REPRESENTATION
In order to train a variational autoencoder it was cru-
cial to prepare our 3D geometry in a way that can
be parsed through the network. This means choos-
ing a most compact way to represent the geome-
try, avoiding redundancies whilst retaining full in-
formation. We call our proposed model 3D-canvas
as it consists of a rectangular 3D volume discretized
in cube-shaped cells within which the input geom-
etry is contained. Each cell of the 3D-canvas con-
tains labeled connectivity vectors that can be acti-
vated or deactivated depending on the input geom-
etry. These connectivity vectors represent wireframe
segments in different orientations that are used to
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approximate the input geometry in 3D space. To
keep our data representation compact and without
overlaps, we discarded parallel connectivity vectors
and chose only 13 for each cell according to Figure
4. For understanding, we included a corresponding
Figure 3 that shows the same principle working in 2D
space.

Figure 4
Connectivity
diagram for 2D.

Figure 5
Connectivity
diagram for 3D.

At the beginning of the routine, a 3D-canvas is gen-
erated “around” the input geometry, so that the full
extent of the input can be encoded within it. Wire-
frame line segments of the input geometry are then
snapped to the grid defined by the cube-shaped
cells of the 3D-canvas and corresponding connec-
tivity vectors are mapped according to each one of
the orientations of the snapped line segment. This
process is iterated throughout each cell of the 3D-
canvas (which acts as the container of the input ge-
ometry) until the full extent of the input geometry is
described in this way. This information is then stored
in a connectivity mapwith its corresponding grid co-
ordinate (3D-canvas) and values for the 13 connec-
tivity vectors are marked with a letter and a number
indicating its orientation in each cell. To make it eas-
ier for a variational autoencoder to train, instead of
using a binary value for the presence of a connectiv-
ity vector (0 or 1) we used a continuous value repre-
senting a percentage with a domain [0, 1]. Our cho-
sen activation threshold within this domain was ar-

bitrarily set to 0.6 and kept for all training samples,
which means that values above this threshold indi-
cate the presence of awireframe segment in that cell,
while values below indicate it’s absence. Although
not implemented in the current model, this contin-
uous value could be used to encode the thickness of
the structural wireframe element, where smaller val-
ueswould correspond to thinner elements and larger
values to thicker elements. This principle could be
used to encode other structural or material proper-
ties as well.

Connectivitymap
Parsing the input geometry into a connectivity map
was implemented in Rhino using a custom written
Python script. The connectivitymap itself is stored as
a plain text file and read directly by the Python script
used to train the variational autoencoder. In order
to be used as an input, the connectivity map needs
to be “flattened” and the value for each connectivity
vector for each cell of the 3D-canvas mapped onto
a single input neuron. In our training examples, we
used a 3D-canvaswith dimensions 14x14x11. The 3D
canvas is then composed of 14 cells along the x-axis,
14 cells along the y-axis, and 11 cells along the z-axis.
This resolution is sufficient to distinguish structural
typologies like arches, wall and surface elements, vol-
umes with cavities, openings etc. and allowed us to
design and implement instances of neural networks
which are trained for recognition and handling of
data pertaining to the field of architectural geometry.
With each cell having 13 connectivity vector values
assigned to them, the number of input neurons for
the variational autoencoder is therefore calculated as
15x15x12x13 = 35,100. Here we calculate with 15 in-
stead of 14 as a dimension, as we need to consider
one additional node to define the snapped lines that
might be inscribed in the top, rear and lateral faces
of the 3D-canvas. As the number of training param-
eters in a neural network grows with the number of
input neurons, this size of the 3D-canvas was at the
limit of whatwe couldworkwith in terms of available
computational power. Future improvements to the
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Figure 6
Battersea Power
Station, its
representative
geometry as a
snapped set of lines
within the
3D-canvas and a
part of its
corresponding
connectivity map.

training model should include a different approach
to parsing the 3D input geometry, possibly using a
convolutional neural net architecture. This would en-
able using larger 3D-canvases and correspondingly
parsingmodels inhigher resolutionwhile at the same
time significantly reducing the number of trainable
network parameters.

Data augmentation
Training neural networks of any kind requires large
amount of input data. Additionally, this data should
ideally be as continuous as possible in terms of raw
input values. For images of 3D objects, this con-
tinuity implies gradual changes in translation, rota-
tion, scale, color and brightness values of the input
data. Artificially added noise on the level of pixels
can as well help the network to learn the underly-
ing meaningful features in the data. A technique
called data augmentation is often used in order to
enlarge the number of training samples by artificially
adding variation to the input data (Goodfellow, Ben-
gio and Courville, 2016). In our model, the number
of initial training samples was only two, correspond-
ing to two input models between which the autoen-
coding was to be done. To augment our training
data, we used simple random translation of the input
models inside the 3D-canvas to increase the num-
ber of training samples to 3,000. At the beginning,
we also experimented with rotation, but this was not
successful, as rotations in a rectangular grid could
not be implemented as gradual transformations but

only as 90-degree “jumps”. These discretely rotated
samples would be considered as separate training
sets by the neural network and slow down the train-
ing. We found similar limitations for scaling the input
models. Based on these findings, we used only dis-
crete randomized translation to augment the train-
ing data. Future improvements of the model could
include introduction of noise in the formof randomly
activating or deactivating connectivity vectors based
on some small probability value. This would increase
the robustness of the variational autoencoder train-
ing process and make the network better learn fea-
tures that are invariant to the noise. Finally, we ex-
ported the complete training set with augmentation
into the connectivity map from which it can be read
into the training model.

CASE STUDIES AND RESULTS
As mentioned previously, for training we ran tests
where we used input models augmented to 3,000
samples each, totaling 6,000 samples for the two-
input models tests and 9,000 samples for the three-
input models tests, at each epoch. Variational au-
toencoder network then learned the underlying dis-
tribution of the input data, mapping each initial data
set (the learnt input geometries) onto a continuous
latent space. Because this latent space is continu-
ous and two-dimensional (there are only two latent
variables), we can sample this space and plot the re-
sults on a grid, thus obtaining the geometries that
lay in between the distribution of the original in-
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puts. Due to their “bottleneck” architecture, autoen-
coders are forced to learn compact representation
of the input data (Goodfellow, Bengio and Courville,
2016). This process can most efficiently be achieved
by learning the underlying translationally invariant
high-level features in the data and map it into a
higher-dimensional latent space. Assumption is that
all geometries that share certainhigher-level features
(like a spatial gap under the bridge or an arch or
protruding thin volumes of towers from a castle for
example) are mapped as close points on a higher-
dimensional manifold in the latent space (Sohn, Lee
and Yan, 2015).

Variational autoencoders enable us to sample
this higher-dimensional manifold in a continuous
manner and to obtain variations or hybrids of initial
input geometries, success of which we can directly
evaluate visually by examining the geometries sam-
pled from the distribution. Thus, we obtained in-
terpolated geometries resulting from the sampling
of the positions within the learnt distribution of the
original input models. By being able to identify posi-
tions representative of specific geometric instances
within the latent space, the possibility for thinking
about pseudo-semantic operations with vectorized
geometric entities can be considered as further im-
plementation of this technique. Following our 3D-
canvas and connectivity vector approach, this might
be challenging due to the high n-dimensional vector
that is representative of the geometry of each sample
within the dataset. We hope that this paper can help
exploring further methods that allow for this type of
vector-based geometric operations.

VAE experiment no. 03. Wireframes of 2-distinct
input buildings: Battersea Power Station (in purple)
and CCTV (in yellow). Top view of chart represent-
ing the learnt distribution in latent space, together
with reconstructed wireframes from a grid of sam-
ple points taken from this distribution. With only
25 epochs, the output proved smooth transitions in-
between the reconstructed samples resembling the
original input. KL = -0.5

Figure 7
Experiment no. 03

Figure 8
Experiment no. 03

Figure 9
Experiment no. 05

Figure 10
Experiment no. 05

VAE experiment no. 05. We have now increased
the training of the model, sampling points from the
latent space after 75 epochs. The model seems to
be over-trained (after only 50 epochs more) and to
over-recognize the outputs in latent space, offering
no smooth transition in-between the grid of recon-
structed wireframes. KL = -0.5
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Figure 11
Experiment no. 06

Figure 12
Experiment no. 06

Figure 13
Experiment no. 13

Figure 14
Experiment no. 13

VAE experiment no. 06. We sample points after
25 epochs, and change KL to -10.5. The resulting
distribution is mapped into clearly defined regions.
Similar to Experiment no. 05, the model seems to
over-recognize the outputs in latent space, offering
no smooth transition in-between the grid of recon-
structed wireframes.

VAE experiment no. 13.Wireframes of 3-distinct in-
put buildings: Battersea Power Station (in purple),
Tate Modern (in cyan) and CCTV (in yellow). Top
view of chart of latent distribution, together with
corresponding reconstructed wireframes. With only
25 epochs, the output proved smooth transitions in-
between the reconstructed samples. KL = -0.5

VAE experiment no. 15. We have increased the
training of the model, sampling points from the la-
tent space after 75 epochs. Again, the model seems
to be over-trained (after only 50 epochsmore) and to
over-recognize the outputs in latent space, offering
no smooth transition in-between the grid of recon-
structed wireframes. KL = -0.5

In the series of experiments presented here, we
areworkingwithmodels that handle around 150mil-
lion parameters, whilst only training with 6,000 and
9,000 samples respectively as the dataset for the cor-
responding tests. From our experience with training
the models, the number of samples in the dataset
should be around 10% of the number of parameters
in themodel, whichmakes 15million samples for the
models that we used an optimal number. Therefore,
furtherwork on thesemodelswould require a greatly
increased dataset in order to have a better balance of
training and validation.

CONCLUSION ANDOUTLOOK
Due to the growing international academic interest
in generativemachine learningmethods and itswide
commercial applications, it is clear that the workflow
presented in this paper is just the beginning of a bur-
geoning field. Although developed 5 years ago, the
use and usefulness of variational autoencoders in the
context of architectural design remains mostly unex-
plored. We hope that this paper will show the po-
tential of these methods to a wider design audience,
specifically in application toworkingwith 3Dgeome-
tries. Unfortunately, this is as well one of the techni-
cal bottlenecks in extending the application to larger
geometries, namely the fact that the amount of input
parameters scales proportionally with the bounding
volume of the input geometry. This makes working
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Figure 15
VAE experiment no.
15: Battersea Power
Station, Tate
Modern and CCTV.

with large bounding boxes unpractical due to long
network training times, even if the training is con-
ducted on a GPU cluster. Existing techniques like
introducing convolutional layers into the variational
autoencoder could be used to solve this problem.
To improve the learning of the model proposed in
this paper, it would be useful to use a data set not
derived from few augmented instances, but rather
from a larger repository of 3D wireframe geometries
of structural typologies. The authors of this paper
are currently not aware of the existence of any such
repository.

In addition, to improve the quality of generated
geometries, switching to a completely different neu-
ral network model could be called for, as generative
adversarial networks (GANs) proved to be evenmore
powerful in terms of learning higher-level features of
the data and using this to reconstruct plausible in-
stances of it. In that sense, GANs could be used in-
stead of variational autoencoders as design genera-

tors. Future research should focus on pros and cons
of using either of these models, especially in terms
of current research being conducted onmerging the
two models to parse 3D geometries (Wu et al, 2016).
Finally, as already mentioned earlier in the paper,
continuous values in variables representing connec-
tivity vectors could be used to encode other struc-
tural or material properties of the wireframe mem-
bers like thickness, material strength, etc. This would
contribute to pushing this research towards a more
material driven design with holistic structural under-
standing, rather than just focusing on the underlying
geometry.

The proposed workflow challenges designers to
acquire a critical perspective of the impact and po-
tential of AI in our society and design practices. We
believe that generative neural network models have
a large potential to redefine how architects and de-
signers work with architectural precedents, namely
to use them directly as data for design generation.
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Figure 16
VAE experiment no.
15: Reconstructed
wireframes from a
grid of sample
points taken from
this distribution.

Figure 17
Output of VAE
trained model
obtained by taking
a series of locations
within the
continuous latent
distribution - CCTV
on the left and
Battersea Power
Station on the right.

Work presented in this paper shows the potential of
such techniques and the future of AI in the context of
architectural geometry generation and the potential
that bespoke AI-based tools for architects can bring
to the field of structural deep form finding.
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