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Abstract—Deep learning has been extensively useful for its
ability to mimic the human brain to make decisions. It is able
to extract features automatically and train the model for classifi-
cation and regression problems involved with complex images
databases. This paper presents the image classification using
Convolutional Neural Network (CNN) for target recognition using
Synthetic-aperture Radar (SAR) database along with Explainable
Artificial Intelligence (XAI) to justify the obtained results. In this
work, we experimented with various CNN architectures on the
MSTAR dataset, which is a special type of SAR images. Accuracy
of target classification is almost 98.78% for the underlying pre-
processed MSTAR database with given parameter options in
CNN. XAI has been incorporated to explain the justification
of test images by marking the decision boundary to reason the
region of interest. Thus XAI based image classification is a robust
prototype for automatic and transparent learning system while
reducing the semantic gap between soft-computing and humans
way of perception.

Index Terms—Artificial intelligence; deep learning; image
classification; target recognition; synthetic aperture radar

I. INTRODUCTION

Artificial Intelligence uses deep, distributed computational
architectures to solve the real world complex problems. Real
dataset often suffers from noise and artifacts, so the recogni-
tion process carried out with the help of abstract level learning
methodologies. A lot of these initiatives are biologically in-
spired due to the fact that the human brain acquires most of
its practical and logical reasoning capability by processing in
this way. Hence, latest advances in algorithms and computation
have focused attention on a new class of biologically inspired
algorithms introduced as Deep Neural Networks (DNNs) [1].
There are an enormous number of layers with thousands of
nodes interconnected with each other analogous to the brain
with an extensive network of neurons. The major application
of these networks lies in classification decisions with the main
advantage of its learning capability of complicated decision
functions compared to other techniques. Again, these models
must be able to give justification about the model rationale
which can be evaluated by experts to audit the decision making
factors. There should be a measure to see how the machine
reasons for an outcome in contrast to a human expert for
potential conflicts and legal norms.

Fig. 1. Left: Initial SAR image of Port-au-Prince (Haiti) (©ISA, 2009). Right:
Classification map obtained with the hierarchical method for the 3 classes
(Blue: water; Green: vegetation; Red: urban area) [2]

The definition of explainability of artificial intelligence is
that it is a formal explanation by a model against action taken
or decision made, given the test data and features involved.

A. Target recognition using SAR

Synthetic Aperture Radar (SAR) in Automatic Target
Recognition (ATR) problems is a common application of such
networks. The ability of constant surveillance provided by
SAR has made it an irreplaceable imaging radar technology.
SAR can provide images of land, sea and air targets during
all weather conditions. This is comparable to the problem of
image classification with a huge labeled images’ database to
fulfill the prerequisite of labelling a new anonymous image.
A distinct amount of characteristics actually distinguish SAR
modality from natural imagery, most importantly the fact
that both magnitude and phase are included in the data.
SAR is particularly useful for tasks such as remote sensing,
surveillance, reconnaissance and target recognition. Analysts
are trained to understand and exploit the raw SAR data for the
identification of targets of interest and significant activities.
Limitations in radar technologies restrict image resolutions
to tens of centimeters or meters per pixel. Thus, exploiting
the SAR images becomes a complex process and requires
years of training of image analysts. This is because they
manually search and classify targets that extend for just a
couple of meters in large SAR images that covers tens of
kilometers. The time requirement of this manual classification
is significant and reduces the performance of the intelligence
agencies. They generate massive amounts of data and demand



TABLE I
COMPARATIVE ANALYSIS OF THE STATE-OF-ART ON MOVING AND STATIONARY TARGET ACQUISITION AND RECOGNITION (MSTAR) DATASET

Sr. Reference Year Technique Accuracy
1 Coman [3] 2018 CNN; Layers: 2 Conv, 1 flattened, 2 dense, 2 dropout 90%
2 H. Furukawa [4] 2017 CNN; Layers: 17 Conv, 1 FC, Based on ResNet-18 [5] 99.56%

3 S. Zaied [6] 2018 Architecture 1:CNN Layers: 2 Conv, 1 hidden
Architecture 2:CNN + CAE Layers: 2 Conv, 1 hidden

Arch. 1: 75.98%
Arch. 2: 90.09%

4 Z. Lin [7] 2017 Ensemble; Models: 2 CHU 99.09%
5 I. M. Gorovyi [8] 2017 SVM 90.07%
6 R. Min [9] 2019 MCNN; Layers: 1 Conv, 1 FC. Teacher Network: ResNet-18 [5] 98.2%

7 R. Chakraborty [10] 2019 CRN; Layers: 2 C Conv,2 G-transport, C Residual, Invariant Layer,
3 Conv, 3 Batch Norm and ReLU, 2 R R Block, 1 MaxPool, 2 FC 97.69%

8 Q. Liu [11] 2018 ConNet; Layers: 4 Conv, 1 Conv Filter, 1 FC 99.48%
9 M. Heiligers [12] 2018 CNN: Layers: 4 Conv + ReLu, 2 MaxPool, 1 FC, 1 Soft-max 97.6%
10 Proposed 2020 CNN: Layers: 3 Conv + ReLu + Batch Norm, 2MaxPool, 1 flattened, 1 Dense + Softmax 98.78 %

the customized algorithm which is easy to implement and well
generalized. Considering the facts, deep learning algorithms
is an ideal fit for automatic feature extraction and target
classification. Consequently, the need for ATR algorithms for
radar images has made it an active research area for many
years. The research community of deep learnign domain have
adopted SAR ATR as one of the benchmark problems for
highlighting the potential of these new methods. The Moving
and Stationary Target Acquisition and Recognition (MSTAR)
database [13] is a publicly available dataset formed by a
collection of eight military vehicles taken from a number of
aspect angles which can be employed broadly for algorithm
development and consistent performance comparison. This
paper is organized as follow: section I is introduction; section
II is about survey of recent literature for research motivation;
section III is proposed method; section IV is experimental
analysis and section V is conclusion.

II. LITERATURE REVIEW

CNN is used for the classification of the Synthetic Aperture
Radar images on datasets like MSTAR in [3]. The classi-
fication is done with and without additional radar informa-
tion. The results are then compared with the performance
of traditional ML models. In [4], CNN has been used to
classify SAR imagery with and without data augmentation
along with translation invariance of CNN. The accuracy has
been found to be 99.6% on MSTAR dataset with 10 classes.
Translation invariance has been introduced in the MSTAR
dataset as a form of data augmentation techniques and with
the help of Accuracy-translation map and plots. Further, CNN
and Convolutional autoencoders are used to classify SAR
and Inverse SAR images from the MSTAR dataset of ten
classes such that the CAE provides optimal filters to the CNN
layers for the classification of the dataset [6]. The problem
of limited availability of publically available SAR imagery in
the MSTAR dataset is tackled by the use of the Convolutional
highway unit and the use of an ensemble model that consists
of two CHU-Net to generate multiscale feature representations
of SAR images [7]. The use of the SVM classifier done on
imagery dataset available publically as MSTAR dataset [8].
The use of well-crafted features and proper preprocessing

of the image dataset is proposed over the use of CNN as
a method to prevent the overfitting of data. In [9], due to
the requirement of high memory and bandwidth connection
in deployment of Deep CNN in real-time recognition systems
of SAR sensors, a micro CNN trained through a deep CNN,
is proposed which has the memory footprint that has been
compressed 177 times, and the calculated amount reduced by
a factor of 12.8. The use of Complex-valued deep learning
is proposed for the classification of MSTAR dataset through
DNNs defined on the space of complex numbers that utilize
weighted Fréchet mean [10]. Compared to its state-of-the-are
counterpart on the same dataset the proposed model is able
to achieve better performance with the use of just 1% of the
parameters. In [11], CNN has been used to construct well-
defined features form a limited MSTAR dataset, which is then
used as features for the SVM model for the classification of a
complete MSTAR dataset. This method of feature extraction
from CNN is claimed to be more effective as compared to
traditional hand-crafted features for this dataset. The classi-
fication of the MSTAR dataset is achieved through the use
of CNN [12]. Along with the classification, the decisions of
the CNN are explained through the visualization of a saliency
map which has been computed with the help of the Grad-
CAM technique. The XAI tool, LIME has already been used
in many applications to provide the explanation of the black
box model decisions for images and textual data [14] [15].
The aim is use the LIME to explain the classification results
for SAR images as well. Table I provides the state-of-the-art
comparison of the existing techniques on MSTAR dataset.

III. PROPOSED METHOD

The proposed technique is based on CNN architecture as
shown in figure 2. The first phase of methodology comprises
the MSTAR image dataset collection and CNN is applied for
the image classification on SAR images. The detailed architec-
ture for the CNN model has been influenced from [16] and [17]
with empirical modifications for best possible validation. The
architecture diagram of proposed CNN is depicted in figure
3. In the second phase, an explainable artificial intelligence
tool, Local Interpretable Model-agnostic Explanations (LIME)
is used to provide the explanations of the image classification



Fig. 2. XAI incorporated to CNN predictions for test results justification

Fig. 3. Proposed CNN architecture for target reconginition

results. LIME [18], [14] is the original Python implementation
of one of the explanations techniques used in literature. The
neural network generated by TensorFlow acts as input to
LIME and results in the matrix representation of the regions
triggering the particular classification in the form of a specific
frame. LIME enables post-hoc explainability which helps in
providing local explanations for a particular decision made
by machine learning so that it can be made interpretable on
demand rather than explaining the whole systems behavior.
The proposed explainable deep learning based image clas-
sification is prototype system for automatic and transparent
learning system.

IV. EXPERIMENTAL RESULTS

This sections has dataset description, augmentation proce-
dure, performance metrics, XAI for the justification of agnostic
CNN model.

A. Dataset description

CNN training has been done using MSTAR dataset which
contains 8 classes. It is compiled and processed by the Sandia
National Lab and is publicly available1. The specifications of
the images of each class are described in the Table II.

B. Data Augmentation

The process of data augmentation2 used in this paper is
very efficient and easy to follow. All the images are subjected
to a function such that the output image has an equal 0.33
probability of being flipped sideways, inverted, and of no

1[Online].Available: https://www.sdms.afrl.af.mil/index.php?collection=
mstar

2[Online]. Available: https://github.com/aleju/imgaug

change. The original distribution of the images of different

TABLE II
CLASSES COUNT BEFORE AND AFTER IMAGE AUGMENTATION

Classes Before Augment After Augment
2S1 577 577
BRDM-2 697 697
BTR-60 195 585
D7 274 548
SLICY 1953 1953
T62 273 546
ZIL131 274 548
ZSU-23_4 696 696

classes is skewed. Some classes contain only 195 images while
some have more than 1,900 images. This skewness causes
the CNN model to overfit to some classes while underfit for
others. To solve this problem the proposed methods has used
two cases:

• Use the same number of images for each class.
• Perform data augmentation for under sampled classes as

shown in the Table II.
The first case based method reduces the data available for
training, validation, and testing considerably with just 170
images per class for training, 15 images for validation and
10 images for testing. When the CNN model was trained on
this reduced dataset, the performance was below 80 percent
and the model still experienced over-fitting. One of the major
reason for this was the fact that during data preprocessing all
the images were resized to 200× 200× 1 and 200× 200× 3.
The size of some classes was as low as 54 × 54 × 3 while
some classes had images with a size of 198× 198× 3. When
all the classes we resized, the classes with a low resolution



before the preprocessing had less information per image before
and after the preprocessing. These classes incidentally also
have a large number of total images. When we dropped
the images from these classes to even out the data, we
excluded information related to these images. The effect of
this reduction of information had severe effect on the classes
with less information per image. The second case involved
the use data augmentation to even out the dataset distribution.
Data augmentation was done to classes with than 250 images.
After the data augmentation, CNN model was trained on the
complete dataset. This time the model did not overfit the
data as the number of training, validation, and test images
increased. The reason for specific augmentation just for few
clases in Table II is that the dataset for this classification
problem is unique as compared to the broad public datasets
like ImageNet, standard data pre-processing techniques like
data augmentations provide only limited support in improving
the performance of the model and overuse of such methods
results in over-fitting.

Fig. 4. Performance of CNN on original (unaugmented) dataset

Fig. 5. Performance of CNN on augmented dataset

Figures 4 and 5 show the performance of the CNN model on
original and augmented MSTAR dataset respectively. A clear
superiority can be observed in the performance of CNN when
it is trained on the augmented dataset. Figures 6 and 7 show
the accuracy results for proposed CNN models using different

Fig. 6. Accuracy 80%

Fig. 7. Accuracy 97%

Fig. 8. Loss 80%

Fig. 9. Loss 97%

learning rates and epochs. Learning rates are 0.01 and 0.005;



epochs are 10 and 40. Figures 8 and 9 show the cross entropy
loss for proposed CNN models using different learning rates
and epochs. Learing rates are 0.01 and 0.005; epochs are 10
and 40.

C. Performance metrics and results

The various performance metrics have been used for the
performance evaluation such as: precision, recall, F1, speci-
ficity, ROC and Geometric mean. Tables I and III details
the comparative analysis of the performance results for the
different classes with CNN models along with the state-of-
art. In [19], Principle Components Analysis (PCA), Inde-
pendent Components Analysis (ICA), Hu Moments are used
as feature extractors for Linear (LDC), Quadratic (QDC),
K-nearest Neighbour (K-NN), and Support Vector Machine
(SVM) classifiers. The top performance is observed in the
case of 3 Nearest Neighbour + PCA Feature extractor. In [8],
SVM classifier is combined with a hybrid range and azimuth
profiles feature extractor to obtain an accuracy of 90.7%. The
performance of our CNN image classifier is better than the
traditional machine learning models explored in these papers.

Fig. 10. LIME XAI results for fewer parameters for coarse explainability
analysis

Fig. 11. LIME XAI with more parameters for detailed granular analysis

The table IV shows the performance metrics for all 8 classes
for testing.

There were total of 4939 images in MSTAR dataset before
augmentation and 6150 images after augmentation as shown
in table II with number of classes being eight. The training,

validation and test image datset ratio is 64: 16: 20 in case of
augmented and original dataset.

D. XAI model - LIME

The predictions made by an ML model can be accepted or
rejected depending on the reasoning behind them. A model
and the decisions it makes can be trusted when the prior
human knowledge about the application domain coincides with
the reasoning behind the model’s decision. This comparison
can only be made if we understand this reasoning. We use
LIME as a method to explain models by presenting the
representative individual predictions and their explanations in
a non-redundant way. This is achieved by displaying visual
descriptions that provide a qualitative understanding of the
relationship between the instance’s elements and the model’s
prediction. Interpretability is one of the essential criteria for
explaining the model’s reasoning. This requirement further
implies that explanations should be easy to understand and
should take the limitations of the user under consideration.
In the case of image classification, hundreds or thousands
of features significantly contribute to a prediction. It is not
reasonable to expect any user to understand the reasoning
behind predictions, even if they can inspect individual weights.
Interpretable explanations require the use of a representation
that is understandable to humans, regardless of the actual
features used by the model. For image classification, we use
binary vector representation that indicates the “presence” or
“absence” of a bordering patch of similar pixels (a super-
pixel), while the classifier interprets the image as a tensor
with three color channels per pixel. The second fundamental
criteria, for the task of explanation, is local fidelity. Often
an explanation can’t be completely trusted unless it is the
complete explanation of the model itself. For an analysis to
be significant it must at least be locally faithful, i.e. it must
correspond to how the model behaves in the neighborhood
of the instance being predicted. The overall goal of LIME
is to identify an interpretable model over the interpretable
representation that is locally faithful to the classifier. For the
image classification task in our paper, we use sparse linear
explanations for image classifiers [18]. It provides explanations
for targets in the images by highlight the super-pixels with
the positive weight towards a specific class as they give
intuition as to why the model would think that class may be
present. The explanations provided by LIME are depicted in
Fig. 10 and 11 in the form of highlighted boundaries around
the important features of the images which contributed in
making the decisions by black box model. Fig. 10 provides a
course analysis by taking into account the main features used
for classification of that image whereas Figure Fig. 11 is a
granular analysis of the features used for the decision making
process.

V. CONCLUSION

CNN is capable of extracting complex features from images
automatically that are intuitively incomprehensible to the hu-
man subjective vision. The performance accuracy proposed



TABLE III
COMPARATIVE ANALYSIS OF TRADITIONAL AND THE STATE-OF-ART ON MOVING AND STATIONARY TARGET ACQUISITION AND RECOGNITION

(MSTAR) DATASET

Sr. Reference Technique Accuracy

1 Y. Yang [19]

Arch. 1: Linear (LDC)/ Quadratic (QDC) + PCA Feature extractor
Arch. 2: 3 Nearest Neighbour + PCA Feature extractor
Arch. 3: SVM + PCA Feature extractor
Arch. 4: Linear (LDC) + ICA Feature extractor
Arch. 5: Quadratic (QDC) + ICA Feature extractor
Arch. 6: 3 Nearest Neighbour + ICA Feature extractor
Arch. 7: SVM + ICA Feature extractor
Arch. 8: Linear (LDC)/Quadratic (QDC) + Hu Feature extractor
Arch. 9: 3 Nearest Neighbour + Hu Feature extractor
Arch. 10: SVM + Hu Feature extractor

Arch. 1: <50%
Arch 2: 98.67%
Arch 3: 96.61%
Arch 4: 83.06%
Arch 5: <50%
Arch 6: 95.14%
Arch 7: 55.82%
Arch 8: <50%
Arch 9: 76.85%
Arch 10: 73.69%

2 I. M. Gorovyi [8] SVM + fusion of range and azimuth profiles feature extractor 90.07%
3 Z. Lin [7] Ensemble; Models: 2 CHU 99.09%
4 H. Furukawa [4] CNN; Layers: 17 Conv, 1 FC, Based on ResNet-18 [5] 99.56%
5 Proposed CNN: Layers: 3 Conv + ReLu + Batch Norm, 2MaxPool, 1 flattened, 1 Dense + Softmax 98.78 %

TABLE IV
PERFORMANCE RESULTS FOR EACH OF 8 CLASSES

Classes Prec Recall F1 Spec ROC GM
2S1 0.94 0.97 0.96 0.99 0.98 0.98
BRDM-
2

1.00 0.99 1.00 1.00 1.00 1.00

BTR-60 1.00 1.00 1.00 1.00 1.00 1.00
D7 0.99 1.00 1.00 1.00 1.00 1.00
SLICY 1.00 1.00 1.00 1.00 1.00 1.00
T62 0.98 0.98 0.98 1.00 0.99 0.99
ZIL131 0.99 0.98 0.99 1.00 0.99 0.99
ZSU-
23/4

0.98 0.95 0.96 1.00 0.97 0.97

CNN model on the MSTAR dataset is 98.78%. Often the
users doubts the model’s decisions, especially if the underlying
judgement is non-obvious and critical. Therefore XAI is a
ideal choice for explaining the test decisions of the model
using visual representation. Further improvement in the per-
formance of the model can be achieved by using prominent
and diverse datasets which are not for public use. Future plan
is to incorporate Convolutional Auto-encoders (CAE), which
is an unsupervised method for hierarchical feature extraction.
Instead of random initialization of the CNN features, CAE
can be used to obtain good initializations for the CNN model.
CAE has been used in [6] and are capable of improving the
classification accuracy.
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