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ABSTRACT Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio
quality could be further improved if multiple devices could collaborate to provide a distributed voice user
interface. To ensure that users’ voices are not shared with unauthorized devices, it is however necessary
to design an access management system that adapts to the users’ needs. Prior work has demonstrated that
a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without
sharing the information that they record. However, the robustness of these systems is partially based on
the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes
methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive
pairing of devices according to changes in the acoustic scenery and can be integrated into other typical
speech processing tools.

INDEX TERMS Audio fingerprint, context based authentication, voice user interface.

I. INTRODUCTION
Multichannel array processing of acoustic signals has proven
very useful in noise reduction applications and is a crucial part
in many audio recording devices. However, these techniques
rely on knowing the specific position of the microphones
that capture the signal, which usually translates in expen-
sive microphone arrays or multiple devices dedicated to a
specific application. At the same time, we live surrounded
by devices with microphones that can record and transmit
audio signals, and, for that reason, wireless acoustic sensor
networks (WASN) are becoming more popular. A WASN
comprises of a group of independent low-resource devices
connected to the same network, which record the audio in
a room and process it in a distributed manner, behaving like
a microphone array [1], [2]. This means that nearby mobile
devices around us could collaborate, processing the audio
signal that they record and providing improved services with
respect to a single device. However, if multiple devices are
recording, processing and sharing the audio signal in a room,
we need to verify which devices are allowed to collaborate in
this network. For example, if Alice is in a teleconference next
to her coworker Bob, both their mobile phones could share
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their recorded signals and process them. However, when
Alice goes into her office and closes the door, Bob’s phone
should not be allowed in theWASN anymore. For this reason,
we need to define access management rules for WASNs that
preserve the user’s privacy in a distributed scenario.

Traditional multichannel processing techniques assume
that the elements of the sensor array are located at known
static positions. WASNs cannot make such an assumption,
but analyze the acoustic environment to synchronize the mul-
tiple devices that are part of the network [3]. This enables
the WASN to perform tasks such as beamforming or noise
reduction in a distributed manner [4], [5].

An application where WASNs can provide a significant
improvement is voice user interfaces (VUIs), where technolo-
gies are rapidly evolving to analyze the multiple aspects of
the speech signal [6]–[8]. VUIs are growing in popularity
because they allow us to interact with our devices using our
voices, and they can be found in a wide range of applications
such as voice over IP (VoIP) for communications or virtual
assistants like Alexa or Siri [9]. However, to access a service,
it is usually necessary to interact directly with the device that
provides such a VUI. If all the devices around us collaborated
in aWASN they could provide a distributed VUI that included
all the services from each individual device. For example,
if Alice wanted to make a phone call, she would only need
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to say, ‘‘call Bob’’, her devices would then analyze her voice
and send it to her phone to perform the call, regardless of the
location of the phone.

Similar services can be found in applications such as
Google’s Nearby Share1 and Apple’s AirDrop,2 which enable
the sharing of files between nearby devices. These applica-
tions use the device’s Bluetooth to analyze the proximity of
the other device, such that devices in the range of the Blue-
tooth signal are considered close enough to share information.
However, in a distributed VUI we do not only need to know if
the devices are close to each other, it is necessary to identify
the devices that would improve the usability of the VUI and
remain within the user’s trusted area.

When multiple devices collaborate and share our informa-
tion, it is important to know how much information is shared
and which devices are receiving it. If such an information
flow is not handled properly, it can lead to violations of
the users’ privacy. Our voices contain a great amount of
personal information, not only the content of a conversation,
but also other private data such as our emotional state or
health situation [10], [11]. If multiple devices record and
share the user’s voice, it is important to define which devices
are allowed in the network so that the user’s voice remains
private. Therefore, if a device shares a speech signal with an
unauthorized node outside the established VUI, that would
entail a breach of privacy. This would also be the case if the
shared personal information requested by an application was
not essential for the proper operation of such an application.
Thus, in order to preserve the user’s privacy, it is necessary
to define access management rules based on the information
that the devices collect.

In human-to-human interaction, we have observed that
people have awareness of who can hear them and adapt
their speech accordingly [12]. We propose to apply a similar
approach with devices, such that only devices which are
within the reach of a user’s voice are allowed to process it
(see Fig. 1). Device authentication using ambient audio has
been studied using a combination of acoustic fingerprints and
fuzzy cryptography [13]–[16]. An audio fingerprint is gener-
ated from the ambient sound and used as a cryptographic key
for the communication channel, such that, if the devices are
in close proximity, they will generate the same key, allowing
them to communicate with each other.

We propose to encode the energy spectrum of the signal
to directly compare two fingerprints and ensure that synchro-
nization errors do not reduce the performance of the finger-
print. Previously proposed methods overcome this problem
by using long non-overlapping analysis windows [13]. How-
ever, the long recordings needed to generate the fingerprints
reduce the responsiveness of the system. A whole conversa-
tion can last less than 6 seconds, and if the pairing process
takes longer than that, then the conversation could be finished
before the network is established.

1See https://blog.google/products/android/nearby-share/
2See https://en.wikipedia.org/wiki/AirDrop

FIGURE 1. Ideal behavior of an access management system for
distributed VUIs, where Alice and Bob share an acoustic space where their
devices are allowed to collaborate. Eve, however, is outside the reach of
Bob’s voice and their devices are thus not permitted to collaborate.

Our objective is to authenticate devices in a wireless acous-
tic sensor network. The authentication process must 1) be
robust to noise and distortions and 2) perform with low
delay such that it is suitable for conversational applications.
Our main contributions are four new acoustic fingerprinting
methods based on 1) eigenvalue decomposition, 2) Wiener
filtering, as well as 2D DCT with 3) entropy-based quanti-
zation and 4) mutual-information-based quantization of the
spectrogram of the recorded signal. Our experiments demon-
strate that the proposed methods improve the robustness of
prior authenticationmethods, while reducing the length of the
required audio recording. This enables the use of a distributed
VUI in a conversational setting.

Section II analyzes device pairing methods and, more
specifically, methods based on acoustic fingerprinting,
describing their functioning and issues that need to be solved.
The proposed acoustic fingerprinting methods operate over
a log-energy spectrogram of the input signal. The proce-
dure to extract such log-energy spectrogram is described in
section III. Section IV depicts the different fingerprint extrac-
tionmethods, which are combinedwith the quantization algo-
rithms described in Section V. The generation process for the
datasets used in the experiments, as well as the parameters
of each fingerprint generator, are described in Section VI.
Section VII presents an analysis of the results obtained from
the multiple experiments. Finally, Section VIII summarizes
the paper and discusses the obtained results.

II. RELATED WORK
Authentication between nearby devices using the environ-
ment’s information has proven to be a useful feature in pri-
vacy preserving pairing of devices. Using the sensors of a
device to obtain information of the environment allows us
to recognize if multiple devices are located close to each
other and, therefore, they could work together for a specific
application.

Previous methods have used the signals recorded by the
device’s sensors to generate cryptographic keys that will
enable secure communication between nearby devices. When
the devices are close to each other, they would record sim-
ilar features that will result in the same cryptographic key.
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Sensors like the accelerometer [14], [15] or the micro-
phone [13], [16] provide features that have proven useful for
device pairing. More specifically, in audio applications, the
features of the recorded audio are encoded into an acoustic
fingerprint that can be easily compared to decide if two
devices are hearing the same audio signal.

Acoustic fingerprinting is a popular technique used to com-
press the information of a segment of audio, which allows to
efficiently compare multiple audio signals. This makes audio
fingerprints useful in multiple fields, such as speaker recog-
nition [17] or music retrieval [18], [19]. These fingerprints
extract features that are useful for the specific application
they will be used for. However, these approaches do not easily
adapt to device authentication applications.

The method proposed in [13] uses the extracted acoustic
fingerprint to derive the cryptographic key that can be used
for secure communication. The 6.375 s long audio signal is
divided into 17 non-overlapping time frames with a length
of 0.375 s, scaled using a Hann window. They are trans-
formed into the frequency domain and the resulting frequency
components are then grouped into 33 energy bands. The
fingerprint is then calculated as

FP(k, t) = sign([E (k + 1, t + 1)− E (k, t + 1)]

− [E (k + 1, t)− E (k, t)]) , (1)

where E(k, t) represents the energy value on the k-th energy
band and t-th time frame. The sign of each component is
then quantized as a binary value, resulting in a 512 bit fin-
gerprint. In order to allow mismatching bits caused by noise
in the acoustic fingerprints, a fuzzy vault scheme is applied to
calculate the cryptographic key that will be compared in the
pairing process [20].

While this method allows secure pairing of devices using
audio signals, the extensive length of the required recording
makes it unsuitable for a conversational setting. The long
non-overlapping windows are used to avoid synchronization
errors between the communicating devices and reduce the
correlation between time frames, which improves the statis-
tical properties of the fingerprint. To reduce the length of the
recordings, a combination of shorter overlapping windows
and decorrelating transforms has been presented [21], pro-
viding higher robustness than previous methods.

III. PREPROCESSING
Our goal is to analyze the performance of different acoustic
fingerprint methods in device authentication. The resulting
fingerprints should maintain or surpass the performance of
previous authentication methods [13], [21], including better
adaptation to the authentication process.

WINDOWING
While applications like music retrieval are able to scan
through the reference audio to find the optimum synchro-
nization, fingerprints for device authentication must assume
that the two recording devices are already synchronized. It is

FIGURE 2. Windowing function used to segment the audio signal in the
proposed methods.

likely, however, that two devices will not start recording at the
exact same time, and if this delay becomes too long, the audio
information will be displaced to neighboring time frames, the
generated fingerprints will not match and the communication
between the devices will be restricted. To compensate for
possible errors in synchronization, prior fingerprint genera-
tors have used long analysis windows to segment the audio
signal. Long windows ensure that the features that are repre-
sented in the fingerprint are located in the same time frame.
However, to obtain enough features for a robust fingerprint
the length of the recorded audio may become too long for the
application.

We present methods for device authentication in voice user
interfaces, where speech information is transmitted between
devices. Therefore, we choose to adapt the parameters of the
fingerprint extraction to the processing applied by a speech
codec. This way, some of the processes carried out by the
fingerprint extraction could be shared with the speech codec
that would transmit the signal.

We have therefore chosen to use 30ms overlapping win-
dows with an overlap of one third of a window (10ms).
This will allow us to adapt the number of time frames to
the requirements of the fingerprint without significantly com-
promising the length of the recorded audio. The windowing
function is defined in three steps of 10ms each. Both sides of
the window are defined by slopes following a Hann window
function and a flat middle section with an amplitude 1. As
we can observe in Fig. 2, the windowing function allows
the perfect reconstruction of the signal using the overlap-add
method.

ENERGY GROUPING
The recorded signal is analyzed in the frequency domain,
therefore, a short-time Fourier transform is applied to thewin-
dowed signal. The raw audio data in the frequency domain is,
however, vulnerable to any noises present in realistic record-
ings. For that reason, we group the spectrum of the signal into
energy bands. This will make the fingerprint extraction more
robust against noise in the recorded signal.

From the spectrum of each frame, we extract the logarith-
mic energy of uniformly distributed spectral bands. In other
words, for spectral coefficients xf , the logarithmic energy of
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band k is bk = log
[∑(k+1)B−1

f=kB |xf |2
]
where B is the width

of the bands. We will also discuss averaging energy bands
over a number of time frames to adapt the length of the data
segment to the requirements of the whitening transformations
that are applied later. This time averaging will also improve
the robustness of the fingerprint against synchronization
delays.

TIME FRAME AVERAGING
A central objective of this work is to reduce the length of time
over which fingerprints are generated to make the authentica-
tion process more responsive. Themain challenge in reducing
the length of the recording is that such reduction tends to
make fingerprints less robust to errors in synchronization. To
improve the robustness, we therefore apply smoothing over
time with an averaging filter.

The averaging of multiple time frames allows us to control
the length of the recording without modifying the signal
extraction methods. For example, a recording with a duration
of 2.57s fits 128 windows. Averaging every 4 time frames,
we can obtain 32 averaged frames for the corresponding audio
length. Analogously, if the recording duration is 1.29s, which
contains 64 windows, averaging every 2 time frames would
also produce a sample with 32 averaged frames. This way, the
input to the fingerprint extraction method will always have
the same size.

IV. FINGERPRINT EXTRACTION
Our objective is to obtain a fingerprint that 1) contains char-
acteristic information of the acoustic environment and 2) is
robust against noise.

To that end, we apply decorrelation methods over the
time and frequency axes of the energy band spectrum of the
recorded speech signal. The resulting components are then
quantized, thus obtaining the fingerprint as a binary array.

We consider two approaches to decorrelation, where sig-
nals are decorrelated in their time-frequency neighborhood
or over the whole length of both axes. After decorrelation,
the signals are quantized based on their respective entropies,
as described in Section V.

SPECTRAL CONTEXT
One approach to decorrelation would be to diagonalize the
covariance matrix between the energy bands over time and
frequency. Since the decorrelation results in 32 energy bands
and time frames, our data vector contains 1024 samples and
calculations with a 1024×1024 covariancematrix would lead
to an unbearable complexity.

To process the data more efficiently, we assume that the
maximum correlation between energy bands is found in
neighboring frequencies and time frames, and we will con-
sider components that are far enough apart in frequency and
time to be sufficiently decorrelated. Therefore, we define a
spectral context, as shown in Fig. 3, over which we will
calculate a whitening transformation matrix. In Fig. 3, x0

FIGURE 3. Example of the spectral context used to calculate a whitening
transformation.

stands for the energy of the target time-frequency bin and
components x1 to x8 represent the neighborhood that we will
analyze.

The correlation between neighboring frequency bands has
already been used to predict the value of specific features
in post-filtering techniques for speech enhancement [22].
Therefore, our aim is to decorrelate the signal by reducing
the correlation of each bin with its neighboring ones.

EIGENVALUE EXTRACTION OVER SPECTRAL CONTEXT
The first proposed method consists of extracting the first
eigenvalue [23] of the context components around each
time-frequency bin of the energy spectrogram. This method
aims to concentrate the relationship between the context
components into one value which will then be quantized.
The context matrix is transformed into a one dimensional
vector xn = [x0, x1, . . . , x8] and, following the definition of
eigenvalue decomposition, we calculate its eigenvalues and
eigenvectors as

Cxx = V T3V . (2)

where Cxx represents the covariance matrix of the con-
text arrays xn. The covariance matrix is defined as
Cxx = E[XTX ], where X represents the set of context
arrays xn for a specific component, concatenated over the
whole training set. The square diagonal matrix 3 contains
the eigenvalues of Cxx and V contains their corresponding
eigenvectors as columns. Since the covariance matrix is Her-
mitian, it will not be necessary to distinguish between the left
and right eigenvectors as one will be the transposed version
of the other. The calculated eigenvectors will then define the
transformation that we will apply to the context data as

yn(k, t) = V T xn(k, t). (3)

where the resulting vector yn(k, t) represents the eigenvalues
of the corresponding spectral context component xn(k, t) in
the k-th frequency band and t-th time frame. Finally, we only
keep the largest eigenvalue, which will then be quantized.
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As the process of estimating the covariance matrix and
calculating the corresponding eigenvalues every time we ana-
lyze a signal would pose a significant computational load,
we decided to train the transformation matrix over a large set
of speech data. This allows us to reduce the complexity of the
transformation to a multiplication with a predefined matrix.
Using a fixed transformation matrix might not adapt well to
different noise environments that are not present in the train-
ing dataset. However, we do not consider that this will entail
a significant issue, as the objective of this transformation is to
simplify the comparison of two signals after the quantization
of the fingerprint.

Since only the first eigenvalue is necessary, the complexity
of the method can be further reduced by turning the matrix
multiplication into a vector product. Each row of V T contains
an eigenvector of the transformation, therefore, to obtain the
first eigenvalue, we only need to multiply our input data by
the first row of the transformation matrix.

WIENER FILTER-BASED TRANSFORMATION
In our second approach, we consider the differences between
signals in the same environment as additive uncorrelated
noise. We propose to model the context of each frequency
component using a Wiener filter [6] whose transfer function
is

Hxy(z) =
Syy(z)
Sxx(z)

, (4)

where Syy(z) represents the energy spectrum of the clean
signal and Sxx(z) corresponds to the noisy one, which can be
defined as xn(k, t) = yn(k, t) + nn(k, t). Following Eq. (4),
we can then define our transformation:

yn(k, t) = CyyC−1xx xn(k, t). (5)

We assume the noise component is not correlated to the
signal, therefore, to estimateCxx in Eq. (5) we add a diagonal
matrix to the covariance of our data such thatCxx = Cyy+αI.
The term α represents a scale factor that we will set to 1 for
the following experiments. In a similar way as the eigenvalue
decomposition, in this case only one value of the final result
will be used in the quantization. This means that we only need
to apply one row from the transformation matrix, consider-
ably reducing the complexity of the fingerprint calculation.

2-D TIME-FREQUENCY DCT
Previously proposed methods [21] present how the DCT can
be used as a decorrelating transform to generate a robust
acoustic fingerprint. Applying the transform only over the
frequency bands, however, does not decorrelate the time
structure of the signal. The time structure of the audio signal
contains important information about the audio scene and,
by decorrelating it, we expect to improve the quality of the
generated fingerprints.

To decorrelate the time structure, we apply the DCT over
both the time and frequency dimensions. Such 2D-DCTs are
popular in image compression [24], which take advantage of

FIGURE 4. Scatter-plot for matching components of the proposed
fingerprint extraction methods. (First row) Eigenvalue over the spectral
context, (second row) Wiener filter over the spectral context, (third row)
2D-DCT transformation.

FIGURE 5. Scatter plot for non-matching components of the proposed
methods. (First row) Eigenvalue over the spectral context, (second row)
Wiener filter over the spectral context, (third row) 2D-DCT transformation.

frequency components over vertical and horizontal dimen-
sions. An important reason for using the 2D-DCT for com-
pression is because the information is grouped to the lowest
frequency components, which results in a smaller number of
components holding the majority of the information.

Figures 4 and 5 illustrate the relationship between the
values in matching and non-matching components of the
transformed log-energy spectrograms. We can observe that,
while the matching cases are in a thin strip and thus highly
correlated, the components of non-matching pairs do not
show such a structure and can be assumed to be uncorre-
lated. Therefore, we expect that quantizing the transformed
log-energy spectrograms will provide robust fingerprints to
recognize matching scenarios.

V. BIT ALLOCATION
Features generated by these decorrelation methods are repre-
sented as real-valued scalars, which we will need to quantize
to obtain the final binary fingerprints. Considering that the
decorrelation methods that were applied result in features
with different statistical properties, the final distribution of
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bits in the fingerprint will change depending on the decorre-
lation.

Previously proposed methods apply one-bit quantization
to each of the components of the transformed energy spec-
trogram [13], [21]. These methods assume that all compo-
nents have the same statistical properties, however, this is
not usually the case for different frequency components of
the spectrum and it is more noticeable after applying the
proposed time-frequency decorrelation.

To take into account the varying statistics of components,
we propose two methods of entropy-based quantization to
perform a more efficient distribution of the available bits of
the fingerprint on the transformed spectrograms. In the first
approach, we estimate the entropy of each component using
their individual variance values. In the second approach,
we estimate the entropy of the signal according to mutual
information [25] between matching and non-matching
pairs.

Additionally, we observed that the context-based methods,
i.e. eigenvalue and Wiener, present a uniform distribution of
bits over all the components. For that reason, we decided to
apply one-bit quantization to both context-basedmethods and
test the entropy and mutual information based approaches
only on the 2D-DCT transformed spectrograms.

ENTROPY-BASED QUANTIZATION
Informal observations of the 2D-DCT components showed
that the distribution of their values resembled a Gaussian
distribution. In order to maintain the simplicity of the model
and generalize to possible noise affecting the measurements,
we assume that each of the components of the 2D-DCT
spectrogram follows a normal distribution. Therefore, the
number of bits assigned to each component is proportional to
its entropy, defined as 1

2 log2
(
σ 2
x
)
, where σ 2

x is the variance
of each of the 2D-DCT components. We define

bitsi =
1
2
max

(
log2

(
σ 2
i

)
+ C, 0

)
(6)

such that the total number of bits is

bitstotal =
1
2

∑
i

max
(
log2

(
σ 2
i

)
+ C, 0

)
. (7)

The expression for the number of bits assigned to each com-
ponent is represented in Eq. (6). The term C stands for a
bias element to control the total number of bits. C is then
determined by selecting the target number of bits of the
fingerprint and solving Eq. (7).

Fig. 6 shows the estimated bit distribution for the com-
ponents based on the individual entropy of each feature.
As we can observe, the majority of the bits are concentrated
in the lowest frequencies, which have the highest variances.
However, we remove the lowest component corresponding to
the overall energy of the signal, as it is more dependent on
microphone configuration than the desired source signal.

The bit distribution estimated using mutual information
method is illustrated in Figure 7. We can observe a similar
behavior as in the entropy-based method.

FIGURE 6. Bit distribution of 2D-DCT components quantized using
individual entropy method.

FIGURE 7. Bit distribution of 2D-DCT components quantized using the
mutual information method.

MUTUAL INFORMATION-BASED QUANTIZATION
The goal of the generated fingerprints is to remain as similar
as possible in matching cases and differ from each other when
the audio samples do not match. Therefore, we can include
this criterion into the choice of bit distribution, assigning
more bits to the components that are more correlated in the
matching cases and reducing them for higher correlations in
non-matching cases.

In this case, instead of the variance of individual com-
ponents, we calculate the convariance matrix of a set of
matching component pairs. The covariance matrix of a ref-
erence set of components with a matching pair can be seen
as

6 (xR, xM ) =
[
σ 2
R σRσM

σMσR σ 2
M

]
, (8)

where xR stands for the reference data and xM represents
the components of the corresponding matching segments of
audio. The corresponding non-matching covariance has zeros
on the off-diagonal.
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By assuming that the components follow a Gaussian
distribution, the mutual information data will follow a
bivariate normal distribution. Its entropy can be defined
as 1

2 log2 (det (6 (xR, xM ))), the bit assignment can be thus
defined as

bitsi =
1
2
max

(
log2 (det (6 (xR, xM )))+ C, 0

)
(9)

and correspondingly,

bitstotal =
1
2

∑
i

max
(
log2 (det (6 (xR, xM )))+ C, 0

)
.

(10)

VI. EXPERIMENTAL SETUP
As we explained in Section I, the goal of this project is to
define robust audio fingerprint algorithms that can be used
for the authentication of devices in the same acoustic space.
To evaluate the quality of these fingerprints, we will analyze
their robustness and statistical properties. A robust fingerprint
will maintain a high similarity with its matching scenarios
even when it is affected by noise and inaccurate synchro-
nization between the devices. For the statistical analysis,
we assume that the fingerprints will be used as described
in [13], using fuzzy cryptography to transform the finger-
prints into cryptographic keys. Therefore, we will analyze the
performance of the generated acoustic fingerprints to be used
as cryptographic keys in the communication.

DATA GENERATION
Themethods described in Sections IV and V are trained using
a database that aims to resemble multi-channel recordings
of noisy speech. This database was generated combining
clean speech samples from the TIMIT database [26] and
noise samples from the QUT corpus [27]. The QUT database
contains noise samples in different locations such as a café
and different areas of a house, which resemble realistic noises
that would be present in a VUI scenario.

Figure 8 shows the simulated scenario of the multi-channel
recording. The clean speech samples simulate a dialogue
between two people located on different sides of the sensor
array. Three microphones are located in the scene as depicted.
Two of the microphones are placed near the speakers and the
third one is placed in a position farther away from the conver-
sation. Environment noise is then simulated using multiple
noise sources randomly located around the whole scene to
resemble diffuse noise.

To add the effect of the acoustics of each room to the
TIMIT recordings, we used the Pyroomacoustics library [28].
To resemble the locations where the different environmen-
tal noises are located, we used the parameters described in
Table 1.
We generated a training dataset using the training section

of the TIMIT database, resulting in 12 hours of noisy
speech equally distributed for SNR values in the range
of [−12, 12] dB in intervals of 3 dB. Similarly, the test
section of the TIMIT database was used to generate a noisy

FIGURE 8. Distribution of the acoustic sensors, speech and noise sources
in the generation of the noisy database.

TABLE 1. Different room scenarios and acoustic properties.

speech test set that contained 3 hours of noisy speech with
SNR values between −6 and 6 dB. The audio files in
both training and test sets were around 10 seconds long
with a sampling rate of 16 kHz, containing two different
speech segments simulated from each of the described sound
sources.

The training and test sets are built using different speech
samples. However, while the noise samples are extracted from
different segments of the noise database, both training and
test sets contain the same scenarios. Considering that the
proposed methods require to be trained, it is possible that
they show a different performance if they evaluate scenarios
that have not been observed during the training process.
However, the goal of this paper is to provide an overview of
the proposed methods in scenarios that could contain a VUI,
such that we can focus our efforts on the ones that show better
results. Every method can then be further optimized to adapt
to different types of scenarios.

A. FINGERPRINT PARAMETERS
The goal of this project is to generate robust fingerprints
while reducing the length of the required speech signal. For
this reason, we will aim to keep a constant length in the
audio recording and generate the same number of bits from
each method. The lengths of the required audio recording
and the generated fingerprint depend on the parameters that
we choose for each proposed method. In order to allow a
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TABLE 2. Defined parameters for each of the tested methods to generate 512 bit fingerprints.

proper comparison between the different methods, we need
to carefully choose the different parameters of the fingerprint
generation.

Table 2 shows the configuration of the different fingerprint
extraction methods. They have been designed such that the
length of the audio signal is as similar as possible, except
for the 1-time-frequency method, which is defined as it
was presented [13]. As it is explained in Section III, the
methods that we propose in this paper increase the length
of their time frames by averaging a few of them after the
energy band grouping. The context methods group 6 time
frames to obtain 18, which will result in a 32 × 16 matrix
after the transformation. The 2D-DCT based methods are
converted into a 32 × 32 matrix, from which many com-
ponents will be discarded in the quantization, as shown in
Fig 6.

VII. RESULTS
The acoustic fingerprints were designed such that they con-
tained the information of the conversation and the acoustic
environment. If two devices are located in the same acoustic
space, the signals that they record will be similar and so
will the generated fingerprints. Therefore, to authenticate two
devices, pairs of fingerprints are compared and, depending
on their similarity, we can determine whether they are in the
same space or not.

To analyze the quality of the proposed methods, we evalu-
ate three different aspects of the generated fingerprints that
are important in an authentication process. The proposed
fingerprints are compared with the performance of previously
proposed methods, which we denote as1 time-freq [13] and
Dct+1 [21]. The robustness of fingerprints is analyzed based
on the similarity between fingerprints in matching scenarios.
In order to preserve the privacy of the user, it is important
that the fingerprint used for authentication is hard to predict
by external devices. Therefore, we analyze the statistical
properties of the generated fingerprints. Finally, we analyze
the computational complexity of the fingerprint generation
methods. If the fingerprints are going to be generated by
mobile devices, efficiency is a significant factor for their
implementation.

ROBUSTNESS
A good fingerprint should match across devices in the same
acoustic space even in noisy conditions, and diverge when
in different spaces. Therefore, as a measure of similarity of
the fingerprints, we determined the number of matching bits
between two fingerprints. Ideally, the similarity should be

FIGURE 9. Boxplot of the similarity distribution for fingerprint pairs in
matching scenarios, expressed as a percentage of the total number of bits
of the fingerprint. 1) 1-time-frequency (1 time-freq), 2) frequency dct +
1 (DCT +1), 3) the first eigenvalue over the context (Eig Ctx) 4) Wiener
filter over the context (Wie Ctx), 5) 2D-DCT with entropy based
quantization (2D-DCT Q), 6) 2D-DCT with mutual information based
quantization (2D-DCT MI).

near 100% for matching scenarios and around 50% when the
signals do not match, resembling the comparison between
two random sequences.

We consider that two recordings are a matching scenario
when they are extracted from two microphones in the same
environment recording simultaneously. The recordings will
be considered a mismatch if they are recorded in two differ-
ent environments or they are not synchronized in time, i.e.
both recordings contain the same speech sample but one is
recorded 5 seconds after the other.

Figure 9 depicts the distribution of the similarity values
over matching pairs in the test dataset. While all the methods
present a substantial variance in the similarity results, the
methods proposed in this article provide an overall improve-
ment of 5% to 10% with respect to previous approaches.
The best performing method is the eigenvalue extraction,
providing a median similarity of 85%. Concurrently, the
eigenvalue method uses the shortest recordings (see Table 2).
If we assume that a new fingerprint begins to be calculated
right after another, a short recording length means that the
authentication system will be more responsive to changes in
the acoustic scene.

ENTROPY ANALYSIS
As mentioned before, the authentication between devices
needs to be robust enough to ensure that unauthorized devices
cannot collaborate in the distributed VUI. Simultaneously,
an eavesdropper that managed to predict the correspond-
ing fingerprint of an authentication process would also
have access to our private information. This means that the
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FIGURE 10. Distribution of p-values achieved for keys after 20 runs of the DieHarder set of statistical tests. Tests are: 1) birthdays 2) operm5
3) rank32× 32 4) rank6× 8 5) bitstream 6) opso 7) oqso 8) dna 9) count-1s-str 10) count-1s-byt 11) parking 12) 2D circle 13) 3D sphere
14) squeeze 15) runs 16) craps 17) marsaglia 18) sts monobit 19) sts runs 20) sts serial 21) rgb bitdistr. 22) rgb min dist. 23) rgb perm. 24) rgb
lagged sum 25) rgb kstest 26) dab bytedistr. 27) dab dct 28) dab filltree 29) dab filltree 2 30) dab monobit 2.

TABLE 3. Results of ENT pseudorandom test for a set of fingerprints
generated with the different proposed methods. The measured
parameters are 1) entropy, 2) arithmetic mean (A. M.), 3) Monte Carlo
value (M. C.), 4) serial correlation coefficient (S. C. C.).

fingerprints also need to be secure from a cryptographic
perspective.

To achieve this, we aim to generate fingerprints that resem-
ble random sequences of bits without noticeable patterns.
The generated fingerprints were evaluated using the ENT
pseudo-random test [29] and the DieHarder set of statis-
tical tests [30]. The ENT pseudo-random test analyzes a
sequence of symbols and returns the information density of
the sequence in terms of its entropy, arithmetic mean and
serial correlation. DieHarder performs multiple tests to eval-
uate whether the proposed methods are robust against bias in
the generated random sequences.

Table 3 shows the results of the ENT pseudo-random test
for each of the algorithms, as well as the best and worst
possible values of each parameter. The fingerprints were

generated from the same audio files, randomly sampled from
the test database described in Section VI. We observe that the
results provided by the proposedmethods barely deviate from
the optimal values.

Each test in the DieHarder set computes a p-value
between 0 and 1, which we can interpret as the probability
that a random number generator would produce the analyzed
sequence. After enough runs of the DieHarder tests, the com-
puted p-values should be uniformly distributed between 0 and
1. Conversely, if the results computed by one of the tests
would be concentrated towards an individual value, then the
sequence would have failed the test.

Figure 10 represents the distribution of p-values for each
proposed method over 20 runs of the DieHarder test. We can
observe that the computed p-values are mostly uniformly
distributed and centered around 0.5. Note that some of the
methods present a tendency towards a specific p-value, e.g.
the opso test in 1 time-freq or the dna test in Eig Ctx.
Such outliers indicate a weakness towards specific statistical
patterns. An attacker with knowledge about such bias would
be advantaged to predict the fingerprint used in the authen-
tication process. In our case, where we assume continuous
generation of fingerprints, and thereby frequently renew the
key for the authentication process, an attacker would still
be challenged to produce a series of consecutive matching
keys in order to be able to eavesdrop on the network. For
practical application, we therefore conclude that the pro-
posed fingerprint generation methods are suitable for a secure
authentication process.
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COMPLEXITY
The proposed fingerprint generation and authentication will
be an ad-hoc process between the involved devices and all the
processing will be done within each device. We need to con-
sider that mobile devices have limited computing power and
periodically generating an audio fingerprint using complex
methods would affect their performance and limit their bat-
tery life. For this reason, the proposedmethods were designed
to perform in mobile devices with low computational com-
plexity. The computational load of the proposed methods
are primarily due to the sub-process of 1) windowing of the
audio signal and STFT, 2) energy band grouping and time
averaging, 3) the decorrelation transform and 4) quantization
of the fingerprint values.

The complexity of the STFT process is proportional to
the number of time frames required and their length. This
means that, if the number of windows is too great, the sys-
tem will need to perform a great number of FFTs, and the
number of samples of the transformation has to be chosen
according to the length of these windows. Table 2 shows
the number and length of the extracted windows for a single
fingerprint.

While the FFT is an efficient algorithm with a complexity
ofO(n log n) [31], [32], the calculations can become a burden
if the size of the transformation is too large or it has to be
repeated very frequently. For instance, using 0.375 second
windows and a sampling rate of 16 kHz, each time frame
will contain 6000 samples. The authentication system will
then need to continuously calculate FFTs with a minimum
of 6000 samples.

The proposed methods aim to adapt the pre-processing
of the signal to typical speech processing applications such
as speech codecs or voice assistants, which mainly ana-
lyze the speech signal in the frequency domain. This means
that, by adapting the parameters of the fingerprint to the
application that is going to use it, it is possible to share
the windowing and STFT steps, thus reducing the overall
complexity.

The energy grouping and time averaging of the frequency
bands comprises a series of multiplications and additions
proportional to the number of FFT samples and time frames.
However, these operations are simple enough not to pose a
significant difference in the complexity between the different
configurations of the proposed algorithms.

The main difference in complexity for the proposed meth-
ods with respect to the previous ones can be observed
in the fingerprint extraction. In this case, we can divide
the fingerprint extraction methods into three categories:
1) Deltas over time and frequency [13], 2) Context-based
transformations and 3) 2D-DCT based fingerprints. For
this comparison we will use the numbers defined in
Table 2, which correspond to the methods evaluated in this
section.

Table 4 shows an estimation of the number of operations
required by each method. We can observe that the delta
over time and frequency is the most efficient method as it

TABLE 4. Number of operations required for the proposed fingerprint
generation methods.

requires roughly two operations for every component of the
energy spectrum. The context-based transformations, as it
is explained in Section V, can be reduced to a series of
array multiplications using a previously trained transforma-
tion array. The resulting number of operations for a 3 × 3
context is then 9 times the total number of components.
Finally, we observe that the 2D-DCT is the most complex
method. This method requires a DCT transformation for
every frequency and time band. Similarly to the FFT, a DCT
transformation can be performed with O(n log n) complexity
and, in order to compare it to the previous methods, the num-
ber of operations required for an n-sample DCT is considered
n log n.
While the 2D-DCT looks like the most complex of the

proposed methods, the components of this transformation
will be quantized. Figs. 8 and 7 show that less than half of the
2D-DCT components are necessary for the final calculation
of the fingerprint, as most of them are represented using
0 bits. This means that the complexity of this method can
be reduced by calculating only the components that will be
quantized and ignoring those that do not have any bit assigned
to them [33], [34].

The values estimated in Table 4 represent the total number
of operations required for the calculation of one fingerprint.
These values can then be normalized by the duration of the
respective audio recording to obtain the number of operations
per second that a devicewould need to perform. Following the
data from Table 2, the normalized number of operations per
second for each of the methods is 1) 166 for the reference
1 time-frequency method, 2) 2194 for the context-based
methods and 3) 3984 for the 2D-DCT transformations. Over-
all, the complexity of the proposed methods is higher than
existing ones. However, the amount of operations required to
estimate each fingerprint does not entail a significant burden
even for current low-resource devices.

VIII. CONCLUSION
Service quality can be improved by using multiple distributed
devices instead of a single device, collecting and process-
ing information. However, it is important to define access
management rules to ensure that our private information is
not shared with unauthorized devices. In speech systems, the
access to a distributed network can be defined based on the
reach of one’s voice. In a discussion between people, those
who can hear the discussion are implicitly included in it.
Similarly, if our electronic devices could hear the same speech
signal, that would mean that they are located in a trusted area
and they would be allowed to collaborate.
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In this paper we have presented methods to generate
audio fingerprints that would be suitable for authentication
of devices in a distributed acoustic sensor network. The
presented methods outperform previous solutions, increasing
the robustness and responsiveness of the acoustic fingerprint
generation. Additionally, the generated fingerprints meet
the basic entropy requirements to be used a cryptographic
keys. We can observe that the best performing methods are
the eigenvalue extraction over a spectral context and the
2D-DCT with mutual information based quantization. While
the former presents a higher robustness, the latter has better
statistical properties.

The proposed methods are intended to be used in mobile
devices with low computational capabilities and low power
consumption, for example, with a limited battery life. There-
fore, the fingerprint generation algorithms need to remain
efficient to be periodically performed in this type of device.
We observe that the proposed methods do not entail a
big computational load, even on mobile devices, as the
maximum frequency of the fingerprint generation process
is limited by the length of the recorded audio, i.e., to
2.5 seconds. We have thus demonstrated that the proposed
fingerprint methods are robust, low in complexity and provide
high-entropy keys for cryptographic applications. The pro-
posed methods can thus be widely applied in privacy-aware
applications for distributed sensor networks for speech and
audio.
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