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Abstract 1 

Nearest-Neighbour Analysis (NNA)-based procedures are proposed for the quantitative characterization of 2 

the spatial distribution of corrosion pits in metals. After the exposure of a carbon steel to a 3.5%-NaCl-3 

solution mist, the results derived from observation of corrosion-pit initiation and growth were used to justify 4 

the applicability of this approach. The pits initially comprised clusters that were superimposed on a randomly 5 

distributed background set. The clustered pits subsequently coalesced, evolving into a more random pit-6 

arrangement. Furthermore, it was revealed that in the early stages, the spatial pit-distribution can be predicted 7 

via inspection of surface inclusions prior to the corrosion process. 8 

 9 
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 12 

 13 

1. Introduction 14 

The detrimental effect caused by the combination of cyclic-loading and a corrosive environment has 15 

been acknowledged from as early as the beginning of the 19th century [1]. Although there remains some 16 

disagreement amongst researchers about the corrosion-fatigue, fracture-process details, there exists a 17 

consensus about the critical role of corrosion-pits in the initiation of fatigue-cracks [1-7]. 18 

Numerous fracture mechanics-based models have been proposed for assessing the corrosion fatigue-life 19 

of structures and machinery, particularly those destined to be subjected to cyclic-loading in corrosive 20 

environments. Such techniques have commonly focused on the individual corrosion-pit, the size of which 21 

can be estimated according to a certain pit-growth law, later to be combined with a crack-growth law to 22 

predict a component’s corrosion fatigue-life. A comprehensive review of these approaches and their 23 

respective limitations was provided by Larrosa et al [1]. Most notably, such matters are only relevant if 24 

fracture is propelled by the initiation and growth of a single pit, ultimately the point of origin of a primary 25 

crack. These types of models might become applicable at later stages of the corrosion fatigue-fracture 26 

process, after the emergence of a major crack. However, in most practical cases, the procedure is not 27 

necessarily governed by the initiation and growth of a single pit or crack. Typically, the corrosion-fatigue 28 
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mechanism involves the appearance of multiple pits, mainly at inclusion sites where they serve as local 29 

galvanic cells, followed by the pit-growth stage [4-9]. Afterwards, a multiplicity of small fatigue-cracks 30 

originates from the pits as stress-concentrators, the interaction and resultant coalescence of which eventually 31 

lead to the formation of a significant crack that will dominate fracture [10], [11]. Consequently, an 32 

understanding of the multiple-pit initiation/interaction behaviour is essential to the development of a 33 

blueprint for forecasting corrosion fatigue-life, based on a more realistic damage scenario. 34 

As the first step towards the establishment of a prediction model, it is necessary to develop a procedure 35 

for the quantitative characterization of the spatial distribution of corrosion-pits. In fact, many researchers 36 

have applied various spatial statistics techniques, including the Ripley method, Quadrant count, Brix, 𝐿𝐿� and 37 

Inter-event distance estimators [12-25], to qualitatively characterize corrosion-pit distribution in other 38 

practically important localized corrosion research area. Among all the fore-mentioned spatial statistics tools, 39 

the Ripley method is widely used, hence it will be discussed  briefly here. Ripley method is used to 40 

qualitatively determine deviations from complete spatial randomness. It involves the generation of a 41 

complete spatial randomness simulation envelope using multiple randomly generated data points of same 42 

number as the actual distribution whose spatial distribution is to be determined. The envelope is the plot of 43 

the maximum and minimum values of a L2 statistical function  over a range of radii [12]. Next, the values of  44 

L2 function for the actual data points  for the same radii range are plotted over the envelope. If this plot falls 45 

within the envelope,  the distribution is classified as randomly distributed, if it falls above, it is clustered and 46 

finally if it falls below, then it is classified as regular. Budiansky et al. [15] applied Ripley method in the 47 

study of interactions among pitting sites in AISI 316 stainless steel tested in 0.05M NaCl. They applied this 48 

procedure to spatial data of  non-metallic inclusions on the specimen surface prior to the corrosion test and 49 

to corrosion pits after the test. They observed that the inclusions were randomly distributed while the pits 50 

were clustered. Based on this observation, they concluded that the clustering of pit sites is an indication of  51 

interactions among localized pitting sites  but also warned that the clustering could as well be due to the fact 52 

that the non-metallic inclusions from which the pits initiated were initially clustered. Although Ripley 53 

method can successfully classify data points as random, clustered or regular, the need to initially generate a 54 

complete spatial randomness simulation envelope using large number of randomly generated data points of 55 

same number as the actual distribution makes the method computationally expensive for practical usage. 56 

Also, for cases where a portion of the line of the L2 function for the actual data falls within the envelope 57 



4 
 

while other portion falls outside, the classification is no longer straight forward. Furthermore, the method 58 

cannot be to quantitatively measure the degree of deviation from complete randomness. The ability to 59 

quantitatively measure the deviation from randomness is necessary to develop a probabilistic corrosion 60 

fatigue prediction model. To conclude this brief review, the work of Scully et. al [25] merit a mention. 61 

Through experiment and model simulation of a stainless steel alloy, they showed that prevention of explosive 62 

growth of pits site and clustering of pits can be achieved if the lateral diffusion length, associated with 63 

aggressive corrosion products formed at pits, is less than the nearest neighbor distance (NND) of the surface 64 

non-metallic inclusions. The NND was taken as the average distance between an inclusion and its five closest 65 

neighbors. If the inclusions are randomly distributed or clustered, then this method of estimating NND is 66 

practically accurate enough, however if they are a superposition of clustered sets with random set in 67 

background, this method of estimation can not be directly used. At first, there is need to separate the clustered 68 

sets from the random background. Then NND for each of the cluster sets can be estimated. 69 

In this study, two Nearest-Neighbour Analysis (NNA)-based procedures have been proposed as suitable 70 

statistical tools to quantitatively characterize the spatial distribution of corrosion-pits. Using these methods, 71 

the spatial distribution of corrosion-pits can be categorized as ordered, random, clustered or consisting of 72 

randomly distributed with superimposed clusters. Moreover, it will be shown that, in cases where the 73 

corrosion-pit population is a superposition of clusters and a randomly distributed background set, pits 74 

belonging to the cluster sets can be identified using an NNA-based technique. The validity of this approach 75 

was confirmed by the experimental results for a medium-carbon steel (S45C-JIS, DIN C45, AISI 1045), 76 

previously exposed to a mist of 3.5%-NaCl-solution for a duration of 0.5 ~ 6.0 hours. In addition, based on 77 

the spatial distribution of non-metallic inclusions on the specimen surfaces, it will be demonstrated that the 78 

new method can predict corrosion-pit spatial distribution, especially at the very early stages of the corrosion-79 

process. Finally, about an eventual, corrosion-fatigue prediction model, the practical applications of these 80 

procedures are also explored, along with the quality-control of materials exposed to corrosive environments. 81 

 82 

2. Analysis 83 

During the 1940s, NNA was developed as a practical tool for characterizing population patterns, 84 

propelled by research into the spatial distribution of plants or animals in their natural habitats [26]. The 85 

discovery that most populations are not arbitrarily distributed advanced the need for further research, to 86 
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abandon the simple assumption of haphazard arrangement and to consider the degree of departure from 87 

arbitrary distribution [26]. Subsequently, NNA was successfully applied in the fields of materials science, 88 

medicine, astronomy, machine-learning, biology and many other disciplines, generally targeted towards the 89 

realistic problems associated with the spatial arrangement of certain members of a given population. For 90 

example, Shehata and Boyd [27] applied an NNA-based procedure to compare the spatial distribution of 91 

non-metallic inclusions on the surfaces of as-cast and as-rolled steels. 92 

The NNA-based method for characterizing the spatial distribution of feature-centroids in planes is herein 93 

provided. More complete details can be reviewed in the original publications [26], [28]. 94 

Clark and Evans [26] were the first to derive the formulae for calculation of the expected mean, 𝐸𝐸(𝑟̅𝑟1), 95 

and variance of the nearest distance, 𝐸𝐸(𝑠𝑠12), based on the features of a population, N, being randomly 96 

distributed over an area, A, with a distance measurement, r1 , from each feature to its nearest neighbour. When 97 

the spatial distribution of features can be considered to be homogeneous, the Poisson-point process, with a 98 

density of 𝜌𝜌 = 𝑁𝑁
𝐴𝐴

 , 𝐸𝐸(𝑟̅𝑟1) and 𝐸𝐸(𝑠𝑠12), are expressed by the following equations: 99 

𝐸𝐸(𝑟̅𝑟1) = 1
2�𝜌𝜌

                                                (1)                                                                               100 

𝐸𝐸(𝑠𝑠12) = 4−𝜋𝜋
4𝜋𝜋

∙ 1
𝜌𝜌
                                                (2) 101 

                                                                              102 

where, the observed mean, 𝑟̅𝑟1, and the variance of 𝑟𝑟1, 𝑠𝑠12, are formulated as follows: 103 

𝑟̅𝑟1 = ∑𝑟𝑟1
𝑁𝑁

                                         (3)                                                                                                      104 

𝑠𝑠12 = ∑(𝑟𝑟1−𝑟̅𝑟1)2

𝑁𝑁
                                            (4)                                                                                                     105 

Using Equations (1)~(4), a simple method for categorizing the spatial distribution of a plane’s features can 106 

be derived as follows: If 𝑄𝑄 is defined as the ratio of the observed and expected means, 𝑄𝑄 = 𝑟̅𝑟1 𝐸𝐸(𝑟̅𝑟1)⁄ , with 107 

𝑅𝑅 being the ratio of observed and expected variance, 𝑅𝑅 = 𝑠𝑠12 𝐸𝐸(𝑠𝑠12)⁄ . The featured populations can be 108 

classified as random, regular or clustered sets, or as clusters superimposed onto random backgrounds, via 109 

the following associations of Q and R: 110 

 Random sets   𝑄𝑄 = 1,          𝑅𝑅 = 1 111 
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 Regular sets   𝑄𝑄 > 1,          𝑅𝑅 ≪ 1 112 

 Clustered sets   𝑄𝑄 < 1,          𝑅𝑅 < 1 113 

 Clustered, with a superimposed background  𝑄𝑄 < 1,          𝑅𝑅 > 1 114 

If the 𝑄𝑄 value indicates a non-random distribution of a set (i.e., 𝑄𝑄 ≠ 1), it then becomes necessary to measure 115 

the relevance of the 𝑟̅𝑟1 departure from 𝐸𝐸(𝑟̅𝑟1), in order to quantify the reliability of this procedure. Clark and 116 

Evans [26] also developed a significance test based on the normal curve. In an arbitrarily distributed 117 

population with the same 𝜌𝜌 and 𝑁𝑁 as those of the observed population, the equation for calculating the 118 

standard error of mean distance to the nearest neighbour, 𝜎𝜎𝐸𝐸(𝑟̅𝑟1), is provided as follows: 119 

𝜎𝜎𝐸𝐸(𝑟̅𝑟1) = 0.26136
�𝑁𝑁𝑁𝑁

                             (5)                                                                                                         120 

Then, the standard variant of the normal curve, 𝑐𝑐, is offered by the ensuing equation: 121 

𝑐𝑐 = 𝑟̅𝑟1−𝐸𝐸(𝑟̅𝑟1)
𝜎𝜎𝐸𝐸(𝑟𝑟�1)

                                       (6)                                                                                                   122 

Using the calculated 𝑐𝑐  value, in combination with a suitable table for normal distribution, the level of 123 

significant deviation can thus be established. In this paper, in order to differentiate between the afore-124 

mentioned procedure and other distance-based methods (e.g., the Ripley, Brix, 𝐿𝐿�  estimator, Inter-event 125 

distance estimator, it is labelled herein, the QR method. Compared to others, key advantages of the QR 126 

method include its simplicity, ease of interpretation and quantitative incorporation of the degree of departure 127 

from random distribution. 128 

Schwarz and Exner [28] developed a procedure for separating cases where feature-populations involved 129 

clusters with overlapping backgrounds. By considering a compound set to comparably be an overlay of a 130 

very dense, Poisson-point process (cluster-sets) and a relatively less-dense, homogenous Poisson-point 131 

method (background-sets), a practical and simple rule was developed to determine which feature belonged 132 

to either the cluster- or background-sets. According to that procedure, r1* and r2* were defined by the 133 

successive equations: 134 

𝑟𝑟1∗ = � 1
𝜋𝜋(𝜌𝜌𝑐𝑐1−𝜌𝜌𝑏𝑏1) 𝑙𝑙𝑙𝑙 �

𝑐𝑐1
1−𝑐𝑐1

∙ 𝜌𝜌𝑐𝑐1
𝜌𝜌𝑏𝑏1
��
1 2⁄

                         (7)                                                                      135 

𝑟𝑟2∗ = � 1
𝜋𝜋(𝜌𝜌𝑐𝑐2−𝜌𝜌𝑏𝑏2) 𝑙𝑙𝑙𝑙 �

𝑐𝑐2
1−𝑐𝑐2

∙ 𝜌𝜌𝑐𝑐2
2

𝜌𝜌𝑏𝑏22
��
1 2⁄

                       (8)                                                                        136 
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where, 𝑐𝑐1,𝜌𝜌𝑐𝑐1,𝜌𝜌𝑏𝑏1  and 𝑐𝑐2,𝜌𝜌𝑐𝑐2,𝜌𝜌𝑏𝑏2  are obtained from the complete solution of Equation (9) and (10), 137 

accordingly: 138 

𝑐𝑐1
�𝜌𝜌𝑐𝑐1

+ 1−𝑐𝑐1
�𝜌𝜌𝑏𝑏1

= 2𝑀𝑀1
1                           (9a)                                                                                                139 

𝑐𝑐1
𝜌𝜌𝑐𝑐1

+ 1−𝑐𝑐1
𝜌𝜌𝑏𝑏1

= 𝜋𝜋𝑀𝑀2
1             (9b)                                                                                                                  140 

𝑐𝑐1
�𝜌𝜌𝑐𝑐13

+ 1−𝑐𝑐1
�𝜌𝜌𝑏𝑏13

= 4𝜋𝜋
3
𝑀𝑀3
1                           (9c) 141 

𝑐𝑐2
�𝜌𝜌𝑐𝑐2

+ 1−𝑐𝑐2
�𝜌𝜌𝑏𝑏2

= 4
2
𝑀𝑀1
2                        (10a) 142 

𝑐𝑐2
𝜌𝜌𝑐𝑐2

+ 1−𝑐𝑐2
𝜌𝜌𝑏𝑏2

= 𝜋𝜋
2
𝑀𝑀2
2                (10b) 143 

𝑐𝑐2
�𝜌𝜌𝑐𝑐23

+ 1−𝑐𝑐2
�𝜌𝜌𝑏𝑏23

= 8𝜋𝜋
15
𝑀𝑀3
2                (10c)                                                                                                           144 

where, 𝑀𝑀1
1,𝑀𝑀2

1 and 𝑀𝑀3
1 are the observed first-three moments of the nearest-neighbors, whereas, 𝑀𝑀1

2,𝑀𝑀2
2 and 145 

𝑀𝑀3
2 are the observed first-three moments of the second-nearest neighbors. Insofar as a specific point is 146 

concerned (feature-centroid), if the distance to its nearest-neighbour point, 𝑟𝑟1, is larger than 𝑟𝑟1∗, and the 147 

distance to its second nearest-neighbour point, 𝑟𝑟2, is greater than 𝑟𝑟2∗, then the point is classified as belonging 148 

to background-sets. The procedure is labelled herein, the Schwarz method. 149 

 150 

3. Material and methods 151 

The material selected for this study was a hot-rolled, medium-carbon, JIS-S45C steel (equivalent to DIN 152 

C45 and AISI 1045), very often used in the fabrication of machined engineering parts. Its chemical 153 

composition and mechanical properties are outlined in Tables 1 and 2, respectively. Specimens were 120 154 

mm-long, 24 mm-wide and 1 mm-thick, extracted from the center of a 25-mm-diameter cylindrical bar. The 155 

longitudinal direction of the specimens was parallel to the rolling-direction of the base-material. One side of 156 

the specimen was mirror-polished, in conformity with the procedure proposed by Samules [29] for the 157 

removal of machined layers beneath specimen-surfaces, as part-preparation for the microscopic inspection 158 

of inclusions. The polishing process is detailed in Figure 1. 159 
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Prior to corrosion-testing, the unpolished sides of specimens, as well as all edges, were covered with 160 

Teflon tape, in order to inhibit the corrosion process. The Neutral Salt Spray Test (NSST) was then 161 

introduced as a corrosion-testing method, in accordance with JIS Z 2371 (ISO 9227:2017), and a test-solution 162 

of 3.5%-NaCl with a 7.0 pH value was selected. To ensure that the pH value did not vary, it was measured 163 

both before and after testing. The temperature inside the chamber was maintained at 35°C. To investigate 164 

the evolution of pit spatial distribution in relation to time, four specimens were exposed to a corrosive 165 

environment for 0.5, 2.0, 4.0 or 6.0 hours, as documented in Table 3. Hereafter, the uncorroded specimen is 166 

identified as S45-0, with the corroded specimens accordingly labelled as S45-0.5, S45-2.0, S45-4.0 and S45-167 

6.0, based on their respective exposure-times. At the outset of the tests, all specimens (except S45-0) were 168 

placed in the chamber, with each specimen removed when its individual exposure-time had been attained. 169 

Specimen S45-0 was especially reserved for inclusion in the spatial-distribution analysis. After corrosion-170 

testing, specimen surfaces were again mirror-polished, to remove any rust which might have rendered the 171 

microscopic pit-observation rather difficult. During the polishing process, extreme care was taken to ensure 172 

that the initiated pits had been buffed adequately.  173 

The progress of pit spatial distribution was subsequently observed by means of optical microscopy (OM) 174 

and scanning electron microscopy (SEM). The chemical compositions of inclusions in some specimens were 175 

identified via energy-dispersive, X-ray spectroscopy (EDX), at an acceleration voltage of 20 kV. Figure 2 176 

showcases the SEM inclusion-images at a higher magnification and at the corresponding EDX spectrum, 177 

primarily highlighting two inclusion types, i.e., MnS and Ca-Mn-S. The MnS-size was relatively larger than 178 

that of the Ca-Mn-S, with the quantity of MnS superior to that of Ca-Mn-S. Spatial distribution was 179 

quantified by OM image-analysis, for which the inspection area was defined as 10 × 10 mm2. The coordinate 180 

of each pit-centroid was recorded for all visible pits and reconstructed for the later pit spatial-distribution 181 

analysis. 182 

 183 

4. Results and discussion 184 

The corroded specimen-surfaces, after exposure to the corrosive environment, are displayed in Figure 3. 185 

Following corrosion-testing, rusted specimen-surfaces were rinsed in de-oxygenated water, later dried using 186 

a hot-air jet. Afterwards, mechanical-polishing was employed to remove rust and to prepare specimens for 187 

OM-observation. Figure 4 displays examples of the polished S45-0.5 (exposure-time of 0.5 hours) and S45-188 
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6.0 (exposure-time of 6.0 hours) specimen-surfaces, after removal of corrosion-rust. While it was noted that 189 

corrosion-pits developed in large quantities at 0.5 hours, some individual pits did not really grow as much 190 

between 0.5 ~ 6.0 hours. A significant escalation in size occurred predominantly through coalescence with 191 

neighboring pits, the evidence of which can be verified via examination of the pit-shape in Figure 4 (b). In 192 

fact, the coalescence of pits was already evident from as early as 0.5 hours (cf. Figure 4 (a)) and rather 193 

obvious from 6.0 hours (cf. Figure 4 (b)). Moreover, some coalesced-pits appeared to be elongated, that is, 194 

parallel to the rolling-direction of the material. 195 

In order to observe if there is influence of the underlying material microstructural phases on the observed 196 

pits and establish the mode of the corrosion that occurred, specimen S45-0.5 was etched with 3% Nital for 197 

6 seconds to prepare it for microstructural observation. Figure 5 shows that the underlying material 198 

microstructure is combination of ferrite and pearlite phases. Corrosion pits can be found in both phases as 199 

well as at their boundaries. This suggest that the observed pits are not due to a phase type dissolving in 200 

another nor due to dissolution at phase boundaries. It remains to show that the inclusions on the specimen 201 

surfaces play a key role in the pit initiation process. To demonstrate this, specimen S45-0, which was  202 

reserved for inclusion inspection, was exposed to the corrosion chamber for about 5 mins. For this exposure 203 

time, there was no need for polishing after the exposure, this is because general corrosion has not occurred. 204 

Only localized corrosion at some certain location can be seen. Thus, with this specimen it will be possible 205 

to observe the role played by the inclusions in the locations where localized corrosion initiated. In Figure 6, 206 

it can be observed that each one of the locations where localized corrosion initiated is associated with an 207 

inclusion or cluster of inclusions in their vicinity. Wranglen [4] has provided comprehensive theoretical 208 

explanation of the mechanism by which localized corrosion initiate and propagate in the vicinity of 209 

inclusions, especially sulphides. The work of Ryan et. al [7] is also another excellent work on this topic. 210 

Figure 7 displays a reconstructed demonstration of the spatial location of features(inclusions/pits), with 211 

each point representing a feature-centroid within the inspection area. Coordinates were normalized according 212 

to the length of the review area and, based on the data, the distances between all feature-pairs were calculated. 213 

Subsequently, according to the arrangement of each feature in ascending order of the appraised gaps, the 214 

spaces between the nearest and second-nearest neighbors were recorded. 215 

In terms of the quantitative characterization of the spatial distribution of features, both the equations and 216 

the QR method were programmed into a MATLAB code and applied to the test data. The major parameter 217 
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outputs are listed in Table 4. Similarly, the Schwarz method was incorporated into a MATLAB code, to 218 

identify features belonging to cluster-sets. Consequently, regarding specimen S45-0, Q = 0.77 and R = 2.15, 219 

this demonstrates that the inclusion-population is clustered with a superimposed background-set. According 220 

to the Q value of 0.77, the nearest neighbors are, on average, 0.77 times further apart than would have been 221 

expected, if inclusions had been distributed arbitrarily. Figure 8 (a) presents the inclusion-centroids 222 

associated with cluster-sets (as depicted by red dots), in addition to background-sets (represented in blue). 223 

The result suggests that 79% of inclusions relate to cluster-sets. Shehata et al. also detected the inclusion-224 

population, spatially distributed as cluster-sets against a random background on the polished surface of a Ti-225 

V micro-alloyed steel [27]. They attributed the formation of clusters to the breaking and fragmentation of 226 

large inclusions during a material’s manufacturing rolling-process. When the steel matrix becomes heavily 227 

deformed during the rolling-process, inclusions will split into small fragments. However, it should be noted 228 

that this is not the only mechanism governing the formation of inclusion-clusters. Since most clusters appear 229 

to be arranged linearly, parallel to the rolling-direction of the material, it has therefore been suggested that 230 

the rolling-process may play a role in their formation. As the cluster-sets account for a large portion of the 231 

inclusion population, they are expected to play a crucial role in the spatial distribution of corrosion-pits. In 232 

addition, the shape of the cluster arrangement will strongly influence the pit-shape formed by the coalescence 233 

of neighboring pits. This issue will later be discussed in detail. 234 

The (𝑄𝑄,𝑅𝑅) values were, respectively,(0.74, 2.10), (0.81, 2.33), (0.82, 2.17) and (0.87, 1.92), for the 235 

specimens S45-0.5, S45-2.0, S45-4.0 and S45-6.0. This data implies that their arrangement was in cluster-236 

sets against an overlapping background. The pit-centroids belonging to the cluster-set identified by red dots, 237 

with the background set identified in blue, are both illustrated in Figs. 7 (b-e). The 𝑄𝑄 value for the pit-238 

population, as seen on S45-0.5 (𝑄𝑄 = 0.74), very closely approximates that of the inclusion-distribution of 239 

S45-0 (𝑄𝑄 = 0.77). Despite the two datasets being obtained from different specimens, the divergence remains 240 

less than 4%. Such a result confirms the possibility of predicting the spatial distribution of pits from the 241 

outset of corrosion, based on the inclusion-data registered from specimen-surfaces prior to the onset of 242 

corrosion. The reason for the compelling correlation between inclusion-population arrangement and 243 

corrosion-pits is that most corrosion-pits launch at/near inclusion-sites. This occurrence has already been 244 

acknowledged by materials science researchers [4-7], whilst never having yet been used to foretell the pit-245 

population arrangement at the outset of the corrosion process. Furthermore, within the context of exposure-246 
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time to a corrosive environment, Figure 9 details the evolution of the 𝑄𝑄 value, surging from 0.74 to 0.87 247 

within a timeframe of 0.5 ~ 6 hours. Such an event indicates that the increase in exposure-time results in 248 

changes to the spatial distribution of corrosion-pits, ranging from randomly distributed clusters with 249 

superimposed background-sets to non-homogeneous random distribution. This change is primarily due to 250 

the coalescence of corrosion-pits, in close-enough proximity to form larger pits. 251 

Cawley and Harlow [30] attempted to characterize the spatial distribution of inclusions on the surface of 252 

a 2024-T3 aluminum alloy and its corrosion-pits, after exposure to a 0.5M- (3.5%)-NaCl environment for 253 

10 ~ 72 hours. Qualitative characterization was accomplished by comparison of the second, reduced-moment 254 

function of inclusion/corrosion-pit centroids, 𝐾𝐾(𝑡𝑡) , within the anticipated secondary, reduced-moment 255 

function of the complete spatial-randomness (CSR) model. Figure 10 presents 𝐾𝐾(𝑡𝑡), along with experimental 256 

data for inclusions and corrosion as functions of t, where t is the distance between the centroids of inclusion-257 

/corrosion-pits [21]. Since the estimated, corrosion-pit data curves all fell below the diagonal line of the CSR 258 

model, it was presumed that the pit-centroids had been distributed regularly. Furthermore, since most 259 

portions of the estimated inclusion-data curve fell above the diagonal line of the CSR model, it was inferred 260 

that the inclusion-centroids displayed a cluster-type distribution. The approach by Cawley et al. is similar in 261 

principle to the 𝑄𝑄𝑄𝑄 method. The diagonal line of the CSR model is equivalent to 𝑄𝑄 = 1, whereby the curve 262 

that shifts above and below the diagonal line corresponds to 𝑄𝑄 < 1 and 𝑄𝑄 > 1, respectively. From such a 263 

viewpoint, it appears that Cawley et al. accurately classified the spatial corrosion-pit distribution as an 264 

evolution into something perfectly regular that corresponds with time. In Figure 10, the estimated pit-curves 265 

shift further away from the diagonal straight-line, with an increase in corrosion-time corresponding to a 266 

heightened value of 𝑄𝑄. However, the inclusions data was merely classified as clustered sets, which might 267 

not necessarily be correct. More correct classification for the inclusions can be cluster sets with 268 

superimposed background set. Namely, if all the portion of the estimated curve for the inclusions lies above 269 

the diagonal line then the data can be classified as cluster sets, but if some part of the curve lies above the 270 

diagonal line and the other part below it (see the data for “as polished: 216 particle” in Figure 10), it is more 271 

appropriate to classify them as cluster sets with superimposed background set. However, Cawley and Harlow 272 

attributed the section of the estimated inclusion-data curve situated below the diagonal line of the CSR model 273 

to measurement limitations of the microscope used. By employing a quantitative approach (e.g., the 𝑄𝑄𝑄𝑄 274 

method), such a classification error could be avoided - a definite advantage of the proposed technique. 275 
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5. Practical Applications 276 

5.1. Material-quality problem 277 

Used for the quality-control of materials, the conventional standards for inclusion-rating (i.e., ISO 4967, 278 

JIS-G-0555, ASTM E45 and DIN 50602) focus primarily on the shape, density and size of inclusions, in 279 

order to determine the cleanliness index of metal samples. Although those guidelines may be appropriate for 280 

materials to be used in air, they are not suitable for those destined for use in corrosive environments, where 281 

pitting is the driving force behind most failure mechanisms. This is because the spatial distribution of 282 

inclusions plays a more crucial role in corrosion pit-arrangement/-growth [14-25], as opposed to size. Once 283 

pits initiate at/near inclusion-sites, their growth is driven mainly by coalescence with neighboring pits. This 284 

phenomenon should be considered for inclusion-rating, especially when the materials are destined for 285 

corrosive environments. Therefore, a combination of the 𝑄𝑄𝑄𝑄 and Schwarz methods is proposed as a novel, 286 

inclusion-rating system. According to the 𝑄𝑄𝑄𝑄 process, for example, if a Batch A sample is recorded as 𝑄𝑄 =287 

0.93 and one from Batch B is 𝑄𝑄 = 0.65, Batch B would consequently be expected to be more clustered than 288 

Batch A. If samples from both Batches A and B were to be placed in identical corrosive environments for 289 

an equivalent period of exposure, the Batch B sample would be expected to generate larger corrosion-pits. 290 

Therefore, Batch A could be judged to be cleaner than Batch B. Additionally, in cases where 𝑄𝑄 and 𝑅𝑅 values 291 

are close for both batches, the Schwarz method can additionally be used to identify inclusions belonging to 292 

the cluster sets for further analysis. Moreover, by analyzing the shape of the cluster sets, very important 293 

deduction can be made. For example, let us presume that batch A contains cluster sets that are mostly circular 294 

in shape while batch B contains cluster sets that are mostly arranged in a line perpendicular to loading 295 

direction. The former can be judged as superior in view of corrosion fatigue strength. This is because if we 296 

regard their resulting coalesced pits as mechanically-equivalent to small cracks, as proposed by Murakami 297 

[22], the projected area of coalesced pit from batch B will be larger than batch A, as a result, the stress 298 

intensity of coalesced pits from batch B will be larger than batch A. 299 

  300 

5.2. Corrosion-fatigue prediction model 301 

Larrosa et al. [3] comprehensively reviewed several models for the prediction of corrosion fatigue-302 

strength in machines and structures subjected to cyclic-loading in corrosive environments, the main 303 
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limitations of which were already explored in the introductory section of this paper. Although essentially 304 

quite thorough, a major theory proposed by Kitagawa et al. [10] was nevertheless overlooked in the Larrosa 305 

investigation. In fact, the Kitagawa approach to the problem of corrosion fatigue-strength seems to be the 306 

most appropriate, based on the actual mechanism of corrosion-fatigue failure. The Kitagawa model (KM) 307 

involves the statistical simulation of numerous distributed cracks, while also accounting for the interaction 308 

effect of their Stress Intensity Factors (SIFs), the simulation variables being the sizes and spatial locations 309 

of cracks. However, from a practical standpoint, there are four key limitations to the KM: (i) the spatial-310 

distribution parameters of corrosion fatigue-cracks must be identified prior to simulation; (ii) the size-311 

distribution criteria of corrosion-fatigue cracks need to be understood before replication; (iii) the crack-312 

propagation stage is not included; (iv) during the SIF computation of cracks, the interaction factors of two-313 

dimensional cracks in an infinite plate are to be used, as opposed to those of multiple, three-dimensional 314 

surface cracks. These limitations must first be addressed to ensure that the KM is useful to engineers during 315 

the design stage of components to be used in corrosive environments, most of the necessary input data (e.g., 316 

size and spatial distribution of corrosion-pits) not being available at the outset. 317 

To experimentally validate KM, Kitagawa et al. [10] performed corrosion-fatigue tests on a high-strength 318 

steel plate with a tensile strength of 𝜎𝜎UTS = 530 MPa. The stress ratio and test frequency were 0.04 and 319 

10 Hz, respectively. The corrosive environment was distilled water, with a pH value ranging from 5.6 ~ 320 

6.0, run at a flowrate of 0.25 cm3/s .  321 

Initially proposed by Masuko et al. [32], the Homogeneity function method was applied by Kitagawa et 322 

al. to determine the spatial distribution of cracks for statistical simulation. Based on the Masuko concept, 323 

the degree of departure of a population’s spatial distribution from an ideal homogeneous arrangement,𝐷𝐷, can 324 

be determined by subtracting the 𝐻𝐻 value of a uniformly-random distribution, 𝐻𝐻random, from that of the 325 

population, 𝐻𝐻population. The formulae for the calculation of 𝐻𝐻 can be found in [10], [32]. In principle, the 𝐷𝐷 326 

value in the Homogeneity function method is similar to the 𝑄𝑄 value in the  𝑄𝑄𝑄𝑄 method: 𝐷𝐷 = 0 corresponds 327 

to 𝑄𝑄 = 1, both indicating that the population is an ideal uniformly random distribution. Likewise, 𝐷𝐷 > 0 is 328 

equivalent to 𝑄𝑄 > 1, both implying a deviation from ideal randomness towards regularity. However, a 329 

difference emerges in the case where 𝐷𝐷 < 0 (i.e.,𝑄𝑄 < 1). According to the Homogeneity function method, 330 

a negative 𝐷𝐷  value implies a deviation from ideal randomness towards clustering. Nevertheless, the 331 

Homogeneity function method cannot differentiate between regular cluster sets and those with a 332 
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superimposed background distribution, since both scenarios register 𝐷𝐷 < 0. On the other hand, using the 𝑅𝑅 333 

value via the 𝑄𝑄𝑄𝑄 approach, one can separate between the two.  334 

A test result from the Kitagawa study [10] is presented in Figure 11. The figure displays the spatial 335 

distribution of corrosion-pits and cracks on a specimen surface, at a stress range of 235 MPa after 1×106 336 

cycles. 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 figures were respectively reported to be 8.4039 and 8.5608, corresponding 337 

to the 𝐷𝐷 value of −0.0569. However, cracks were still classified according to uniform-random distribution. 338 

Since the inherent difference between them was small, Kitagawa et al. argued that both H values could be 339 

considered equal, i.e., 𝐷𝐷 = 0. However, this premise may not be acceptable, since even a D value of −0.008 340 

is enough to classify a distribution as “clustered”, according to the Homogeneity function method [32].  341 

In most practical cases, since the distribution of inclusions and corrosion-pits often stem from the 342 

superposition of clusters and incidental background-sets, the 𝑄𝑄𝑄𝑄  method is deemed to be the most 343 

appropriate. Furthermore, based on the observations recorded in this study, it is proposed that in the KM-344 

context, the spatial distribution of inclusions be substituted for that of corrosion fatigue-cracks, thereby 345 

providing a solution to the first, afore-mentioned limitation. Information about the spatial distribution of 346 

inclusions in materials can be obtained by following the experimental procedures outlined in this study. 347 

Further investigations into the other three identified drawbacks are of critical import, if a model for the 348 

prediction of corrosion fatigue-strength is to be developed based on the fracture-process and will feature in 349 

our future research. 350 

 351 

6. Conclusions 352 

Based on the results of corrosion-testing and the statistical analyses conducted during this study, the 353 

following conclusions were established: 354 

(1) The exposure of JIS-S45C to a 3.5%-NaCl-solution-mist for up to six hours resulted in the introduction 355 

of numerous corrosion-pits, quite early in the corrosion process. The pits initiated primarily at non-356 

metallic inclusion-sites. While an increase in exposure-time did not significantly alter individual pit-357 

size, the number of pits was amplified, resulting in pit growth by coalescence of pits that form clusters. 358 

(2) A Nearest-Neighbour Analysis (NNA)-based procedure, identified as the 𝑄𝑄𝑄𝑄 method, was applied to 359 

quantitatively characterize the spatial distribution of inclusions and corrosion-pits on specimen surfaces. 360 

Depending on the respective values of 𝑄𝑄 and 𝑅𝑅, the featured surface-populations were classified as 361 
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random, clustered or regular sets, or clusters with superimposed backgrounds, the latter category 362 

applying to the spatial distribution of inclusions. In the early stages of corrosion, the pit-arrangement 363 

resembled that of the surface-inclusions, becoming more randomly distributed as corrosion progressed, 364 

with the coalescence of clustered pits primarily attributed to this phase. 365 

(3) Another NNA-based procedure known as the Schwartz method was introduced to identify clusters of 366 

inclusions, or pits from background-sets. 367 

(4) The combined 𝑄𝑄𝑄𝑄 /Schwartz approach was suggested as a novel procedure for inclusion-rating and 368 

quality-checking of materials destined for use in corrosive environments. These techniques have 369 

tremendous potential for determining the spatial distribution of corrosion fatigue-cracks, using fracture 370 

mechanics-based, corrosion-fatigue, strength-prediction models such as those proposed by Kitagawa et 371 

al. and Harlow et al.[33] 372 
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Figures 1 

 2 

 3 

Figure 1. Procedure for mechanical polishing. 4 

 5 

 6 

 7 

Figure 2. The SEM micrographs of two types of corrosion-free inclusions in a JIS-S45C steel are presented 8 
in (a) and (b). EDX spectra of the same are reproduced in (c) and (d). Inclusions shown in (a) and (b) were 9 
determined to be MnS and Ca-Mn-S, respectively.  10 

 11 

 12 

 13 

Figure 3. The corroded surfaces of JIS-S45C specimens, after exposure to 3.5%-NaCl for (a) 0.5, (b) 2.0, (c) 14 
4.0 and (d) 6.0 hours at 35°C. 15 

 16 
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Figure 4. Corrosion pits on the surfaces of JIS-S45C specimens, after exposure to 3.5%-NaCl for (a) 0.5 17 
and (b) 6.0 hours at 35°C. The rolling-direction appeared to play a crucial role in the shaping and 18 
formation of coalesced pits. 19 

 20 

 21 

Figure 5. Corrosion pits on the surface of specimen S45-0.5. Pits nucleated at both ferrite and pearlite phases, 22 
as well as at their boundaries. (a) – (d) are randomly selected locations on the specimen surface. 23 

 24 

 25 

Figure 6. Locations where localized corrosion and pitting occurred on the surface of specimen S45-0. An 26 
inclusion or cluster of inclusions can be seen at each of the locations where localized corrosion occurred. (a) 27 
– (d) are randomly selected locations on the specimen surface. 28 
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 35 

Figure 7. Reconstructed, centroid spatial-distribution of (a) inclusions in S45-0, (b) pits in S45-0.5, (c) pits 36 
in S45-2.0, (d) pits in S45-4.0 and (e) pits in S45-6.0. 37 

 38 
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 40 
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 46 

 47 

Figure 8. Reconstructed, centroid spatial-distribution of (a) inclusions in S45-0, (b) pits in S45-0.5, (c) pits 48 
in S45-2.0, (d) pits in S45-4.0 and (e) pits in S45-6.0, after inclusions and pits had been classified into two 49 
groups: red = cluster-sets and blue = random background-sets. 50 
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 51 

Figure 9. The Q value for pit-distribution in JIS-S45C, as a function of exposure-time. 52 

 53 

 54 

Figure 10. Estimation of K for 2024-T3 aluminum alloy-specimens, before and after exposure to a 0.5M-55 

NaCl solution for 10, 24, 42 and 72 hours at 40°C [21]. 56 

 57 
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 58 

Figure 11. Multiple corrosion-fatigue cracks on the surface of a high-strength-steel plate, after exposure to 59 

a corrosive environment at a stress-range of 235 MPa after one million cycles. All the cracks initiated from 60 

corrosion-pits [10]. 61 

 62 
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Tables 1 

Table 1. Chemical composition of a medium-carbon steel, JIS-S45C, in wt.%. 2 

C Si Mn P S 
0.47 0.21 0.82 0.018 0.018 

 3 

Table 2. Mechanical properties of a medium-carbon steel, JIS-S45C. 4 

Elongation, % Reduction in area, % 0.2% proof-stress, MPa Tensile-strength, MPa 
18.5 53.8 339 620 

 5 

Table 3. Identification of specimens and their corresponding exposure-times. 6 

Specimen  S45-0 S45-0.5 S45-2.0 S45-4.0 S45-6.0 
Exposure-time (hours) 0 0.5 2.0 4.0 6.0 

 7 

Table 4. Main results of the statistical analysis of pit-data, using the 𝑄𝑄𝑄𝑄 method. 8 

Exposure-time, in 
hours 

0 0.5 2.0 4.0 6.0 

Size of area, in 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝟐𝟐 1 1 1 1 1 
𝑵𝑵 3935 3773 3253 2735 4219 
𝝆𝝆 3935 3773 3253 2735 4219 
𝒓𝒓�𝟏𝟏 0.0061 0.006 0.0071 0.0078 0.0067 

𝑬𝑬(𝒓𝒓�𝟏𝟏) 0.008 0.0081 0.0088 0.0096 0.0077 
𝑸𝑸 0.77 0.74 0.81 0.82 0.87 
𝒔𝒔𝟏𝟏𝟐𝟐 3.73 × 10−5 3.81 × 10−5 4.89 × 10−5 5.41 × 10−5 3.12 × 10−5 

𝑬𝑬(𝒔𝒔𝟏𝟏𝟐𝟐) 1.74 × 10−5 1.81 ×10−5 2.09 × 10−5 2.49 × 10−5 1.62 × 10−5 
𝑹𝑹 2.15 2.10 2.33 2.17 1.92 

𝝈𝝈𝑬𝑬(𝒓𝒓�𝟏𝟏) 6.64 × 10−5 6.93 × 10−5 0.80 × 10−5 9.56 × 10−5 6.19 × 10−5 
𝒄𝒄 28.6 30.3 21.6 18.84 16.14 

Probability of a 
greater difference 
between 𝒓𝒓�𝟏𝟏 and 𝑬𝑬(𝒓𝒓�𝟏𝟏) 

< 1.0 × 10−7 < 1.0 × 10−7 < 1.0 × 10−7 < 1.0 × 10−7 < 1.0 × 10−7 

 9 

 10 

 11 


