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Abstract—Two-way quantum key distribution (QKD) protocols
can provide positive secret key rates for considerably higher
quantum bit error rates (QBER) than one-way protocols. How-
ever, when QBER is low, only modest key rate gains have
been achieved. This is one of the major obstacles for using
two-way protocols. In this paper we introduce a new two-way
QKD protocol which overcomes this shortcoming. Under the
assumption that the eavesdropper can only perform individual
symmetric quantum attacks, our protocol performs quantum
key distribution with a secret key rate that is higher than the
information theoretical bound limiting the performance of any
one-way protocol. This holds true also for very low QBER values.

I. INTRODUCTION

In Quantum Key Distribution (QKD) two entities, Alice
and Bob, try to generate a shared secret key using a quantum
channel and an authenticated error free classical channel, while
a third party Eve is eavesdropping both of these channels.

In the first and most used QKD protocol BB84 [1] Alice
generates a random bit sequence and sends it to Bob through
the quantum channel. Eve may perform quantum attacks on
this communication. In the sifting phase following the quan-
tum phase, Bob and Alice have an estimate of the quantum bit
error probability (QBER) between their bit strings. Based on
the QBER, and due to the nature of the quantum channel, Alice
and Bob can estimate how much information Eve has gained
during the quantum stage. Using this information and their
corresponding bit strings Alice and Bob will use the classical
authenticated channel to generate a shared secret key of which
Eve should have very little information. If the error rate is
too high, it is not possible to produce any secret key and the
protocol is aborted.

A number of effective key growing and error correction
algorithms to be used with BB84 have been developed [2]–[6].
Most of the considered schemes belong to the category of one-
way protocols, which are used in most practical applications.

A one-way protocol takes Alice’s bit string as a raw key
and the differences in Bob’s bit string are corrected as the
protocol is run. In principle, only one-way communication
is needed for error correction and key distillation in these
protocols. The highest rate achieved with such protocols is
given in [7]; the highest QBER of which such protocols can
provide a positive key rate is 11%. Assuming that we can also
perform classical pre-processing the highest reported key rate

is given in [6], and a positive key rate can be achieved up to
QBER 12.4%. The key rate of all one-way protocols is upper
bounded by a general information theoretic bound; the upper
bound for a positive key rate of any one-way protocol is at
QBER 14.6% [8, p.39].

If Alice and Bob are trying to agree on a common bit
string based on message exchanges enabling two-way post-
processing, instead of trying to directly perform error correc-
tion, this upper bound does not apply. A number of works [9],
[10] have considered the problem of extending the positive
key rate region by using two-way post-processing. In [10]
the authors demonstrate that a two-way system can achieve
positive key rate even when QBER is 20%. However, typically
when the QBER is low these protocols have a very low key
rate, which hinders their applicability for practical QKD.

In [11] the authors demonstrate that a two-way protocol
can achieve higher key rate than the best one-way protocol
[6], also when QBER is low. However, the improvement in
the key rate is small, and does not break the one-way protocol
bound [8] at low QBER. In general, the achievable key rate
of the best possible two-way protocol is not known [2, p.23],
[12, p.96].

In this paper, we consider the BB84 protocol and a scenario
where Eve can only perform individual symmetric attacks [2,
p.23]. Under this assumption, the achievable secret key rates
are typically higher than for more generic attacks. Further-
more, with individual symmetric attacks, complete secrecy
analysis can be performed in the realm of classical information
theory [12, p.205] while the proofs against general attacks will
use quantum information theory [6].

The information theoretical upper bound of [8] still limits
the key rate of any one-way protocol, but in this scenario it can
be achieved. Moreover, in [13] it was proven that under the
assumption of individual attacks a classical two-way protocol
can produce a secret key with a positive rate up to 25% QBER,
which is the absolute upper limit [9]. However, as far as we
know no one- or two-way protocol exists that would break the
one-way bound for low QBER values, e.g. below 10%.

In this paper we will introduce a new two-way protocol
that can generate secret key for QBER up to 19%. More
importantly, the protocol performs better than the theoretical
bound [8, p.39] that limits the performance of any one-way
protocol, even when QBER is small. Our security proof is



only against individual attacks. For example, the protocol in
[11] has far lower rate than ours, but is has been proven secure
against general quantum attacks. Our protocol is a key growing
protocol — a considerable amount of pre-shared key is needed
to initiate key growing. This is a rather standard assumption
in the QKD literature. However, our protocol relies on pre-
shared keys more than most protocols in the literature. We do
not have a closed form formula for the asymptotic performance
of our protocol, for detailed performance analysis numerical
methods are needed.

II. SYSTEM MODEL AND ONE-WAY AND TWO-WAY
PROTOCOLS

We assume the classical BB84 QKD protocol [1], where
Alice and Bob share a quantum channel and an authenticated
error free classical channel. Alice creates a random string
of bits, encodes it on the polarity of photons by randomly
using two different coding bases. During the transmission,
Eve will attack the transmitted bits using a quantum attack.
We assume that Eve attacks each of the bits individually,
symmetrically and always by the same method (while the
method is freely chosen by Eve) [2, p.23]. Bob randomly
chooses a measurement basis from the two possibilities used
by Alice, and performs quantum measurements using the
selected basis. After the transmission has ended Alice and Bob
will reveal the basis they have used, and discard all the bits
where their measurement bases were not the same. This is
called the sifting phase. After that they perform a random,
but jointly chosen permutation of their bit vectors. They then
randomly choose some fraction of bits from these vectors and
compare them through the classical channel in order to get an
estimate of the number of differences. The bits used in the
comparison are discarded.

Meanwhile Eve can hold the quantum states of the wire-
tapped photons long enough to perform her measurements
after the sifting phase has taken place, but not longer.

After Eve’s measurement, the whole system can be mod-
elled in terms of classical random variables and a probability
density function (pdf) p(X,Y, Z), where Z represents Eve’s
measurement results and possible side information. It is ex-
pected that Eve completely knows this density function, while
Alice and Bob only have some partial information that can
be read, for example, from the transition probabilities. The
probability of bit differences between the codewords of Alice
and Bob is called the QBER.

A. Secret key rate of one-way and two-way protocols

In general the secrecy analysis of a QKD protocol has to
happen in the quantum realm as in [6]. However, when we
assume that Eve is performing her measurements directly after
the sifting phase the analysis can be performed in terms of
classical information theory [12, p.205]. With this assumption
we will now describe how typical one-way and two-way
protocols work and what is meant with the secret key rates.
We will use the standard definitions for repetitive secret key
distillation [12, p.94-96].

A one-way protocol begins with an error correction phase,
which follows after the sifting. At the beginning Alice has a
length n bit vector x and Bob has an erroneous version y.
Alice and Bob then communicate trough the classical channel
and try to correct the errors in Bob’s vector y. The amount of
communication needed depends on the QBER. Eve can listen,
but not alter, this communication. After the error correction
phase, often referred to as an Information Reconciliation (IR)
protocol, Bob’s codeword can be modelled as a random vector
Y ′, where P (X 6= Y ′) < ε, for some predetermined ε. Based
on the observed QBER and the amount of leaked information
during the reconciliation, Alice and Bob can now estimate
how much information Eve has of X . In order to erase this
information Alice and Bob then use a randomly selected 2-
universal hash function [12, p.88], to map their vectors x and
y′ to length nfin bit-vectors k and k′, where k is a binary
i.i.d vector with equal probabilities of 1 and 0. This is called
a Privacy Amplification (PA) protocol. The probability density
function after the IR and PA protocols is p′(K,K ′, Z ′). Here
Z ′ represents Eve’s original random variable Z and all the
additional data she managed to acquire during the execution
of the IR and PA protocols, including the choice of the hash
function. The constant nfin was selected in such way that
I(K;Z ′) < ε.

We say that a QKD protocol achieves a key rate R if for
every ε we can find n(ε) so that for all n > n(ε) we have that
P (K 6= K ′) < ε, I(K;Z ′) < ε and nfin

n ≥ R− ε.
The secret key rate of a two-way protocol is defined

similarly, but the process does not begin with an error cor-
rection process. Instead Alice and Bob use two-way classical
communication and simply agree on key words k and k′ so that
the corresponding random variables satisfy P (K 6= K ′) < ε,
I(K;Z ′) < ε and I(K ′;Z ′) < ε.

III. ONE-WAY QKD PROTOCOL

In this section we discuss a classical one-way error correc-
tion and privacy amplification protocol of Lütkenhauss [14],
which have become rather standard [15, p.43]. We point out
that the presented results are purely information theoretical
without any quantum component.

While the protocol in [14] was originally presented as a
standalone one-way protocol to be performed after the sifting
phase, we will use it as a part of our new two-way protocol.
Hence in the following sections we state these results in a
general form, where the related finite valued length n random
vectors X,Y and Z might not be direct results of the quantum
communication and eavesdropping. However, when we are
applying results of this section we will always assume that
they satisfy the following conditions.

1) X is a random vector with i.i.d binary random variables
with equal probabilities for 1 and 0.

2) Random vector Y corresponds to X received through
a Binary Symmetric Channel (BSC) with transition
probability p.



3) Random vector Z is a sequence of independent identical
random variables and for every x and z, p(x|z) =∏n

i=1 p(xi|zi).
Throughout we also assume that X is the random vector

Alice has, Y is Bob’s vector and Z Eve’s. Furthermore, Eve
knows perfectly the probability density function p(X,Y, Z),
and for every realization of x and y knows the locations of
errors in Bob’s word y. If these random vectors are presenting
the vectors after sifting, then Condition 2 follows from Eve’s
attacks being symmetric and Condition 3 from the attacks
being individual.

Eve’s information of X can now be measured in terms of
a collision probability [14, p.9]. The collision probability of
X with respect to z is pxc (z) =

∑
x p(x|z)2, and the average

collision probability can be defined as

〈pxc (z)〉z := Ez[p
x
c (z)]. (1)

From conditions 1 and 3 it follows that 〈pxc (z)〉z = (pxc )
n,

where pxc = 〈pxi
c (zi)〉zi is the expected collision probability

of a single bit.
At the beginning of the protocol Alice and Bob know the

transition probability p and an upper bound pcol for the average
bit collision probability pxc .

A. Cost of Reconciliation

Let us now assume Alice has a sequence of bits x of length
n and Bob has a possibly erroneous version y. Even without
knowing Bob’s codeword, Alice can send some information to
Bob through the error free classical channel, so that Bob can
correct his errors. This problem can be seen as an example of
source coding with side information, where X is the source
and Y is the side information the decoder has.

According to the Slepian-Wolf Theorem [16] the number of
bits needed to correct all the errors of Bob’s words is at least

nh(p) = n(−p log2 p− (1− p) log2(1− p) ), (2)

where h(p) is the binary entropy function. When we let n
become arbitrarily large, the probability that all errors in Bob’s
word will be corrected with nh(p) bits will approach 1. Hence
if Y ′ is Bob’s random vector after the error correction, then
P (X 6= Y ′) can be pushed arbitrarily close to zero.

As in [14] we assume that Alice and Bob already share se-
cret key material and Alice will encrypt the bits and send them
to Bob through the public channel. Note that this consumes
existing secret key, and has to be taken into account when
the rate of generating key material is ultimately computed.
When using this approach Eve will not gain any information
of the word x except about the number of errors Bob has.
As we assumed at the beginning that Eve already possesses
this information, the error correction process does not increase
Eve’s information of X .

B. Cost of privacy amplification

As described in the previous section the used error correc-
tion method did not leak any additional information to Eve
and therefore the original pdf p(X,Z) still presents Eve’s

knowledge of X . In the following we will shortly recall from
[14] how knowing pcol allows us to measure how much we
have to compress X so that Eve’s information of the result
will be as small as we want.

We will denote with G a random variable that presents
2-universal hash functions [17] that map length n binary
vectors into length nfin binary vectors, and use a shorthand
G(X) = K. Eve’s knowledge of K is now presented by the
probability distribution p(k|z, g), which is the probability that
the key is k given Eve’s measurement and side-information z
and knowledge of the random hash g.

In [14, Eqn. 9] it was shown that

I(K;Z,G) ≤ log2[2
nfin〈pxc (z)〉z + 1]. (3)

For a detailed proof of this result we refer the reader to
the Appendix. Selecting a security parameter nS, and setting
nfin = (1− τ1)n− nS, where τ1 = 1 + 1

n log2(〈pxc (z)〉z), we
have

I(K;Z,G) ≤ log2(2
−nS + 1) ≈ 2−nS

ln(2)
.

Here we see that shortening the final key with nS will
exponentially decrease the average information that Eve has.
Hence when calculating the final key rate we are satisfied with
reducing Eve’s information of K to a single bit by selecting
nfin = − log2(〈pxc (z)〉z) = −n log2(pcol)).

C. The Achievable Rate

As most QKD protocols, the protocol here is not about key
generation but about key growing. Hence we are measuring the
long term achievable key rate taking into account how much
previously generated key we are using when generating new
key. Furthermore we consider asymptotic performance with
arbitrarily long sequences X , and assume capacity approach-
ing codes that guarantee that the error correcting process of
Section III-A can be performed with nh(p) bits with arbitrarily
high probability. After the error correction phase we have to
reduce Eve’s information of the corrected key to at most 1 bit
by selecting nfin = −n log2(pcol)). The achievable secret key
rate now becomes

R0 ≥ − log2(pcol)− h(p), (4)

where the term h(p) describes the amount of previously
generated key the protocol consumes.

IV. TWO-WAY PROTOCOL WITH PARITY BIT
RECONCILIATION

The novel Two-way Protocol with Parity bit Reconciliation
(2PPR) uses the secrecy distillation method from [9], where on
each round Alice and Bob randomly divide their codewords
into blocks, calculate parity bits of these blocks, and in the
case where the parity bits differ, jointly discard these blocks.
The surviving bits will then be used as input for the next round
of the protocol.

In contrast to [9] and following [11] we use the knowledge
that the parity bits between Alice and Bob are strongly corre-
lated and only send sufficient information that Bob can correct



his parity bits. Moreover this data is transmitted through the
public channel secretly by using secret key from previous
rounds. The biggest difference compared to previous protocols
is that we are collecting our secret key from the parity bits and
not from Alice’s original string. Essentially in each round we
are applying the one-way protocol of Section III to reconcile
the parity bits. The final secret key is then a concatenation of
the bits collected in each round.

A. Initial Collision and Error Probabilities

The 2PPR protocol begins after the sifting phase. The length
of random vectors that Alice, Bob and Eve have is denoted by
Nsif . The QBER has been estimated during the sifting process
and is assumed to be known by all players. The sequences
satisfy the conditions of Section III and have a joint pdf
p(X,Y, Z). The transition probability between Alice and Bob
is denoted with p.

Following [14, Eqn. (59)], Eve’s bitwise collision proba-
bility of X satisfies

pcol := Ez[p
x
c (z)] ≤

1

2
+ 2p− 2p2 , (5)

where p ≤ 1/2. This was derived under the assumption that
Eve has spoiling information and knows the locations where
Bob has done an error in the receiving. In [14], this result was
stated for Eve’s collision probability after the error correction
process. However, this result is also valid in the case when
error correction has not yet been performed. This follows from
the fact that [14] uses encrypted error correction that does
not leak any additional information for Eve during the error
correction process.

B. Advantage Distillation with Secret Keys from Parity Bits

At the beginning of the protocol, we have f1
in = 1, p1

in = p
and x1

in = pcol. Round j is then as follows.
1 Alice has a fraction f jin remaining of the Nsif sifted bits.

Bob’s QBER is estimated to be pjin, and Eve’s collision
probability is xjin.

2 Alice and Bob randomly, but jointly, segment their
codewords to blocks with 2 bit segments.

3 Alice and Bob compute parity check bits for each block.
4 Alice and Bob compute the error probability pjpar of their

parity check bits.
5 Alice computes the collision probability xjpar of the

parity check bits.
6 Alice computes the secret key rate of the parity bits,

Rpar,j = (f jin/2)max
(
− log2(x

j
par)− h(pjpar), 0

)
7 If Rpar,j > 0, Alice sends Nsif(f

j
in/2)h(p

j
par) redun-

dancy bits to Bob, to correct the parity check bits. The
redundancy bits are transmitted by using one-time pad
encryption with existing key bits.

8 Alice and Bob both save the corrected parity bits.
9 If Rpar,j ≤ 0, Alice sends the parity bit information over

the public channel.

10 Both Alice and Bob remove the blocks with erroneous
parity bits, sharing this information over the public
channel.

11 Alice and Bob select at random (but jointly) one bit
from each kept block. These bits are kept for the
next repetition. These constitute a fraction f jout of the
sifted bits, their bit-error rate is pjout, and the collision
probability is upper bounded by xjout.

The bits collected in step 8 are all equal for Bob and
Alice. Eve’s information of them will be erased by using
classical privacy amplification, presented in Section III, after
each round. The resulting bit strings will be concatenated to
produce the final key. The bits from Step 11 are fed to the
protocol and the protocol continues until nothing is left of the
sifted bits. The bit-error rate pjout and the collision probability
xjout are used as input parameters in Step 1 as the protocol
enters a new round.

C. Finding the Values for Error and Collision Probabilities

In order to perform the protocol Alice and Bob have to be
able to calculate the values pjpar and xjpar, given the estimates
for pjin and xjin at the beginning of the round. They also have
to be able to find pjout and xjout based on pjin, x

j
in and the initial

values pcol and QBER p. However, if we want to apply the
results from Section III for collecting key on Step 8, we also
have to check that the corresponding random vectors satisfy
the conditions of Section III. We have collected these results
to the following two Lemmas whose proofs can be found in
the Appendix.

Lemma 1: At the beginning of each round of the protocol the
random vectors of Alice, Bob and Eve satisfy the conditions
of Section III. Furthermore

pjout =
(pjin)

2

(1− pjpar)
and xjout ≤ (1− pjout)

pcol

1− p
. (6)

Lemma 2: Alice’s and Bob’s parity bits calculated on step
3 and Eve’s information of them can modelled with random
vectors satisfying the conditions of Section III. Furthermore

pjpar = 2(1− pjin)p
j
in (7)

and
xjpar = (xjin)

2 + (1− xjin)
2. (8)

V. ANALYSIS OF THE SECRET KEY RATE OF THE PROTOCOL

In this section we are finding the secret key rate of the
2PPR protocol in a theoretical sense. In the analysis we assume
that the protocol is run for arbitrarily long sequences and that
we therefore can apply the one-way protocol of Section III
optimally. We also assume that during a single run, only a
small predetermined number of rounds is used. Hence the
assumption that we can use asymptotic analysis will hold
during the whole run of the protocol. In the following analysis,
we use the standard definition for the secret key rate of a two-
way system as described in [12, Def. 5, p.94] and Section
II-A.



Before proceeding we note that while we are only measuring
the information Eve has of Alice’s sequence it is easy to see
that Eve cannot have more information about Bob’s sequence.

Theorem 5.1: During n rounds, the 2PPR protocol asymp-
totically achieves secret key rate

n∑
j=1

(f jin/2)max
(
− log2(x

j
par)− h(pjpar), 0

)
, (9)

where the values for xjpar and pjpar are from Lemma 2 and

f jout = (f jin/2)
(
1− pjpar

)
. (10)

Proof: During the running of the protocol the secret bits
are collected in Step 8, where we apply the one way protocol
of Section III to the parity bits. According to Lemma 2 we
can use the secret key rate analysis from that section and find
that during a single round Alice and Bob collect

Nsif (f
j
in/2)max

(
− log2(x

j
par)− h(pjpar), 0

)
bits. Here we have also taken into account the bits consumed
by the error correction. Due to the properties of the used
one-way protocol the bits collected by Alice are i.i.d with
probability 1

2 for 1 and 0, and are equal for Alice and Bob
with arbitrarily small error probability. In each round we leak
at most one bit of information. As we are running the protocol
a small number of times, we can apply asymptotic analysis
such that this leakage can be erased with no visible reduction
in the achievable rate as in Section III.

Next we need to prove that we can concatenate the secret
key bits collected during each round to form the final secret
key. Due to Step 11 the component vectors are uncorrelated.
There Alice and Bob randomly select from each kept pair
of bits one for the round j + 1. By elementary probability
theory this selected bit is independent of the parity bit of the
corresponding pair. As the key collected in round j consists
of processed parity bits it follows that the raw key passed
to round j + 1 is independent of the bits collected during
round j and any previous round. Therefore Alice and Bob can
simply concatenate the bits collected in each round to form
the final key and the collected secret key is still uncorrelated.
Furthermore, Eve’s information of the concatenated key is at
most the sum of the information of the components. Hence for
a finite number of rounds we can push Eve’s information of
the whole key to an arbitrarily low value without reducing the
rate. For the final key rate we divide the number of collected
bits with the number of initial bits Nsif .

Finally, during the protocol run Alice and Bob can keep
track of f jin. However, we have to prove that we can use value
(10) for estimating the achievable key rate. In steps 10 and 11
we discard the blocks with erroneous parity bits, and choose at
random one bit from each remaining block. Direct calculation
gives that the expected fraction of the original bits that are
kept for the next round is f jout = (f jin/2)

(
1− pjpar

)
.

By applying the law of large numbers, we can see that when
analysing the achievable rate we can replace the actual values
of f jout with the average value (10) in each round.

VI. NUMERICAL PERFORMANCE ANALYSIS

Theorem 5.1 does not allow easy analytic key rate analysis
due to its recursive nature. We have therefore evaluated the
performance of the 2PPR protocol by using numeric analysis.
For a given QBER, and number of rounds, the recursion can
be computed. The parameters f jout, f

j
in and pjpar change from

round to round and depend on the error rate and the collision
probability. The values for these parameters can be found
in Section IV-C. For each round, the key rate function in
Equation (9) is evaluated. The initial value for the collision
probability for the first round comes from Equation (5). The
numerical result for twelve rounds of the protocol is presented
in Fig. 1 in a QBER range up to 20%. The 2PPR protocol
is giving a positive key rate up to approximately 19.09%
QBER and outperforms the theoretical upper bound for one-
way protocols.

The theoretical upper bound for a one-way protocol at a
given QBER value is the difference between mutual informa-
tion between Alice and Bob I(α, β) = 1− h(p) and between
Alice and Eve Imax(α, ε). The mutual information between
Alice and Eve is calculated according to [8, Eq. 64, p.39]

Imax(α, ε) = 1− h
(
1 + sin(x)

2

)
, (11)

where h(p) is the binary entropy function as in (2)
and x = arccos(1− 2p) [8, p.39]. The theoretical upper
bound for the key rate for a one-way algorithm is then
R = I(α, β)− Imax(α, ε), which is presented in Fig. 1 with
a red curve. Watanabe et al. demonstrated in [11] that a two-
way protocol can achieve higher key rate than the best one-way
protocol. The achieved key rate for Watanabe et al. from [11,
fig. 2] is shown in Fig. 1 for comparison. This protocol is not
able to break the theoretical one-way protocol bound, while
our 2PPR protocol with 12 rounds outperforms the one-way
bound for almost the whole QBER range.
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Fig. 1. The key rate of the proposed 2PPR protocol.
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VII. APPENDIX

A. A proof of equation (3)
In Section III-B we were using equation

I(K;Z,G) ≤ log2[2
nfin〈pxc (z)〉z + 1]. (12)

The original proof can be found from [14], but for complete-
ness sake we will prove it here.

Before proceeding let us recall the connection between
collision probability and Rényi entropy. Let X be a finite
random variable with alphabet X and probability distribution
PX . The collision probability Pc(X) of X is defined as the
probability that in two independent experiments X takes the
same value [17]

Pc(X) =
∑
x∈X

PX(x)2. (13)

The collision probability of X with respect to z where Z is
a random variable is pxc (z) =

∑
x p(x|z)2. The Rényi entropy

of order two (”Rényi entropy” for short) of a random variable
X is defined as

R(X) = − log2(Pc(X)), (14)

where Pc(X) is the collision probability of X . Obviously
this equation holds also for conditioned random variables and
hence

R(X|z) = − log2(Pc(X|z)).
Let us now proceed with the proof of Equation (12).

Proof: Eve’s expected Shannon information of K is

I(K;G,Z) = H(K)−H(K|G,Z), (15)

where H(K) is the entropy of the secret key and H(K|G,Z)
is the conditional entropy of the secret key given hash func-
tions and Eve’s knowledge of the reconciled key. Hashing
produces a uniformly distributed key and the Shannon entropy
of the secret key is therefore

H(K) = nfin. (16)

In order to find an upper bound for the mutual information
(15) we now only need a lower bound for H(K|G,Z).

From Bennet et al. [17] Theorem 3 and Corollary 4, we
have

H(K|G,Z = z) ≥ nfin − log2

(
1 + 2nfin−R(X|z)

)
. (17)

Averaging Equation 17 over values of z and noting that
Pc(X|z) = 2−R(X|z), we have

H(K|G,Z) = Ez[H(K|G,Z = z)]

≥ nfin − log2 (1 + Ez[2
nfinPc(X|z)])

= nfin − log2 (1 + 2nfin 〈pxc (z)〉z) ,

where the first inequality follows from Jensen’s inequality.
Combining now this result and Equation 16, gives us the claim.

B. Proof of Lemma 1

1) Proof of the first equation of Lemma 1: Alice’s and
Bob’s bit sequences coming to the Step 1 are either results
of the original BB84 protocol or then punctured versions of
these sequences. In both cases it is easy to see that they are i.i.d
random binary sequences and Bob’s sequence is like Alice’s
but received through BSC channel with transition probability
pjin. As at the beginning of the protocol we know p1

in, we
can assume we know this value. Let us now consider one
of the blocks that was selected in Step 3 of the protocol.
The probability that the parity bits of Alice and Bob agree is
(1−pjpar). In Step 11 we randomly select a bit of such block.
Then the probability that the value differs between Alice and
Bob is

pjout =
(pjin)

2

(1− pjpar)
, (18)

which is what we claimed.
Before proceeding we need the following Lemma, which

is true for p1
in as we assumed that QBER is below 25% and

therefore true for all pjin due to the Lemma.
Lemma 3: As long as pjin < 1/3, we have that

pjout ≤ p
j
in.

Proof: Inserting Equation (7) to Equation (18) we have
that

pjout =
(pjin)

2

(1− 2(pjin)(1− p
j
in))

.

As we assumed that pjin < 1/3, we can see that

1− 2(pjin)(1− p
j
in) > 1− 2pjin > pjin,

and the claim follows.

Note that while we have not yet proven Equation (7), we are
not doing anything criminal as in the proof of that result we
do not need Lemma 3.

2) Proof of the second equation of Lemma 1: On the
first round of the protocol we assume that Eve’s and Alice’s
random vectors satisfy the third condition of Section III. Let
us now assume that Eve’s and Alice’s sequences satisfy this
condition on round j and consider two bits x1 and x2 that are
surviving for the round j +1. These bits are selected of pairs
of bits (x1

1, x
2
1) and (x1

2, x
2
2). At the beginning of the protocol,

Eve’s information of these pairs of bits can be presented as
random variables that are independent of each other. During
the Steps from 1 to 6 we will only reveal information of the
locations of bits where Bob’s bit differs from Alice’s, but we
assumed already in the beginning that Eve has this knowledge.
Hence the only additional data we possibly leak for Eve is
in Step 9 when we reveal parity bits of these pairs, which
can create correlations inside the pairs of bits. However when
we select one bit of each pair randomly, the resulting bits are
uncorrelated. It follows that at the beginning of the round j+1
Eve’s information of Alice’s bits can still be presented in the
form of condition 3 of Section III.



Let us now prove an upper bound for xjout. Let xi be
Alice’s random bit on the first round of the protocol and zi
Eve’s corresponding random variable. We can further divide
the random variable zi so that zi = (z′i, e), where e is a binary
random variable presenting whether the bit xi was received
incorrectly (1) by Bob or not (0). Using this notation and
Definition (1), Eve’s collision probability with respect to xi
can be divided to two parts

pcol = pxc,1 + (1− p)xc,0, (19)

where xc,1 is the collision probability averaged over all zi,
where zi = (z′i, 1) and xc,0 is defined in similar fashion. The
original estimate for pcol is gotten from Equation (5) and p is
the original transition probability between Alice and Bob. The
proof will now get divided to two parts depending whether
Step 7 or Step 9 is selected.

Let us now assume that Step 7 is selected. During the Steps
from 1 to 6 we will only reveal information of the locations
of bits where Bob’s bit differs from Alice’s. However, our
estimate for the collision probability assumed that Eve already
at the beginning of the protocol had this information. We can
therefore conclude that if a random variable xi presents a bit
that was not cut away in Steps 10 and 11, then Eve’s informa-
tion of this bit can be presented with the original probability
density function p(xi|zi) of Section IV-A. However, during
the cutting process we have affected how often e = 0 and
how often e = 1.

Therefore, for the bits surviving for the next round we get

xjout = pjoutxc,1 + (1− pjout)xc,0. (20)

From equation (19) we have that

(1− pjout)

(1− p)
pxc,1 + (1− pjout)xc,0 = (1− pjout)

pcol

1− p
.

From Lemma 3 we see that pjout ≤ pjin and hence pjout ≤ p.
It follows that

xjout = pjoutxc,1 + (1− pjout)xc,0 ≤ (1− pjout)
pcol

1− p
. (21)

Let us now assume that the protocol chooses Step 9 instead
of Step 7 and that we have a block of bits (xi, xj) whose value
of parity is the same for Bob and Alice. Alice then reveals this
information. This would clearly increase Eve’s information
of the pair xi and xj . However, when we randomly, with
probability half, choose one of the bits for the next round we
erase Eve’s extra information of the chosen bit. Therefore just
like in the previous section we can conclude that the collision
probability xout is given by Equation (20) and an upper bound
by (21).

C. Proof of Lemma 2

According to Lemma 1 Alice’s and Bob’s bit sequences
coming to the Step 1 satisfy the conditions of Section III
with transition probability pjin. In Step 3 Alice and Bob form
bit sequences by taking parity bits of their corresponding bit
sequences. As the bits in their original sequences are i.i.d

so are the parity bits. Furthermore Bob’s sequence is again
like Alice’s received through BSC channel. Only the error
probability has now changed.

Let us concentrate on a single block of two bits in Step 2
of the protocol. Bob’s parity bit differs from Alice’s, if one
bit is in error in the parity check block. Accordingly, we have
that

pjpar = 2(1− pjin)p
j
in. (22)

As we did see in Section VII-B2 also the random vectors of
Alice and Eve satisfy the conditions III. It directly follows that
when Alice forms a sequence of random variables consisting
of the parity bits of her original sequence, these parity bits and
Eve’s information of them satisfy the conditions III as well.
However, one should realize that given a pair of bits (xs, xt)
and their corresponding parity bit xk then Eve’s corresponding
random variable is (zs, zt) = zk.

It follows that the collision probability of the parity bits can
be calculated in a bitwise manner.

Let us now assume that we have two i.i.d binary random
variables x1 and x2 and two i.i.d random variables z1 and z2,
that satisfy p(x1, x2|z1, z2) = p(x1|z1)p(x2|z2).

Let us define a random variable d = x1 + x2, where the
sum is calculated modulo 2.

Lemma 4: We have that

〈pdc(z)〉z = (pxc )
2 + (1− pxc )2, (23)

where z = (z1, z2) and (pxc ) = 〈pxi
c (zi)〉zi .

Proof: For fixed z1 we have that

px1
c (z1) = p(x1 = 1|z1)

2 + (1− p(x1 = 1|z1))
2

= 1− 2p(x1 = 1|z1) + 2p(x1 = 1|z1)
2,

and similar expression for the pair x2 and z2. It follows that

pxc = Ez1 [1− 2p(x1 = 1|z1) + 2p(x1 = 1|z1)
2].

Let us now find the collision probability for d. First we have
that

p(d = 1|z) = p(x1 + x2 = 1|z1, z2)

= p(x1 = 1|z1)(1− p(x2 = 1|z2))

+ p(x2 = 1|z2)(1− p(x1 = 1|z1)).

By direct calculation we then get that

pdc(z) = p(d = 1|z)2 + (1− p(d = 1|z))2

= px1
c (z1)p

x2
c (z2) + (1− px1

c (z1))(1− px2
c (z2)).

Due to the independence assumptions we made we therefore
have the following average〈

pdc(z)
〉
z

= 〈px1
c (z1)〉z1 〈p

x2
c (z2)〉z2

+ (1− 〈px1
c (z1)〉z1)(1− 〈p

x2
c (z2)〉z2).



REFERENCES

[1] C. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in Proceedings of IEEE International
Conference on Computers, Systems and Signal Processing. IEEE, 1984,
pp. 175–179.

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütken-
haus, and M. Peev, “The security of practical quantum key distribution,”
Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.

[3] K. Nguyen, G. V. Assche, and N. J. Cerf, “Side-information coding with
turbo codes and its application to quantum key distribution,” in in Proc.
International Symposium on Information Theory and its Applications,
2004.

[4] D. Elkouss, J. Martínez Mateo, and V. Martin, “Information rec-
onciliation for quantum key distribution,” Quantum Information and
Computation, vol. 11, 07 2010.

[5] P. Jouguet and S. Kunz-Jacques, “High performance error correction for
quantum key distribution using polar codes,” Quantum Information and
Computation, vol. 14, 04 2012.

[6] R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security
proof for quantum-key-distribution protocols,” Phys. Rev. A, vol. 72, p.
012332, Jul 2005. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.72.012332

[7] P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84
Quantum Key Distribution Protocol,” Physical Review Letters, vol. 85,
pp. 441–444, Jul 2000. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.85.441

[8] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum
cryptography,” Rev. Mod. Phys., vol. 74, pp. 145–195, Mar 2002.
[Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.
145

[9] D. Gottesman and H.-K. Lo, “Proof of security of quantum key distri-
bution with two-way classical communications,” IEEE Transactions on
Information Theory, vol. 49, no. 2, pp. 457–475, Feb 2003.

[10] J. Bae and A. Acín, “Key distillation from quantum channels
using two-way communication protocols,” Phys. Rev. A, vol. 75, p.
012334, Jan 2007. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.75.012334

[11] S. Watanabe, R. Matsumoto, T. Uyematsu, and Y. Kawano, “Key
rate of quantum key distribution with hashed two-way classical
communication,” Phys. Rev. A, vol. 76, p. 032312, Sep 2007. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.76.032312

[12] G. Van Assche, Quantum cryptography and secret-key distillation.
Cambridge University Press, 2006.

[13] N. Gisin and S. Wolf, “Quantum cryptography on noisy channels:
quantum versus classical key-agreement protocols,” Physical Review
Letters, vol. 83, no. 20, p. 4200, 1999.

[14] N. Lütkenhaus, “Estimates for practical quantum cryptography,” Phys.
Rev. A, vol. 59, pp. 3301–3319, May 1999. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.59.3301

[15] M. Pivk, “Quantum key distribution,” in Applied Quantum Cryptogra-
phy. Springer, 2010, pp. 23–47.

[16] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471–480, 1973.

[17] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “General-
ized privacy amplification,” IEEE Transactions on Information Theory,
vol. 41, no. 6, pp. 1915–1923, 1995.


