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A B S T R A C T   

Physically-based methods in remote sensing provide benefits over statistical approaches in monitoring bio
physical characteristics of vegetation. However, physically-based models still demand large computational re
sources and often require rather detailed informative priors on various aspects of vegetation and atmospheric 
status. Spectral invariants and photon recollision probability theories provide a solid theoretical framework for 
developing relatively simple models of forest canopy reflectance. Empirical validation of these theories is, 
however, scarce. Here we present results of a first empirical validation of a model based on photon recollision 
probability at the level of individual trees. Multiangular spectra of pine, spruce, and oak tree seedlings (height =
0.38–0.7 m) were measured using a goniometer, and tree hemispherical reflectance was derived from those 
measurements. We evaluated the agreement between modeled and measured tree reflectance. The model pre
dicted the spectral signatures of the tree seedlings in the wavelength range between 400 and 2300 nm well, with 
wavelength-specific bias between −0.048 and 0.034 in reflectance units. In relative terms, the model errors were 
the smallest in the near-infrared (relative RMSE up to 4%, 7%, and 4% for pine, spruce, and oak seedlings, 
respectively) and the largest in the visible wavelength region (relative RMSE up to 34%, 20%, and 60%). The 
errors in the visible region could be partly attributed to wavelength-dependent directional scattering properties 
of the leaves. Including woody parts of tree seedlings in the model improved the results by reducing the relative 
RMSE by up to 10% depending on species and wavelength. Spectrally invariant model parameters, i.e. total and 
directional escape probabilities, depended on spherically averaged silhouette to total area ratio (STAR) of the 
tree seedlings. Overall, the modeled and measured tree reflectance mainly agreed within measurement un
certainties, but the results indicate that the assumption of isotropic scattering by the leaves can result in large 
errors in the visible wavelength region for some tree species. Our results help increasing the confidence when 
using photon recollision probability and spectral invariants -based models to interpret satellite images, but they 
also lead to an improved understanding of the assumptions and limitations of these theories.   

1. Introduction 

Physically-based models in remote sensing are increasingly impor
tant in monitoring biophysical characteristics of vegetation. Such 
models are appropriate for many large-scale ecological applications, 
where it is often not feasible to obtain empirical training data that would 
sufficiently cover the spatial and temporal domains and measurement 
configurations. Examples of such applications are monitoring global 

canopy leaf area index (LAI) (e.g. Knyazikhin et al., 1998) or back
ground reflectivity of canopies (Pisek and Chen, 2009). Vegetation in the 
physical models is parameterized using mathematical descriptions of 
canopy two- or three-dimensional structure together with spectral 
properties of the plant elements and background. Mathematical for
mulations of radiative transfer in canopies range from the turbid me
dium approach (e.g. Verhoef, 1984) to geometric-optical (e.g. Li and 
Strahler, 1985; Gerard and North, 1997) and hybrid models (e.g. Kuusk 
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and Nilson, 2000; Lacaze and Roujean, 2001; Chen and Leblanc, 1997). 
The main difference between the approaches is the degree of detail in 
how vegetation structure is described at different hierarchical levels. 
Comprehensive comparisons of physically-based vegetation reflectance 
models have been regularly performed and documented (e.g. Widlowski 
et al., 2015). 

Despite their benefits, physically-based approaches are still compu
tationally resource intensive and often require a great variety and range 
of input data on vegetation structure. Although the former limitation is 
gradually reducing due to increasing computing power, the latter con
tinues to be of particular relevance: it is practically difficult to obtain 
realistic information on (globally) representative spatial and temporal 
distributions of the input parameters, and large number of parameters 
may increase the ill-posed nature of the inversion problem (Baret and 
Buis, 2008). Thus, a remaining challenge is to develop simple, yet 
physically-based reflectance models which can simulate canopy reflec
tance with sufficient accuracy and handle uncertainties related to the 
radiation measurements. A potential theoretical framework for devel
oping relatively simple models of forest canopy radiation regime is 
provided by the spectral invariants and photon recollision probability 
theories (Knyazikhin et al., 2011; Stenberg et al., 2016). According to 
these theories, the amount of radiation absorbed, reflected, or trans
mitted by a canopy depends on optical properties of foliage and one or 
more wavelength-independent (i.e. spectrally invariant) parameters 
describing canopy structure. In the simplest form, a model based on 
photon recollision probability theory takes as input only one 
wavelength-independent parameter, photon recollision probability (p), 
which can be interpreted as the “probability that a photon scattered 
from a leaf in the canopy will interact within the canopy again” (Smo
lander and Stenberg, 2005). Theoretical studies suggest that p is related 
to structure of coniferous shoots through silhouette to total area ratio 
(STAR) (Smolander and Stenberg, 2003), and to that of whole canopies 
through LAI and diffuse non-interceptance (Stenberg, 2007). These 
findings provide the necessary direct links between forest biophysical 
variables and the model parameters. 

The theory of spectral invariants was presented roughly twenty years 
ago (Knyazikhin et al., 1998) and has been validated through simula
tions using e.g. Monte Carlo ray tracing (MCRT) (e.g. Disney and Lewis, 
2007). However, empirical validations of the theory have been per
formed only for a few forest canopies (Panferov et al., 2001; Wang et al., 
2003) and for individual shoots in laboratory conditions (Rautiainen 
et al., 2012). What is currently missing is an empirical validation at 
intermediate levels, such as individual tree crowns. Empirical validation 
at all hierarchical levels is important to evaluate the model performance 
in nature and to holistically understand the effects of different simpli
fying assumptions. Ultimately, this would help in developing more 
realistic models and reducing the uncertainties in retrievals of bio
physical variables from remote sensing data. 

This paper presents results of the first empirical validation of a model 
based on photon recollision probability at the level of individual tree 
crowns. We designed an experiment to measure multiangular reflec
tance patterns of small single trees. Based on their size (height =

0.38–0.7 m, stem diameter less than 2.5 cm, age up to 4 years), our study 
trees are classified as tree seedlings according to common terminology in 
forestry, but for the sake of conciseness, we will call them simply ‘trees’ 
in our theory, materials and methods, and results sections. We used the 
data to address the following research questions:  

1) How accurately can a model based on photon recollision probability 
simulate directional scattering properties of individual tree 
seedlings?  

2) How much does the model accuracy improve, if woody elements are 
taken into account in the simulation?  

3) How are the spectrally invariant parameters of the model linked to 
tree seedling structure? 

2. Theory 

2.1. Overview 

In this section, we review the theory and concepts that are used 
throughout our study. We start with concepts related to scattering of 
shortwave radiation by trees and their foliage (Section 2.2), continue by 
deriving the scattering model that we validate (Section 2.3), and finally 
review the concept of silhouette to total area ratio (STAR, Section 2.4). 
Symbols and abbreviations as used in our study are presented in Table 1. 

2.2. Concepts 

Albedo (ω, [unitless]) is the fraction of incoming radiation that is 
scattered (i.e. not absorbed) by an object. In statistical terms, it is the 
probability that a photon, after being intercepted by an object, will be 
scattered. The directional scattering coefficient [sr-1], denoted here as 
ω(Ω), gives the probability density of scattered photons (per steradian) 
observed in view direction Ω. Integration of ω(Ω) over all spherical di
rections gives the albedo 

ω =

∫

4π

ω(Ω)dΩ (1) 

Table 1 
List of symbols and abbreviations.  

Symbol/ 
abbreviation 

Explanation 

ω (ωtree, ωleaf) Albedo (of a tree, leaf) [unitless] 
ω(Ω) Directional scattering coefficient [sr-1] 
ω(2π) Hemispherical reflectance i.e. ‘half-albedo’ [unitless] 
dΩ Solid angle [sr] 
Ω, Ωi Direction of view, direction of illumination 
R Reflectance [unitless] 
T Transmittance [unitless] 
p Photon recollision probability [unitless] 
ρ(Ω) Directional escape probability [sr-1] 
STAR Spherically averaged silhouette to total area ratio [unitless] 
S  Spherically averaged silhouette area of a tree [m2] 

Stree Silhouette area of a tree [m2] 
SWR_tree Surface area of a white reference panel [m2] 
L Total leaf area per tree [m2] 
θ, φ Zenith angle, azimuth angle [degrees] 
wj Weight of Gauss-Legendre integration (j denotes view zenith 

angle) [unitless] 
WR White reference 
DNleaf, DNtree Signal obtained from leaf (or needle) sample, or from a tree 

[digital numbers] 
DNWR_leaf, DNWR_tree Signal obtained from a white reference panel in leaf (or 

needle) measurements, or in tree measurements [digital 
numbers] 

RWR_leaf, RWR_tree Reflectance of the white reference panel used in leaf (or 
needle) measurements, or in tree measurements 

G Gap fraction in a needle sample 
E Irradiance [W m−2] 
kDN Efficiency of the spectrometer [DN W−1] 
PSF Point spread function 
FOV Field of view 
ftree(Ω), fWR_tree Silhouette area of a tree (or surface area of a white reference 

panel) weighted by the PSF of the spectrometer [m2] 
sij Discrete representation (i.e. a binary image) of the silhouette 

of tree or white reference panel: letters i and j refer to row and 
column, respectively 

DNstray Stray light signal when measuring empty goniometer (without 
tree or white reference panel) [digital numbers] 

btree, bWR_tree Fraction of stray light not obscured by the tree or white 
reference panel 

DNtotal,tree, DNtotal, 

WR_tree 

Signal including stray light when measuring a tree, or white 
reference panel [digital numbers] 

VNIR Visible-near-infrared detector (350–1000 nm) 
SWIR1 First shortwave-infrared detector (1001–1800 nm) 
SWIR2 Second shortwave-infrared detector (1801–2500 nm)  
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Albedo is wavelength-dependent, but to simplify the notation the 
sign of wavelength (λ) is not included in our formulae. For an ideal 
isotropic scatterer, i.e. an object that does not absorb anything and 
scatters equally in all directions, ω equals 1 and ω(Ω) at any Ω equals 1/ 
(4π) = 0.0796 sr-1. 

Further, we define ‘half-albedo’ (i.e. ω(2π)) as fraction of incoming 
radiation that is scattered into a hemisphere. We can then define 
reflectance and transmittance as half-albedo measured in two opposite 
hemispheres, separated by a reference plane. Albedo equals the sum of 
reflectance and transmittance. We use these definitions of reflectance 
and transmittance throughout the study. For leaves and needles of trees, 
we define the reference plane as being perpendicular to the leaf normal. 
Thus, in case of normal incidence, the radiation that is scattered at phase 
angles smaller than 90◦ constitutes reflectance, and radiation that is 
scattered at phase angles larger than 90◦ constitutes transmittance. 
Further, in our scattering model (Section 2.3) we assumed that the leaf 
reflectance and transmittance were independent of the angle between 
leaf normal and direction of incoming radiation. For trees, we define the 
reference plane as being parallel to the Earth surface. In practice (see 
Section 3), we measured reflectance and transmittance of leaves and 
needles with integrating spheres (near-normal illumination), and 
computed reflectance of trees from estimates of ω(Ω), derived from 
multiangular measurements made in a goniometer applying a bi-conical 
view-illumination geometry. We denote albedo of leaves (or needles) 
and trees by symbols ωleaf and ωtree, respectively. 

2.3. Scattering model of a tree 

The model that we validate in our study is based on the concept of 
photon recollision probability (see review by Stenberg et al. (2016) and 
references therein). We present its derivation here for sake of thor
oughness, because the exact formulations vary from one study to 
another, depending e.g. on whether individual shoots or whole forest 
canopies are modeled. Note that the model has not been empirically 
validated for individual trees previously. 

The probability that a photon will be scattered after being inter
cepted by a tree is equal to leaf albedo (ωleaf). Leaf is assumed to scatter 
isotropically. The probability density of photons escaping from the tree 
crown in direction Ω is called the directional escape probability (ρ(Ω), 
[sr-1]). Thus, the probability that a photon, after being intercepted, will 
be scattered once and will then escape in direction Ω without any further 
interactions is 

ωtree,1(Ω) = ωleaf ρ(Ω) (2) 

On the other hand, the probability that the photon would be re- 
intercepted after scattering is determined by photon recollision proba
bility (p). Thus, the probability that a photon will be scattered twice and 
will then escape in direction Ω is 

ωtree,2(Ω) = ωleaf pωleaf ρ(Ω) (3) 

We can further continue to third and fourth scattering event, and so 
on. The total probability that a photon, after being intercepted by a tree, 
will escape in direction Ω is 

ωtree(Ω) = ωleaf ρ(Ω) + ωleaf pωleaf ρ(Ω) + ωleaf pωleaf pωleaf ρ(Ω) + ...

+ ωleaf
(
pωleaf

)n−1ρ(Ω) + ... (4)  

where n is the number of scattering event, often also called ‘order of 
scattering’. Eq. (4) is a descending geometric series with common ratio 
ωleafρ(Ω). The sum of the series is 

ωtree(Ω) = ρ(Ω)
ωleaf

1 − pωleaf
(5) 

This is the model that we will be validating in our experiment. In Eq. 
(5), it is assumed that the photon recollision and escape probabilities do 
not depend on the order of scattering. Eq. (5) can be rearranged in the 

form 

ωtree(Ω)

ωleaf
= ωtree(Ω)p + ρ(Ω) (6) 

from which it is possible to retrieve the values of spectrally invariant 
parameters p and ρ(Ω), if ωtree(Ω) and ωleaf are known. This is done by 
plotting ωtree(Ω)/ωleaf against ωtree(Ω) in two or more wavelengths, and 
fitting a regression line into the observations (Schull et al., 2011; 
Knyazikhin et al., 2013). The values of p and ρ(Ω) are obtained as the 
slope and intercept of the regression line. The possibility to retrieve 
model parameters directly from measurement data was important, 
because while analytical solution for p in coniferous shoots (potentially 
also applicable to trees) exists (Smolander and Stenberg, 2003) and also 
formulae for the directional scattering by trees with random leaf spatial 
distribution have been presented (Dickinson et al., 2008, Dickinson, 
2008), an exact computation of ρ(Ω) for trees of arbitrary (a priori un
known) leaf spatial distribution is not possible. Thus, retrieval of ρ(Ω) 
from our data enabled us to focus in this paper on evaluating the validity 
of the model itself and its assumption of spectral invariance, rather than 
uncertainties in estimating ρ(Ω). 

2.4. Silhouette to total area ratio (STAR) 

The concept of silhouette area to total leaf (or needle) area ratio 
(STAR) originates from ecological studies, where it was used for quan
tifying the degree of self-shading and light interception efficiency of 
coniferous shoots (Norman and Jarvis, 1974; Carter and Smith, 1985). 
Later, to facilitate comparisons between studies, it became common to 
use the spherically averaged STAR (Oker-Blom and Smolander, 1988). 
In the field of remote sensing, Smolander and Stenberg (2003) showed 
that 4 × STAR can be also interpreted as “probability of no interaction”, 
and therefore photon recollision probability of coniferous shoots is 
related to STAR as p = 1–4 × STAR (Section 2.4. in Smolander and 
Stenberg, 2003). Empirical proof was later presented by Rautiainen 
et al. (2012) who measured albedo of Scots pine shoots in a similar 
goniometer setting compared to our experiment. They found that shoot 
albedo, that was upscaled from needle albedo using similar model as we 
presented in Section 2.3 combined with p values derived from STAR, 
agreed with measurements, relative RMSE being up to ~ 12%. There 
are, however, only few simulation studies that have looked at STAR of 
entire trees: Stenberg et al. (2014) examined dependence of STAR on 
tree size and forest density, and Wang et al. (2020) examined its effect 
on tree scattering. Wang et al. (2020) showed a strong dependence be
tween p and 1–4 × STAR for modeled tree crowns. Further, STAR might 
be related to the directionality of scattering (i.e. ρ(Ω)), as shown for 
coniferous shoots (Section 3 in Rautianen et al., 2018). Throughout the 
current study, we use spherically averaged STAR, defined as 

STAR =
S
L

=
1
L

1
4π

∫

4π

Stree(Ω)dΩ (7)  

where Sis the spherically averaged silhouette area, L is total leaf (or 
needle) area in the tree, and Stree(Ω) is the silhouette area of the tree in 
direction Ω. 

3. Materials and methods 

3.1. Sample tree seedlings and measurement protocol 

We measured a total of 18 seedling trees during Aug–Sept 2018, 
using a laboratory goniometer at the Remote Sensing Laboratories, 
University of Zürich (Dangel et al., 2003; Mõttus et al., 2012). The aim 
was to estimate ωtree(Ω) at different view directions over the hemisphere 
from the measurements made in the goniometer, and to determine leaf 
(or needle) and bark albedo and STAR of each tree. To be able to analyze 
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the effect of woody parts, STAR was computed both by including and 
excluding woody parts in total area calculation. These measurements 
were then used to validate the model presented in Section 2.3. The trees 
represented different species (Scots pine (Pinus sylvestris L.), Norway 
spruce (Picea abies (L.) H. Karst), sessile oak (Quercus petraea (Matt.) 
Liebl.), and were between 0.38 m and 0.7 m in height. Trees with 
visually different crown structure were selected on purpose, to allow for 
maximum variation in STAR, in order to examine the relations between 
STAR and scattering induced by the tree. The trees were brought from a 
local nursery. We stored the trees outside and watered them frequently 
to avoid water stress. All trees were grown in standardized pots and had 
no visual damage effects. Immediately before the measurement, a tree 
was brought indoors to the laboratory. 

We will describe the measurements and data processing in the 
following sections 3.2–3.6. The measurements will be presented in 
chronological order, and will be accompanied with the descriptions of 
data processing. The only exception is the data processing to derive 
ωtree(Ω) from the goniometer measurements, which will be presented 
last (Section 3.6), because it required inputs from several measurements. 
Model validation procedure will be elaborated on in Section 3.7. 

3.2. Measurements of multiangular spectra of tree seedlings in the 
goniometer 

During the measurements, each tree was placed such that the center 
of its crown coincided with the center point of the goniometer (Fig. 1). 
The detector unit of the spectrometer, i.e. a bare fiber-optic bundle, 
located at a 2 m distance from the center point, was aligned to point 
exactly at the center of the tree. The nominal field of view (FOV) of the 
bundle had an opening angle of 25◦. The spectrometer was an ASD 
FieldSpec3 (serial nr 16006), and it measured at 1 nm intervals between 
350 and 2500 nm. The spectrometer is regularly calibrated, traceable to 
a secondary traceable reference standard, with raw data, radiance and 
reflectance calibration methods (Schaepman and Dangel, 2000; Milton 
et al., 2009). The illumination source was a 1000 W brightness stabilized 
tungsten halogen lamp that generated a conical light beam using a 
Köhler illuminator with aspherical reflector and a condenser. The light 
beam had an opening angle of approx. 22◦ (c.f. Rautiainen et al., 2012 
for details). The illumination zenith angle was 40◦ and the lamp was at a 
1.75 m distance from the center of the goniometer. The sizes of the 
measured trees (max. height 0.7 m) were selected so that the tree was 
always fully illuminated by the lamp. 

A white reference measurement was made before and after mea
surement of each tree. We used a 20 × 20 cm calibrated Zenith Lite® 

panel that had nominal reflectance of 95%. It was placed on a tripod at 
the center of the goniometer. The white reference measurement was 
always made at nadir. The measurements of a tree were made at 12 
equally-spaced azimuth directions (φ = 15◦ + n × 30◦), and at three 
zenith angles per azimuth (θ = [21.2◦, 48.6◦, 76.2◦]). The zenith angles 
were chosen so that the reflectance of the tree could be calculated from 
the measurements, using Gauss-Legendre integration so that cosθ 
correspond to the Gauss-Legendre nodes. The same zenith angles were 
used also by Mõttus et al. (2012) and Rautiainen et al. (2012) who 
measured scattering phase functions of coniferous shoots using the same 
goniometer. In addition, the nadir direction (θ = 0◦) was measured once 
for every other azimuth. Measurements in the cross plane (φ = 90◦) and 
in the principal plane (φ = 0◦) excluding directions behind the lamp 
were also made, but were not used in the current study, because we 
focused on hemispherically integrated reflectance and thus preferred 
observations with equal angular spacing. 

To minimize stray light, a special table (1.5 × 1.3 m frame built of 
wood) was used in the measurements. It was covered with a black cloth 
with directional hemispherical reflectance of approx. 2% in all measured 
wavelengths. The cloth had an opening, which allowed the tree to be 
placed so that the pot in which the tree was growing was under the cloth, 
and only the tree crown was above the cloth. Similarly, the tripod 
holding the white reference panel was covered by the cloth when 
measuring white reference. Any radiation from the light beam that did 
not hit the tree (or white reference) was therefore absorbed and only 
marginal amounts were reflected by the black cloth. The height of the 
table was adjustable to ensure that it could be set approximately at the 
level of the base of the tree, independent of the tree height. In practice, 
we used four predefined heights (0.6 m, 0.65 m, 0.69 m, and 0.74 m) to 
facilitate stray light corrections. To quantify the amount of stray light, 
the cloth-covered table without a tree was measured following the same 
measurement protocol as for the tree measurements. The stray light 
measurement was repeated for all table heights and it allowed to express 
stray light as a fraction of white reference signal. This meant that stray 
light needed to be measured only once per each table height, which 
notably reduced the overall time needed for measurements. 

3.3. Silhouette area photography and data processing 

After recording the last white reference, the tree was placed back in 
the spectrometer FOV, and silhouette photographs were taken from the 
same view angles as the spectral measurements. We used a digital 
camera (Nikon D5000), which had an adjustable focal length fixed at 45 
mm. The camera was attached to the goniometer, close to the detector 

Fig. 1. Illustration of the measurement principle of 
the laboratory goniometer setup. The tree was 
placed in the middle. The supporting structures (e.g. 
the pot where the tree was grown, and the wooden 
frame that was used to minimize stray light) are 
ignored in this illustration for clarity. The tree was 
illuminated with a conical light beam that had an 
irradiance E when it reached the center of the tree. 
Each scattering object within the tree produced a 
radiant intensity I towards the spectrometer, which 
then measured an average I within its field-of-view.   
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unit of the spectrometer. The viewing geometry was therefore almost the 
same as with the spectrometer (difference of ~ 3◦ due to ~ 10 cm 
displacement of the camera). In addition, one photograph was taken 
exactly from the direction of illumination while the position of the lamp 
was lowered to allow the camera to see the tree. The camera was cali
brated for interior orientation parameters (focal length, principal point, 
lens distortion parameters) by taking images of a checkerboard pattern 
placed on a table in the center of the goniometer. The same checker
board pattern was used for solving the exterior orientation parameters, i. 
e., the camera locations and orientations. We used Matlab Computer 
Vision ToolboxTM for camera calibration and orientation. When taking 
the photographs, the tree was illuminated with two LED lights from the 
sides to reduce shadows on a white canvas that was placed behind the 
tree. We used f-number of f/8 and adjusted exposure time manually so 
that white background was slightly underexposed (by 0.7 exposure stops 
according to the camera built-in light meter). This was done in order to 
avoid overexposure in any of the photographs. In addition, we used the 
autobracketing function of the camera to take images with exposure 
times adjusted by 0.7 exposure stops downwards and upwards, to 
evaluate the effect of exposure time on our results. 

For each image, an area of image that contained the tree was 
manually delineated. We then applied an automatic thresholding algo
rithm (Otsu 1979) to the blue channel of the images, to separate the tree 
from the white background. The distance of the camera and focal length 
were used to calculate pixel size at the center of the goniometer, and 
silhouette area was computed as the sum of pixels belonging to the tree 
times the pixel area. All parts of the tree were thus assumed to be at a 2 m 
distance from the camera, which results in small inaccuracies due to 
parallax errors. However, this was unavoidable because the camera 
could not be placed any further from the target. Finally, the spherically 
averaged silhouette area of each tree was computed as 

S =
2π
12

∑12

i=1

∑3

j=1
wjStree

(
Ωij

)
(8)  

where i and j are the azimuth and zenith angles, respectively, and wj are 
the weights of Gauss-Legendre integration, normalized so that sum of 
weights per each azimuth equals 1. Division by 12 comes from the fact 
that we had 12 azimuth angles. The silhouette area of tree in the di
rection of illumination was not used here, but was used in processing the 
spectral measurement data (Section 3.6). 

3.4. Measurements and processing of leaf and bark spectra 

After silhouette area photography of each tree, we randomly picked 
three leaves, or three samples of needles from the tree, and measured 
reflectance and transmittance of both sides of each sample. In conifers, 
all needle age classes were mixed randomly. The samples were measured 
with an ASD RTS-3ZC integrating sphere attached to an ASD FieldSpec3 
spectrometer (serial nr 16007) (Yáñez-Rausell et al., 2014a,b). We used 
spectrally black needle carriers (see e.g. Hovi et al., 2020) of 0.8 mm 
thickness and placed needles at 0.5–1 needle widths apart. Also the 
leaves of broadleaved trees were placed in the needle carriers to ensure a 
comparable measurement. Spruce needles were short and therefore they 
were placed in the carrier in two rows, so that the light beam illuminated 
the tips of the needles. For pine, measurements close to the center of 
needles were made, and for oak a randomly selected spot on the leaf was 
measured so that major veins in the leaf were avoided. The measurement 
protocol was the same as used by Hovi et al. (2020). An uncalibrated 
Spectralon® panel was used as white reference and was calibrated af
terwards against a known standard. 

Reflectance (Rleaf) and transmittance (Tleaf) were computed as 

Rleaf =
DNleaf ,R

DNWR leaf ,R

1
1 − GR

RWR leaf (9) 

and 

Tleaf =
DNleaf ,T − GT

DNWR leaf ,T

1
1 − GT

RWR leaf (10)  

where DNleaf and DNWR_leaf are the readings taken from the sample and 
white reference, respectively, RWR_leaf is the reflectance of the white 
reference, and GR and GT are the gap fractions in the sample (slightly 
different for reflectance and transmittance measurements due to 
different measurement geometry). For oak leaves, gap fractions were 
zero. Gap fraction in a needle sample was obtained by scanning the 
needle carrier with needles in it, using a digital film scanner (Epson 
Perfection V550), and by applying a threshold to the obtained 8-bit 
grayscale images to separate needles from the background (Hovi et al., 
2020). For needles of pine and spruce, the threshold value (202 for pine, 
187 for spruce) was optimized by forcing the needle transmittance to 
predetermined values at 410–420 nm. In this region, needle trans
mittance is close to zero with small residual variation depending on the 
sample, and thus the errors of the estimated gap fraction due to 
assuming constant transmittance are minimized. Yet the signal-to-noise 
ratio of the spectrometer at those wavelengths is acceptable compared to 
wavelengths lower than 410 nm. The transmittance values for pine and 
spruce needles at 410–420 nm were obtained in a separate measurement 
campaign in 2019, for the same species but grown in Finland, and were 
0.021 ± 0.007 (mean ± standard deviation) for pine and 0.039 ± 0.007 
for spruce. In that campaign, the gap fractions in the needle samples 
were obtained by painting the illuminated side of needles in black, 
which prevented specular reflection from the illuminated side to 
contribute to transmittance and thus the observed transmittance was 
purely caused by the light transmitted through the gaps in the needle 
sample (Daughtry et al., 1989). Finally, we applied an empirical bias 
correction to all processed leaf and needle transmittance spectra 
(adjusting transmittance 5.5% downwards) that was taken from the 
measurements made against a trusted reference method in Hovi et al. 
(2020). This ensured that leaf and needle albedo did not exceed unity in 
any of the measurements. 

Reflectance spectra of tree bark were measured for three sample trees 
(one per species). Three bark samples were carefully peeled from the 
tree trunk. Each sample was placed in the needle carrier, and its 
reflectance spectrum was measured. The measurement protocol and 
processing were similar as for leaves. Bark albedo was assumed equal to 
bark reflectance in the spectral modeling. Leaf reflectance and trans
mittance spectra were summed to yield leaf albedo. Finally, leaf and 
bark albedo spectra were smoothed with a Savitzky-Golay filter 
(Savitzky and Golay, 1964) to remove the high-frequency noise that was 
present, particularly affecting lower and upper wavelengths of the 
spectra, i.e. (near-)ultraviolet and shortwave-infrared regions. 

3.5. Measurements and processing of leaf and woody areas 

Total leaf area for each tree was determined by destructive mea
surements. A subset of leaves or needles from each tree was scanned and 
weighed for determining the ratio of projected area to leaf or needle 
(fresh) mass. The sample sizes for spruce and pine were 1 g and 10 g 
(approximately 150 needles), respectively, and that of oak was 5 g. In 
preliminary tests, these sizes were determined sufficient to result in 
negligible standard errors. For conifers, an additional small subset (10 
needles) was taken for measurements of needle length and two widths. 
The width measurements were made in the middle between the tip and 
base of each needle, corresponding to the breadth and thickness of the 
almost half-cylinder-shaped cross section of the pine needles, and two 
transverse dimensions of the diamond-shaped cross section of the spruce 
needles. This subset was used for converting projected area to total area. 
In order to compute the total needle area from the measurements of 
needle dimensions, the shape of spruce needles was assumed as paral
lelepiped (Eq. (9) in Sellin, 2000), and that of pine needles as semi- 
fusiform (Eq. (7) in Flower-Ellis and Olsson, 1993). For oaks, the total 
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area of a leaf was two times the projected area. Finally, all leaves or 
needles from the tree were picked and weighed, and the total leaf area of 
a tree was calculated based on leaf (or needle) mass and the above 
determined linear conversion factors: mass to projected area [m2 g−1] 
and projected to total area [m2 m−2]. 

For computing the woody area of the trees, silhouette photographs of 
the trees with leaves removed were taken. The photography of trees 
without leaves was otherwise similar to the photography with leaves 
(Section 3.3), but only every 3rd azimuth angle was used in order to save 
time in the laboratory work. Also the data processing followed the same 
procedure (Section 3.3), with the only exception that some of the images 
needed to be manually edited, i.e. areas erroneously detected as tree 
were painted in white, because the automatic thresholding did not work 
perfectly for the trees without leaves. The total area of woody parts for 
each tree was computed from the spherically averaged silhouette area, 
assuming that the total woody area equals four times the spherically 
averaged silhouette area, which is true for any convex body (Lang, 
1991). The woody parts were very sparse, so this is a realistic assump
tion, unlike for leaves, and particularly needles, that can be highly 
clumped and thus self-shadowed. 

3.6. Deriving directional scattering coefficients of the tree seedlings from 
goniometer measurements 

3.6.1. Measurement equations 
Because the tree was treated as a point-like scatterer (as opposed to a 

surface) in our model, we did not use simple normalization by a white 
reference panel to compute bidirectional reflectance factor (BRF), but 
rather aimed at deriving an estimate of ωtree(Ω) [sr-1] from goniometer 
measurements. This was done by writing the equations that mathe
matically describe the signals recorded by the spectrometer during the 
measurements of white reference panel and the tree, and then solving for 
ωtree(Ω). The equation that models the signal [digital numbers] recorded 
by the spectrometer for the white reference panel at nadir is 

DNWR tree = ESWR treecos40◦ RWR treecos0◦

π dΩkDN (11)  

where E is the irradiance of the lamp at the center of the goniometer [W 
m−2]. Part of the irradiance is intercepted by the white reference panel. 
The surface area of the panel is SWR_tree [m2] and the projected area to
wards the direction of illumination is SWR_treecos40◦. Multiplication of E 
by SWR_treecos40◦ gives the radiation intercepted by the panel [W]. The 
result is multiplied by the directional scattering coefficient of the panel 
at nadir [sr-1], to obtain the radiant intensity towards the sensor [W sr- 

1]. Here it is assumed that the white reference panel is an ideal Lam
bertian surface, and thus its directional scattering coefficient is 
RWR_treecosθ/π. To obtain the radiation that enters the detector [W], the 
radiant intensity is multiplied by the solid angle subtended by the de
tector (dΩ, [sr]). The resulting radiant flux [W] is further multiplied by 
the ‘efficiency’ of the spectrometer (kDN, [DN W−1]). Note that in these 
computations it is assumed that the response of the spectrometer is 
linear and zero-DN means zero photons, i.e. dark current and stray light 
have been subtracted. 

Similarly, the measurement equation for the signal recorded for the 
tree at direction Ω is 

DNtree(Ω) = EStree(Ωi)ωtree(Ω)dΩkDN (12)  

where ωtree(Ω) is the directional scattering coefficient of the tree [sr-1] in 
direction Ω, and Stree(Ωi) is the silhouette area of the tree in the direction 
of illumination [m2]. 

We can solve ωtree(Ω) from Eqs. (11),(12) as 

ωtree(Ω) =
DNtree(Ω)

DNWR tree

SWR treecos40◦

Stree(Ωi)

RWR treecos0◦

π (13) 

To take into account the spatially varying response of the detector of 

the spectrometer, we introduced a correction factor fWR_tree/ftree(Ω), 
which takes into account that the tree and white reference panel can be 
located in slightly different areas within the FOV of the detector, and the 
observed signal depends on the sensitivity of the detector in these areas, 
i.e. the point spread function (PSF). Factors fWR_tree and ftree(Ω) were 
obtained as the surface area of the white reference panel (SWR_tree) and 
silhouette area of the tree in the view direction (Stree(Ω)), respectively, 
weighted by the PSF of the detector. The ratio of these factors becomes 
larger when the tree is located more towards the edges of the PSF 
compared to the white reference panel. The final equation for ωtree(Ω) 
then becomes 

ωtree(Ω) =
DNtree(Ω)

DNWR tree

SWR treecos40◦

Stree(Ωi)

RWR treecos0◦

π
fWR tree

ftree(Ω)
(14)  

3.6.2. Correction for the point spread function of the spectrometer 
We modeled the PSF of the detector as an asymmetric 2D Gaussian 

function (Fig. 2). Its parameters were determined by fitting the function 
into measurements taken of a small 1.25-inch Spectralon panel that was 
placed on the surface of the black cloth and moved in the FOV of the 
detector, with the detector at nadir. Each time the panel had been moved 
into a new position, a reading with the spectrometer was taken. Stray 
light was also measured and subtracted from these measurements. The 
remaining signals were averaged over all bands in each detector, i.e. 
VNIR = 350–1000 nm, SWIR1 = 1001–1800 nm, or SWIR2 =

1801–2500 nm. Noisy regions below 400 nm and above 2300 nm were 
excluded. The average signal at each position was normalized to the 
average signal obtained from the center of the FOV, and the Gaussian 
function was fitted into these observations. The process resulted in three 
PSFs, one for each detector of the spectrometer (Fig. 2). Each of them 
was projected at the center of the goniometer and interpolated into a 0.5 
× 0.5 mm grid. For each view direction, the interpolated PSF was 
rotated so that it was perpendicular to view direction, and was then 
projected onto the binarized silhouette images of the tree and the white 
reference panel (Fig. 2). Finally, fWR_tree and ftree(Ω) were computed as 

f =
∑m

i=1

∑n

j=1
PSFijsij (15)  

where s is the binarized silhouette image of either the tree or white 
reference panel. Applying fWR_tree/ftree(Ω) reduced the discontinuities in 
the ωtree(Ω) spectra between the detectors. These ‘sensor jumps’ (mean 
± standard deviation) were reduced from −9.5 ± 9% to −7 ± 7.9% (at 
1001 vs. 1001 nm), and from −3 ± 3.9% to 0.8 ± 3.5% (at 1801 vs. 
1800 nm), when expressed as relative to the mean ωtree(Ω) in these re
gions. The sensor jumps can be also due to varying temperature re
sponses of the detectors (Hüeni and Bialek, 2017), but because we were 
operating indoors at a stable temperature, the remaining sensor jumps 
after correction are likely caused by the inaccuracies in determining the 
correction factor fWR_tree/ftree(Ω) due to e.g. the fact that the illumination 
was not spatially evenly distributed in all parts of the tree crown. 

3.6.3. Stray light correction 
As mentioned earlier, stray light had to be removed from the spec

trometer measurements before using Eq. (14). Because the stray light 
fraction was known from measurements, stray light [digital numbers] 
could be calculated for any view angle based on a measurement of the 
white reference panel. The challenge was that the tree (or white refer
ence panel) and its shadow obscured some fraction of the stray light. 
Therefore, for an accurate stray light removal, we used the formulae 

DNtree = DNtotal,tree − btreeDNstray (16)  

and 

DNWR_tree = DNtotal,WR_tree − bWR_treeDNstray (17)  
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Fig. 2. Point spread functions (PSF) of the three detectors of the spectrometer overlaid on the silhouette images of the white reference panel (upper row) and an oak 
tree (lower row). The PSFs were slightly different for each of the three detectors of the spectrometer: visible-near-infrared (a,d), shortwave-infrared 1 (b,e), and 
shortwave-infrared 2 (c,f). The examples here represent nadir view. In practice, the white reference panel was always viewed at nadir, but the viewing direction while 
measuring each tree varied. The dimensions of the white reference panel are 20 × 20 cm. 

Fig. 3. Illustration of the computation of btree, i.e. the fraction of stray light that remained in the presence of tree in the goniometer measurements (view azimuth 
165◦, view-zenith 21.2◦, light originates from west-northwest direction). Sub-figure (a) shows a pine tree illuminated in the goniometer. Subfigure (b) illustrates the 
irradiance distribution of the light beam that was modeled from the red channel of RGB images taken of the light beam and linearized (i.e. gamma correction 
removed), (c) the point spread function (PSF) of the spectrometer in VNIR detector, and (d) the irradiance of the light beam weighted by the PSF of the spectrometer 
(‘PSF-weighted irradiance’). An estimate of btree was obtained by computing the sum of PSF-weighted irradiance in those areas that were not covered by the tree and 
its shadow, and ratioing the result to the total sum of PSF-weighted irradiance. The silhouette and shadow of the tree shown in sub-figures (b)–(d) were obtained from 
the silhouette area photographs (Section 3.3). 
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where DNtree and DNWR_tree are the signals free from stay light, DNtotal,tree 
and DNtotal,WR_tree are the original DN values observed, DNstray is the stray 
light signal without the presence of the tree or white reference panel, 
and btree and bWR_tree are the fractions of stray light that remain when the 
tree (or white reference panel) and its shadow are present. Calculations 
of btree and bWR_tree were done for each of the detectors of the spec
trometer separately, utilizing the silhouette area photographs taken of 
the trees (or white reference panel), and is explained in Fig. 3 and its 
caption. Multiple scattering between the tree and the background was 
ignored in stray light corrections. However, multiple scattering mainly 
occurs in near-infrared, where the stray light fraction is small and un
certainty in stray light contributes little to the uncertainty of ωtree(Ω). 
Depending on the detector, the btree (mean ± standard deviation) was 
0.64 ± 0.14 (VNIR), 0.62 ± 0.16 (SWIR1), and 0.59 ± 0.17 (SWIR2). In 
regions where ωtree(Ω) was at its lowest and thus the ratio of stray light 
(btreeDNstray) to signal from the tree (DNtree) was high (e.g., on average 
61% at 400 nm, 39% at 660 nm, and 52% at 1930 nm), the stray light 
correction using Eqs. (16),(17) resulted in an average increase of ωtree(Ω) 
by 59% at 400 nm, 30% at 660 nm, and 68% at 1930 nm, compared to a 
simple stray light correction, i.e. btree and bWR_tree set to unity. It also 
prevented negative ωtree(Ω) values. 

3.6.4. Smoothing of spectra 
Similarly to leaf and needle spectra, the processed ωtree(Ω) spectra 

were smoothed with Savitzky-Golay filter. This was done separately for 
each of the three detectors of the spectrometer. Because continuous 
spectra were required in the modeling, we corrected the data for the 
observed sensor jumps (Section 3.6.2) by adjusting (multiplying) the 
ωtree(Ω) estimates obtained by the SWIR1 and SWIR2 detectors to match 
those observed by the VNIR detector. It was assumed that VNIR had the 
smallest errors due to its largest field-of-view (Fig. 2). 

3.6.5. Uncertainties in ωtree(Ω) 
Random errors of the measurements were generally small and will be 

evaluated based on tree-to-tree variability in our results. To evaluate 
potential systematic errors, we carefully considered all components in 
Eqs. (14), (16) and (17). We estimate that the largest and therefore most 
relevant systematic errors occur from the PSF correction factor (fWR_tree/ 
ftree(Ω) in Eq. (14)), tree silhouette area (Stree in Eq. (14)), and the stray 
light correction parameter (btree in Eq. (16)). The systematic error in 
fWR_tree/ftree(Ω) can be at least ± 7% in relative terms, based on the 
observed ‘sensor jumps’ in the data after correction (Section 3.6.2). Stree, 
on the other hand, is sensitive to the thresholding algorithm and camera 
exposure settings. We estimate that the bias in Stree can be ± 7%, based 
on Stree values computed from images taken with different exposure 
times. The uncertainty in btree is the most difficult to evaluate. Assuming 
that the error in btree equals its standard deviation (0.17), which is a 
rather conservative estimate and likely an upper limit for the systematic 
error, error in ωtree(Ω) would be less than 2% in near-infrared, increasing 
towards wavelengths where ωtree(Ω) is low, and peaking to ± 16% at 
400 nm, ±10% at 660 nm, and ± 14% at 1930 nm. Based on these es
timates, we evaluated the overall uncertainty in the goniometer mea
surements to be 15–30% in relative terms, being the highest for regions 
where ωtree(Ω) is low. 

3.7. Model evaluation 

We evaluated the performance of the model (Eq. (5)) in predicting 
tree reflectance and directional scattering properties. First, we inverted 
the values of p and ρ(Ω) for each view angle using Eq. (6). The value of p 
was constrained to be constant for one tree, because there is no physical 
reason to assume that p would vary depending on view angle. Similarly 
to Schull et al. (2011) and Knyazikhin et al. (2013), we used wave
lengths 710–790 nm for the model inversion. In this region, the impact 
of scattering from leaf surface is negligible (Bousquet et al., 2005) and 
the directional scattering characteristics of leaves should therefore 

remain constant. This was supported also by our data, which showed a 
near-constant reflectance to transmittance ratio of both leaves and 
needles in this region. Two versions of the model were tested. The first 
model considered only leaves as plant elements, i.e. leaf albedo spectra 
were used directly as ωleaf in Eqs. (5)–(6). For each tree, we used leaf 
albedo averaged over all three samples and over both sides of the 
sample. The second model included also woody parts, so that ωleaf 
equaled weighted average of measured leaf and bark albedo. Relative 
shares of leaf and woody parts in total plant area were used as weights. 
Single bark albedo spectrum per species, i.e. average over all three 
samples measured, was used. 

The inverted values of p and ρ(Ω) were used for calculating ωtree(Ω) 
(Eq. (5)). Reflectance of a tree (ωtree(2π)) in both measured and modeled 
data was computed from the ωtree(Ω) using the formula 

ωtree(2π) =
2π
12

∑12

i=1

∑3

j=1
wjωtree

(
Ωij

)
(18)  

where i and j are azimuth and zenith angles, and wj are the weights of 
Gauss-Legendre integration (see Section 3.3 and Eq. (8) for detailed 
explanation). The model performance in simulating tree reflectance was 
evaluated for the region of 400–2300 nm, i.e. noisy UV and shortwave- 
infrared regions excluded. We computed wavelength- (λ) and species- 
(sp) specific bias, root-mean-square-error (RMSE), and standard devia
tion (SD) as 

bias(λ, sp) =
1
n

∑n

i=1

(
ωtree,modeled,i(λ, sp) − ωtree,measured,i(λ, sp)

)
(19)  

RMSE(λ, sp) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ωtree,modeled,i(λ, sp) − ωtree,measured,i(λ, sp)

)2

√

(20)  

and 

SD(λ, sp) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ωtree,modeled,i(λ, sp) − ωtree,measured,i(λ, sp) − bias(λ, sp)

)2

√

(21) 

In the above equations, n is the number of trees per species, and 
ωtree,modeled,i(λ,sp) and ωtree,measured,i(λ,sp) refer to the modeled and 
measured reflectance for tree i. Relative bias, RMSE, and SD (bias-%, 
RMSE-%, SD-%) were also computed, by normalizing the obtained 
values by the mean ωtree,measured(λ,sp). 

4. Results 

4.1. Structure and spectra of the tree seedlings 

The contribution of woody parts to STAR was generally small. When 
woody parts were excluded from the total area (L in Eq. (7)), tree STAR 
varied between 0.114 and 0.209 (Table 2). When woody parts were 
included, on the other hand, tree STAR slightly decreased and varied 
between 0.099 and 0.200 (Table 2). Spruces deviated from the other 
species, because their woody to leaf area ratios were relatively large 
ranging between 0.17 and 0.28. Thus, the STAR values of spruces 

Table 2 
Structural parameters of the sample trees (min–max).  

Parameter Pine Spruce Oak 

Height, m 0.38–0.70 0.41–0.70 0.39–0.58 
Total leaf area, m2 0.20–0.59 0.16–0.48 0.08–0.27 
Wood to leaf area ratio 0.05–0.09 0.17–0.28 0.05–0.07 
STAR without woody parts* 0.114–0.170 0.118–0.183 0.173–0.209 
STAR with woody parts* 0.109–0.158 0.099–0.147 0.162–0.200  

* STAR with woody parts means that woody parts were included in calculation 
of total area. Silhouette areas always included woody parts. 
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decreased notably when woody parts were included in computation of 
total area. 

The mean tree reflectance was generally similar for all species 
(Fig. 4a). Oak deviated from the other species the most, because it had 
clearly the highest reflectance in the shortwave-infrared region (greater 
than1300 nm). In green wavelengths, spruce showed slightly lower 
reflectance than the other species, and in blue wavelengths, oak showed 
slightly larger reflectance compared to the other species. In other 
wavelength regions, the between-species differences in mean reflectance 
spectra were relatively small. To support the interpretation of results, we 
show also albedo of leaves, woody parts, and leaves and woody parts 
combined (Fig. 4b–d), as well as reflectance to transmittance ratios of 
leaves and of leaves and woody parts combined (Fig. 5). Notable here is 
that because spruce had a relatively large fraction of opaque woody 
parts in its plant area (Table 2), the average reflectance to transmittance 
ratio of leaves and woody parts combined was notably higher than that 
of leaves only (Fig. 5). We discuss the optical properties of leaves and 
woody parts in more detail when interpreting the modeling results 
(Section 5.1). 

4.2. Model performance 

For both models tested (i.e., with or without woody parts), general 
shapes of the measured and modeled tree reflectance spectra were 
similar, with species- and wavelength-specific bias varying from −0.048 

to 0.034 (Fig. 6). Obviously, the region of 710–790 nm exhibited low 
bias, because it was used in model fitting. The dependence of tree 
reflectance on STAR, i.e. the increase in tree reflectance for each tree 
species at weakly or moderately reflecting wavelengths (e.g. green, red, 
shortwave-infrared) when the STAR increased, was also reproduced by 
the model (Fig. 7). 

Next, we looked at the wavelength-dependence of the model per
formance in more detail by examining the relative bias, RMSE, and SD 
(Fig. 8). Further, we summarized the mean and maximum bias-% and 
RMSE-% across all wavelengths, and separately for three wavelength 
regions (Table 3). These regions exclude the red edge used for model 
fitting and correspond to the regions of low reflectance in the visible 
region (400–709 nm), high plateau in the near-infrared (791–1300 nm), 
and the region with water absorption bands in the shortwave-infrared 
(1301–2300 nm) (Fig. 4a). It was observed that both models (with or 
without woody parts) underestimated oak reflectance in the visible re
gion (bias ≥ -58%, RMSE ≤ 60%) and overestimated it in the shortwave- 
infrared (bias ≤ 18%, RMSE ≤ 21%). Pine reflectance was under
estimated in both visible (bias ≥ –33%, RMSE ≤ 34%) and shortwave- 
infrared (bias ≥ -29%, RMSE ≤ 31%). For spruce, the results varied 
from underestimation of reflectance in the visible (bias ≥ -18%, RMSE ≤
20%) and shortwave-infrared (bias ≥ -26%, RMSE ≤ 30%) when woody 
parts were excluded, to slight underestimation (bias ≥ -12%, RMSE ≤
15%) and overestimation (bias ≥ 18%, RMSE ≤ 20%) in the same re
gions, respectively, when the woody parts were included. Model errors 

Fig. 4. Mean tree reflectance (a), leaf albedo (b), woody part (i.e. bark) albedo (c), and weighted average of the albedo of leaf and woody parts (d) per species. 
Standard deviations (SD) are given below each figure, representing SD between tree-specific mean spectra. The SD could not be calculated for woody part albedo, 
because they were only measured for a single sample tree per species. 
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in the near-infrared were small for all species (bias from −4% to 6%, 
RMSE ≤ 7%). Systematic errors dominated in the results, as indicated by 
the low SD compared to bias, except for the somewhat noisier wave
lengths above 1800 nm (Fig. 8). 

When comparing the results with and without woody parts, it was 
seen that the inclusion of woody parts improved the model performance 
for all species in the visible and shortwave-infrared, with maximum 
RMSE-% decreasing by 3–8 % and 2–10% in these regions, respectively 
(Table 3). The most notable effect, also seen in Fig. 8a–d, was the 
reduced underestimation in the red wavelength region. Performance in 
the NIR was slightly improved for pine (RMSE-% decreased by 1), and 
slightly reduced for oak and spruce (RMSE-% increased by 3 and 1) 
(Table 3). However, considering the overall small RMSE-% in the NIR, 
the decreased performance for spruce and oak is of small importance. 

To obtain more insights in the model behavior, we examined the bias 
for individual view directions, i.e. the bias of ωtree(Ω) (Fig. 9). It was 
found that the variation in directional bias was the largest in the visible 
region, where the difference between minimum and maximum view 
direction-dependent bias-% was up to 71, 63, and 31 percentage points 
for pine, spruce, and oak, respectively. In the near-infrared, the 
respective values were 8, 13, and 8, and in the shortwave-infrared (with 
noisy region above 1850 nm excluded) they were 25, 25, and 19. Further 
examination revealed that in the visible wavelength region the model 
tended to underestimate ωtree(Ω) of pine and spruce for directions near 
the illumination, and to produce almost unbiased results or over
estimates for the forward scattering side i.e. away from the illumination, 
which explains the large spread in directional bias-% for these species 

(Fig. 9). 

4.3. Model parameters and their relation to tree seedling structure 

Finally, we examined the model parameters and their relations to 
tree structure. Total escape probability (1 – p) followed 4 × STAR quite 
closely (Fig. 10), which is in accordance with the theory. The RMSE of 
the relation (1 – p vs. 4 × STAR) was 0.124 (19%) when woody parts 
were ignored, and 0.109 (19%) when woody parts were included 
(Fig. 10). The values of directional escape probabilities were also mostly 
physically meaningful, except that mean directional escape probabilities 
at angles close to the direction of illumination were larger than the 
theoretical maximum of 0.079: the mean directional escape probability 
was 0.085 i.e. 8% larger at (φ = 15◦, θ = 48.6◦) and 0.088 i.e. 11% larger 
at (φ = -15◦, θ = 48.6◦). The differences are within measurement un
certainties but can be also due to leaves being not fully isotropic, and 
thus the ‘effective’ escape probability being larger than the theoretical 
maximum. We also looked at the relations of ρ(Ω) and ρ(Ω)/(1 - p) 
against STAR (Fig. 11). It was found that ρ(Ω) was positively correlated 
with STAR in view directions on the forward scattering side i.e., the half 
of the hemisphere that was away from the direction of illumination 
(Fig. 11a): the mean Pearson correlation coefficient of ρ(Ω) vs. STAR 
relation, using all species and averaged over all view angles on the 
forward side, was 0.50. The correlation decreased towards the direction 
of illumination for pine and oak but remained at high level for spruce 
(Fig. 11b–c), the mean correlation on the backward side being 0.14. The 
ratio of directional to total escape probability (ρ(Ω)/(1 - p)) tended to be 

Fig. 5. Mean reflectance to transmittance (R/T) ratios per species, computed from leaf spectra (a) and weighted average of leaf and woody part spectra (b). Standard 
deviations (SD) are given below each figure, representing SD between tree-specific mean R/T-ratios. Logarithmic scale is used, because the range of values was large. 

Fig. 6. Wavelength- and species-dependent bias in modeled tree reflectance (ωtree(2π)) for models with (a) and without woody parts (b).  

A. Hovi et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 169 (2020) 57–72

67

strongly negatively correlated with STAR on the backward side 
(Fig. 11f), mean correlation being −0.70. The correlations became 
weaker towards the forward side but were still mostly negative 
(Fig. 11d–e), with a mean correlation of −0.53. Despite the above 
general tendencies, there were large differences between species as seen 
in Fig. 11, indicating that also other factors than STAR may explain the 
directionality of scattering. 

5. Discussion 

5.1. Performance of the model 

For all measured tree species, the modeled tree seedling reflectance 
spectra followed the shape of the measured spectra reasonably well, 
with bias ranging between −0.048 and 0.034. The model was also able 

Fig. 7. Relations of tree reflectance versus spherically averaged silhouette to total area ratio (STAR) in modeled and measured data. Data are plotted for different 
wavelengths of the spectrum (top-down). Left column shows results without woody parts, right column shows results including woody parts. 
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Fig. 8. Wavelength- and species-dependent relative bias, RMSE, and SD (top to down) in modeled tree reflectance (ωtree(2π)), separately for models with (left 
column) and without woody parts (right column). 

Table 3 
Statistics of the wavelength- and species-specific RMSE-% and bias-% of the models with or without woody parts for different wavelength regions. Mean bias-% and 
RMSE-% were computed as arithmetic means of the wavelength-specific values. “Max. bias (absolute)” means the bias that had the largest absolute value (positive or 
negative).   

Without woody parts  With woody parts  
Mean bias Max. bias (absolute) Mean RMSE Max. RMSE  Mean bias Max. bias (absolute) Mean RMSE Max. RMSE 

Full wavelength range (400–2300 nm, but excluding 710–790 nm) 
Pine −14 –33 14 34  −10 −25 12 26 
Spruce −6 −26 9 30  3 18 7 20 
Oak −1 −58 12 60  −1 −55 12 57 
Visible region (400–709 nm) 
Pine –22 –33 22 34  −19 −25 20 26 
Spruce −9 −18 11 20  −6 −12 8 15 
Oak –33 −58 34 60  −31 −55 32 57 
Near-infrared (791–1300 nm) 
Pine −2 −4 2 4  −1 −3 2 3 
Spruce −2 −4 3 4  4 6 4 7 
Oak 1 3 2 3  2 4 2 4 
Shortwave-infrared (1301–2300 nm) 
Pine −17 −29 18 31  −13 –22 14 23 
Spruce −8 −26 11 30  6 18 9 20 
Oak 7 18 11 21  6 16 10 19  
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to reproduce the measured relationship between tree seedling reflec
tance and STAR. Generally, our study thus confirmed the findings by 
Rautiainen et al. (2012), who measured Scots pine shoots in a similar 
goniometer setting and concluded that photon recollision probability 
can be used for upscaling from needle to shoot albedo. We extended the 
findings from shoots to tree seedlings, making this the first validation of 
the photon recollision probability theory at individual tree level. 

Our results can be quantitatively evaluated by comparing them to i) 
uncertainties of satellite reflectance data, ii) similar laboratory mea
surements made earlier, and iii) to measurement uncertainties in our 
own experiment. Comparison to satellite data provides a larger context 
to our results, because ultimately the model would be used for inter
pretation of satellite data. However, the measured quantities differ, 
because reflectance factors derived from satellite data are designed for 
well-defined targets i.e. surfaces. Therefore, we only note that our bias 
values were somewhat larger than theoretical and empirical uncertainty 
estimates for satellite-based surface reflectance, which are typically 
below 0.03 in reflectance factor (Vermote and Kotchenova, 2008; Ver
mote et al., 2016). 

More meaningful is to compare our results to the measurements 
made by Rautiainen et al. (2012). The RMSE-% of our best-performing 
model (i.e. the one with woody parts) for Scots pine tree seedlings (up 

to 26%) were larger than those observed for Scots pine shoots by Rau
tiainen et al. (2012) (up to ~ 12%). Our study had larger measurement 
uncertainties, because the sizes of the tree seedlings (height = 0.38–0.7 
m) were close to the limit of what can be measured using the goniometer 
by not violating the balance between geometric, volumetric and 
isotropic scattering. The models were also delivering different results. 
We modeled the hemispherical reflectance of trees, instead of full 
spherical albedo, as done by Rautiainen et al. (2012). Rotating the tree 
seedlings upside down would have been technically difficult and would 
have influenced branch orientation. Consequently, we needed to 
retrieve the spectrally invariant parameters by model inversion (Knya
zikhin et al., 2013), because computation of directional escape proba
bilities by other means is difficult without prior knowledge on the spatial 
distribution of the foliage. The benefit of our approach was, however, 
that we obtained information also on how the model performs in pre
dicting directional scattering characteristics of the tree seedlings. 

Finally, we compared the model errors to measurement uncertainties 
in our current study. We first note that the random errors in our mea
surements were relatively small: for those species and wavelengths 
which exhibited the largest differences between modeled and measured 
spectra (i.e. oak in the visible region, and pine in the visible and 
shortwave-infrared), bias-% clearly exceeded SD-% (Fig. 8). The 

Fig. 9. Range of bias-% in modeled ωtree(Ω), for models without woody parts (a) and with woody parts (b). For each tree species, the lines show the minimum and 
maximum bias-% among all view directions. 

Fig. 10. Relation between total escape probability (1 – p) and 4 × STAR.  
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observed errors were thus mainly systematic. The oak was the only 
species for which RMSE-% (up to 57% for the best-performing model) 
notably exceeded the estimated uncertainties in the goniometer mea
surements (15–30%). Also the RMSE-% for pine (up to 26% for the best- 
performing model) is close to the upper limit of the estimated un
certainties and indicates some biases in the model. This is especially 
because the large RMSE-% was observed only for visible and shortwave- 
infrared regions, but biases in the goniometer measurements, except for 
those related to stray light correction, should be largely wavelength- 
independent. 

Physical explanation for the somewhat poorer model performance 
for oak can be attributed to directional scattering characteristics of the 
foliage. For all species, reflectance to transmittance ratios of foliage 
were fairly stable for near- and shortwave infrared regions, but 
increased for the visible wavelength region (Fig. 5). The model bias for 
oak (Fig. 8a–b) followed a similar but opposite pattern compared to the 
leaf reflectance to transmittance (R/T) ratio, i.e. the oak reflectance was 
underestimated by the model when the R/T ratio of leaves was high. 
According to our visual observations, and also supported by earlier 
measurements for Quercus petraea (Farque et al., 2001; Chianucci et al., 
2018), the leaf orientation for oak is close to horizontal (planophile). At 
regions of high R/T ratio, oak therefore tended to scatter strongly into 
upper hemisphere, which resulted in the model underestimating tree 
reflectance. For pine and spruce, dependence of model bias on view 
direction was such that the model underestimated tree scattering in 
directions towards the illumination, and overestimated it in the forward 
scattering side (away from the illumination). Leaf and branch orienta
tion for pine and spruce was difficult to estimate visually, but it might be 
that, compared to oak, they were more randomly oriented. Therefore, 
pine and spruce tended to scatter more towards the illumination direc
tion, and less towards the forward direction when the R/T ratio of 
needles (or woody parts) was high. 

Both pine and spruce behaved similarly, and thus the dependence of 
model errors on view direction does not explain the negative model bias 
in simulating hemispherical reflectance for pine. It should be noted that 
when the needle transmittance is low (as it is in visible region and in the 
water absorption bands in the shortwave-infrared), the measurements of 
needle transmittance (Eq. (10)) are prone to errors in the estimation of 

gap fraction in the needle sample. To demonstrate this, we increased the 
graylevel threshold value that we used for pine (202) to the value of 224 
that was used by Rautiainen et al. (2012). As a result, the pine needle 
transmittance and consequently also needle albedo increased. The al
bedo increase varied from negligible in the near-infrared to 33% at 400 
nm. Thus, the observed model errors for pine could be explained by 
uncertainty in the needle albedo estimates. This highlights the impor
tance of the accuracy of needle optical properties measurements, if we 
want to increase confidence in model validation results. This is not only 
true for our results, but also when we validate any radiative transfer 
model for coniferous forests. However, a general finding from our 
experiment is that modeled and measured hemispherical reflectance of 
the tree seedlings agreed within measurement uncertainties, except for 
the oak in the visible region. 

5.2. Role of woody parts in model performance 

The effect of woody parts on the model performance was small, but 
generally the inclusion of woody parts improved the match between 
measured and modeled data. This is in line with earlier studies, in which 
inclusion of woody parts resulted either in small (Malenovský et al., 
2008) or large (Juszak et al., 2014) model improvements, depending on 
the ratio of wood to leaf areas. Our woody to leaf area ratios fell within 
the range observed for mature forests, i.e. woody areas up to 30% of 
total plant area (Stenberg et al., 2003; Verrelst et al., 2010). Based on 
our results we can conclude that woody parts are an important 
component to include in forest reflectance simulations and model in
versions, as stressed also by other authors (Malenovský et al., 2008; 
Verrelst et al., 2010; Juszak et al., 2014). However, inclusion of woody 
parts explained only a relatively small part of the model errors. 

5.3. Dependence of spectrally invariant parameters on tree seedling 
structure 

Total escape probability (1 – p) was linked to 4 × STAR, and thus we 
empirically proved the theoretical formula (p = 1–4 × STAR) that was 
presented originally for coniferous shoots in Smolander and Stenberg 
(2003) and was recently shown to be valid also for single trees in a 

Fig. 11. Relations of directional escape probability against STAR (top row), and ratio of directional escape probability to total escape probability against STAR 
(bottom row) for three view zenith angles (left, middle, and right columns) at azimuth angle of 15◦, i.e. close to principal plane. The zenith angles are −76.2◦

(forward scattering direction), 0◦ (nadir), and 76.2◦ (backward scattering direction). Pearson correlation coefficients (r) of the relations are given. 
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simulation study (Wang et al., 2020). Indirect empirical proof at shoot 
level was earlier provided by Rautianen et al. (2012), who showed that p 
predicted with the above formula can be used to upscale from needle to 
shoot albedo. To our knowledge, only that one study has validated the p 
= 1–4 × STAR relation empirically before us. The relation of 1 - p to 4 ×
STAR became slightly stronger when woody parts were included, which 
further emphasizes the results regarding the small but still important 
role of woody parts in the modeling of tree reflectance. Both with and 
without woody parts, however, there were deviations from a perfect 
linear relationship between 1 - p and 4 × STAR, which might be due to 
both measurement uncertainties and violations of the model assump
tions. As discussed in Section 5.1, directional scattering properties of the 
foliage that differ from isotropic can be an explanation. Oak had the 
lowest leaf R/T ratio among the species in the 710–790 nm region used 
for model inversion, followed by spruce, and then pine (Fig. 5). The 
under or overestimations of 1 - p followed the same order, with 1 - p for 
oak being clearly underestimated, for spruce slightly underestimated, 
and for pine slightly overestimated (Fig. 10). For spruce, it should be 
noted that due to the needles being short, their spectra were measured 
close to their tips where the chlorophyll content might be different from 
the center of the needle. Thus, the measured spruce needle spectra may 
not necessarily be fully representative of the average spruce needle 
spectra, and this might have contributed to the underestimation of 1 - p 
for spruce. Finally, the formula of Smolander and Stenberg (2003) is 
based on the assumption that the incoming photons are equally 
distributed on all leaf surfaces, which in real measurements can never be 
completely fulfilled. 

In addition to validating the p = 1–4 × STAR formula, our results also 
gave some indication of how STAR is linked to the directionality of 
scattering. Higher STAR tended to result in an increased escape proba
bility in the forward directions (away from the illumination), but not as 
clearly in the backward directions (towards the illumination). Conse
quently, small STAR (i.e. high clumping and thus more self-shadowing) 
resulted in larger fraction of the escaped (scattered) radiation being 
concentrated in directions towards the illumination. Similar empirical 
results for coniferous (Scots pine) shoots were presented in Rautiainen 
et al. (2018), and theoretical results for a spherical bush filled with 
randomly distributed leaves in Dickinson et al. (2008). Thus, STAR 
might be useful in developing models of directional reflectance of trees 
and forest. However, it was also evident from our results that the STAR 
was not the sole predictor of directional escape probabilities, which is in 
accordance with an earlier study by Schull et al. (2011). They argued 
that, while 1 - p (and therefore also STAR) is linked to forest canopy 
structure at all hierarchical levels, the ratio ρ(Ω)/(1 - p) is linked to the 
macroscale structure of the canopy. This somewhat complicates the 
possibilities for forward modeling of directional scattering properties of 
trees or forests. On the other hand, combinations of directional escape 
probability and 1 - p inverted from the measured spectra might reveal 
species-specific differences in structure, thus enabling to separate spe
cies from the hyperspectral data, as was demonstrated by both our re
sults (Fig. 11) and those of Schull et al. (2011). 

5.4. Implications 

The spectral invariants and photon recollision probability theories 
provide a relatively simple framework for modeling forest canopy 
reflectance, transmittance, and absorption. Simplicity is preferred in 
many applications due to low computational cost and intuitive inter
pretation of the model. For example, concept of spectral invariants has 
been utilized in producing global maps of leaf area index from data 
provided by MODIS (Knyazikhin et al., 1998; Myneni et al., 2002), and 
later also from EPIC multispectral satellite sensors (Yang et al., 2017). 
These algorithms rely on inversion of reflectance models, because 
representative combinations of field and satellite data to train statistical 
methods are difficult to obtain for large areas. Spectral invariant prop
erties are useful in the model inversion, because they reduce the 

computational cost and facilitate transferability to other sensors (canopy 
reflectance needs to be modeled only for one wavelength or spectral 
band), and because they constrain the number of possible solutions to 
the inversion problem (canopy reflectance at one spectral band is 
correlated with reflectance at other spectral bands) (Knyazikhin et al., 
1998; Myneni et al., 2002; Yang et al., 2017). Another area of applica
tion, where spectral invariants or photon recollision probability based 
models can be used, is hyperspectral remote sensing of leaf biochemical 
composition, where these models can be used to remove the disturbing 
effects of forest structure on observed spectra (Knyazikhin et al., 2013). 
Our results help in increasing confidence in the above mentioned sat
ellite products and algorithms, but they also lead in improved under
standing of the assumptions and limitations of the theory. Specifically, 
as shown by our results and demonstrated earlier also by Panferov et al. 
(2001), the spectrally invariant parameters are truly spectrally invariant 
only if the directionality of leaf scattering does not vary over wave
lengths. More research should be thus dedicated to evaluating the model 
assumption about isotropic leaf scattering and its effects on model ac
curacy depending on the used spectral bands, resolutions, and view- 
illumination configurations. Ultimately, this would result in improved 
accuracies of vegetation biophysical variable retrievals from optical 
remote sensing data. 
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Stenberg, P., Mõttus, M., Rautiainen, M., Sievänen, R., 2014. Quantitative 
characterization of clumping in Scots pine crowns. Ann. Bot. 114 (4), 689–694. 
https://doi.org/10.1093/aob/mct310. 

Wang, D., Schraik, D., Hovi, A., Rautiainen, M., 2020. Direct estimation of photon 
recollision probability using terrestrial laser scanning. Remote Sens. Environ. 247, 
111932 https://doi.org/10.1016/j.rse.2020.111932. 

Wang, Y., Buermann, W., Stenberg, P., Smolander, H., Häme, T., Tian, Y., Hu, J., 
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