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Aalto University
Espoo, Finland
alec.wrightQaalto.fi

ABSTRACT

This paper proposes a grey-box neural network based approach
to modelling LFO modulated time-varying effects. The neural
network model receives both the unprocessed audio, as well as
the LFO signal, as input. This allows complete control over the
model’s LFO frequency and shape. The neural networks are trained
using guitar audio, which has to be processed by the target effect
and also annotated with the predicted LFO signal before training.
A measurement signal based on regularly spaced chirps was used
to accurately predict the LFO signal. The model architecture has
been previously shown to be capable of running in real-time on a
modern desktop computer, whilst using relatively little processing
power. We validate our approach creating models of both a phaser
and a flanger effects pedal, and theoretically it can be applied to
any LFO modulated time-varying effect. In the best case, an error-
to-signal ratio of 1.3% is achieved when modelling a flanger pedal,
and previous work has shown that this corresponds to the model
being nearly indistinguishable from the target device.

1. INTRODUCTION

Virtual analog modelling is a popular research topic, which seeks
to develop algorithms that can accurately imitate music hardware,
such as guitar effects pedals, amplifiers or musical instruments
[1, 2, 3, 4]. Time-varying audio effects are a family of audio ef-
fects, in which the behaviour of the system changes over time.
This category includes phasing, chorus, flanging, Leslie speakers
and more. This paper focuses on the modelling of such effects
processing units using a neural network.

Virtual analog modelling research can broadly be divided into
three approaches, “white-box” [5, 2, 6], “grey-box” [7, 8], and
“black-box” [9, 10] modelling. In “white-box” modelling, circuit
analysis or physical properties of the system are used to derive
equations describing its behaviour. In “black-box” modelling, the
relationship between inputs and outputs of the system are directly
measured and subsequently emulated. Finally, “grey-box” models
fall somewhere between the previous two approaches, requiring
knowledge of how the system works, but also using data measured
from it. This paper explores a generalised gray-box modelling ap-
proach for time-varying effects using a recurrent neural network
(RNN).

* This research is part of the “Nordic Sound and Music Computing
Network—NordicSMC,” NordForsk project no. 86892.
Copyright: © 2020 Alec Wright et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 Unported License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.
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In recent years, numerous studies on virtual analog modelling
of guitar amplifiers [11, 12, 13, 14, 4, 15] and other nonlinear sys-
tems [16, 17] using neural networks have been published. Neural
network modelling of time-varying audio effects has received less
attention, with the first publications being published over the past
year [18, 3]. Whilst Martinez et al. report that accurate emulations
of several time-varying effects were achieved, the model utilises
bi-directional Long Short Term Memory (LSTM) and is therefore
non-causal and unsuitable for real-time applications.

In this paper we present a general approach for real-time mod-
elling of audio effects with parameters that are modulated by a
Low Frequency Oscillator (LFO) signal. Our approach is an adap-
tation of a technique used for modelling guitar amplifiers that we
proposed last year [14]. We validate our approach by creating
models of a digital phasing algorithm and an analog phaser and
flanger pedal. The resulting models require relatively little pro-
cessing power to run and are suitable for real-time operation.

The rest of this paper is organised as follows. Section 2 pro-
vides some background on time-varying audio effects. Section 3
describes the neural network architecture and training process used
during this study. Section 4 describes preliminary experiments car-
ried out to validate and test the limitations of our proposed ap-
proach. Section 5 details the method we applied to predict the
LFO signal in audio effect pedals. Sections 6 and 7 describe the
experiments and results, respectively, achieved when applying our
model to phaser and flanger guitar effects pedals, and Section 8
concludes the paper.

2. TIME-VARYING AUDIO EFFECTS

This paper focuses on modelling time-varying audio effects, a fam-
ily of audio effects where the parameters of the effect are varied,
or modulated, over time.

A simple example of a time-varying audio effect is the wah-
wah filter. This is just a bandpass filter with a variable resonant
frequency [1]. The resonant frequency is usually modulated by
a footpedal; however, in the Auto-Wah variant of the effect, the
resonant frequency can be modulated either by the envelope of
the input signal, or a Low-Frequency Oscillator (LFO). Figure 1
shows an example spectrogram of an Auto-Wah effect frequency
response, along with the corresponding LFO signal modulating its
resonant frequency. An LFO is a general term for a periodic signal,
usually at a frequency below 20 Hz, that modulates the parameters
of an audio effect or instrument.

In this paper, we propose a general approach for modelling au-
dio effects with parameters that are modulated by an LFO signal.
To demonstrate the viability of the method, we create models of
two popular LFO modulated time-varying audio effects, phasing
and flanging. As these effects share some similarities, the fol-
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Figure 1: Spectrogram of an Auto-Wah effect response (top) and
corresponding 0.3 Hz sinusoidal LFO signal (bottom).
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Figure 2: Spectrogram of a phaser response (top) and correspond-
ing triangular LFO signal (bottom).

lowing sections will briefly describe both of the effects and how
they are achieved, whilst highlighting the key differences between
them.

2.1. Phasing

Both phasers and flangers work by introducing moving notches
into the spectrum of the input signal [19]. In the case of phasing,
the notches can be introduced using notch filters, or a series of
low-order allpass filters [20]. In the case of the latter, the effect is
achieved by mixing the unprocessed signal with the allpass chain
filtered signal. The allpass filters introduce phase delay to the sig-
nal, and any frequencies where the phase delay is equal to an odd
multiple of 7, will be cancelled out when the dry and all-passed
signals are mixed together. Modulation of the notch frequencies
is achieved by varying the allpass coefficients using an LFO sig-
nal. The number of notches is determined by the maximum phase
delay introduced to the signal, which is in turn determined by the
number and order of the allpass filters. Figure 2 shows an example
spectrogram of a phaser frequency response, along with the corre-
sponding LFO signal modulating the allpass filter coefficients.
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Figure 3: Spectrogram of a flanger effect (top) and corresponding
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Figure 4: Model structure, where x[n) is the input signal, LFO[n]
is the LFO signal, fo is the desired frequency of the LFO and §[n]
is the network’s predicted output sample.

2.2. Flanging

Flanging is achieved by mixing a signal with a delayed version
of itself [19]. This is equivalent to applying an inverse comb fil-
ter to the signal. The effect is modulated by varying the length
of delay. As the notches are achieved by an inverse comb filter,
the notch locations are harmonically related, and are integer multi-
ples of the lowest frequency notch. As the lowest frequency notch
increases, the total number of notches decreases, as more of the
higher frequency notches start to exceed the Nyquist frequency.
Figure 3 shows an example spectrogram of a flanger response,
along with the corresponding LFO signal that is modulating its
delay line length.

The main difference between phaser and flanger can be seen in
their respective spectrograms: compared to the phaser, the flanger
introduces many more notches to the spectrum, and does not allow
any control over the locations of each notch.

3. MODEL ARCHITECTURE AND TRAINING

The general idea proposed in this study is to model LFO modulated
time-varying audio effects using a neural network. The proposed
model processes the input audio on a sample-by-sample basis, with
the time-varying aspects of the effect modelled using an LFO sig-
nal as an additional input to the model. The general form of the
trained model is depicted in Fig. 4.

This approach to modelling time-varying effects should re-
sult in a smaller and less complex neural network model being
required, as a key feature (the LFO) of the audio effect is pro-
vided to the network. Additionally the shape and frequency of the
LFO can be controlled freely after the model is trained. One is-
sue with this approach is that training the neural network requires
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Figure 5: RNN structure, where x[n] is the input audio signal,
LFOIn] is the input LFO signal, h and c are the LSTM Hidden
and Cell states, respectively, and {[n] is the network’s predicted
output sample.

input/output data from the target device, annotated with the LFO
signal. Predicting the LFO signal accurately is not trivial and this
is discussed further in Section 5.

3.1. Neural Network Model

Validation of this approach was carried out using a Recurrent Neu-
ral Network (RNN) model similar to that which was used in our
previous work [14]. The model consists of an LSTM unit, fol-
lowed by a fully connected layer, and is depicted in Fig. 5.

An LSTM unit has two State vectors, the Hidden State, h,
and the Cell State, c, both of which are updated at each time step,
with the Hidden State also being used as the LSTM output. The
LSTM states are updated according to the following equations:

i[n] = o(Wisz[n] + bis + Whih[n — 1] + bns), )
fIn]l = o(Wigz[n] + big + Whrh[n — 1] 4+ bug),  (2)
¢[n] = tanh(Wicx[n] + bic + Wheh[n — 1] + bre),  (3)

o[n] = o(Wioz[n] + bio + Whoh[n — 1] + bpo), 4)

c[n] = fln]cln — 1] + i[n]é[n], 5)
h[n] = o[n]tanh(c[n]), (©)

where ¢[n] is the input gate, f[n] is the forget gate, ¢[n] is the can-
didate cell state, o[n] is the output gate, tanh(.) is the hyperbolic
tangent function and o (.) is the logistic sigmoid function. z[n] is
the LSTM input signal, consisting of the unprocessed guitar signal
and the value of the LFO at time n. The LSTM learns the weight
matrices and bias vectors, denoted by W and b in the above equa-
tions, during training. The LSTM hidden size is a user-defined
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Figure 6: Measurement setup, where Input 1 records the target
signal, y[n], and Input 2 records the corresponding input signal,

parameter which determines the size of the state vectors, and thus
the required size of the weight matrices and bias vectors.

The fully connected layer performs an affine transformation of
the hidden state vector, which is summed with the network input
to give the network’s predicted output sample:

g[n] = Wychin] 4 bye + z[n], @)

where Wy, and by, are the fully connected layer’s weight matrix
and bias vector respectively and h[n] and z[n] are the LSTM hid-
den state and network input at time n, respectively.

The model was implemented using PyTorch [21]. Whilst this
study only used the RNN model, the method of including the LFO
signal as a neural network input should work for other neural net-
work structures, such as the WaveNet-style model proposed for
guitar amplifier modelling in [13].

Whilst the required processing power for running the neural
network model was not measured in this study, the model is very
similar to a previously tested model [14], which, when run on an
Apple iMac with 2.8 GHz Intel Core i5 processor, could process
one second of audio in 0.12s when an LSTM hidden size of 32
was used, or 0.24 s for a hidden size of 64.

3.2. Training Data

The datasets for each of the effects modelled in this study were
created by processing clean guitar audio with the target effect, and
recording the output. The training data used as input during this
study was taken from the IDMT-SMT-Guitar database [22] for gui-
tar transcription. This is a collection of clean guitar recording with
no audio effects applied. To best capture the time-varying nature
of the effect, audio clips containing minimal silence between notes
were selected from the dataset. All audio was recorded at a sample
rate of 44.1 kHz.

When a physical device was being modelled, a PC connected
to a Focusrite Scarlett 2i2 digital audio interface was used to out-
put and record the signals. The first output of the audio interface
was connected to the input of target device, with the output of the
target device then being connected to the first input of the audio
interface. Additionally, to compensate for the latency introduced
by the audio interface, the second output of the audio interface was
connected directly to the second input of the audio interface. The
unprocessed guitar audio was then sent through both outputs. The
signals recorded from the first and second inputs make up the time-
synchronised target, y[n], and input, z[n], data, respectively. The
measurement setup is shown in Fig. 6
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3.3. Training

The training process used was similar to that described in [14].
The Training Dataset was split into 1-second segments, and pro-
cessed in mini-batches. During the processing of each mini-batch,
1000 samples were initially processed to allow the RNN states to
initialise, then parameter updates were carried out every 1024 sam-
ples. It is noted that the length of the segments, as well as the time
between parameter updates, is short in comparison to the LFO fre-
quency. As such, at each parameter update, the model is learning
from just a small segment of the LFO signal. However, as the full
range of the LFO is included in the dataset, the model still learns
to imitate the effect over its full range of LFO values.

The loss function used was the error-to-signal ratio (ESR) with
first-order highpass pre-emphasis filtering, summed with a DC loss
term:

> oo lywln] = golnll?

Ersr = = , ®)
SN Llypln]l?
1L SN yln] — 9|
Epc = = ©)
> LN T ly[n]?
&€ = &esr + Epc, (10)

where y,, is the pre-emphasised target signal, and ¢, is the pre-
emphasised neural network output. The first order pre-emphasis
filter coefficient used was 0.85. The ESR loss is the squared er-
ror divided by the energy of the target signal, which effectively
normalises the loss so it is not dominated by higher energy parts
of the signal. The highpass pre-emphasis filter helps the model to
more effectively learn the high-frequency behaviour of the target
device. The training was carried out on a NVIDIA V100 Graphics
Processing Unit (GPU) using the Adam optimizer [23]. The seg-
ments were shuffled at the end of each epoch. Training typically
took about 6 hours to complete.

4. TOY-PROBLEM: MODELLING A DIGITAL MODEL

To provide initial validation of our approach, a digital model was
used as a target device. Whilst it might seem slightly convoluted
to train a neural network to model a digital model of an audio
effect, this was deemed necessary as it allowed us to provide a
completely accurate LFO signal during neural network training.
Otherwise, when modelling an analog device, it would be difficult
to determine if any failure of the neural network to emulate the
target device is due to the model itself, or just inaccurate prediction
of the LFO signal.

The gray-box model of the Fame Sweet Tone Phaser PH-10,
proposed in [7], was used as the target device. It is implemented
as a series of ten first-order allpass filters, with the first two and
last two of them having a constant coefficient, and the remaining
six filter’s coefficients being modulated by an LFO.

The complete dataset used for modelling the digital phaser
consists of a five-minute training dataset, a one-minute validation
dataset, and a 50-second test dataset. Networks with LSTM hidden
sizes of 8, 16, and 32 were trialled. To determine how much train-
ing data is needed to create an accurate model, neural networks
were trained with varying amounts of the training dataset being
excluded. The different training dataset lengths used, range from
10 seconds to five minutes in length. This resulted in a total of 30
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Figure 7: Test loss with varying hidden size and training data
length in the toy-problem of digital phaser modelling.

networks being created. Identical validation and test datasets were
used for all networks.

For the training and validation datasets, the phaser LFO used
was a rectified sine-wave with frequency of 0.34 Hz. For the test
dataset, four separate test datasets were created, each with the
same input audio but with the LFO frequency being varied. LFO
frequencies of 0.1 Hz, 0.34 Hz, 1.1 Hz, and 3.8 Hz were used for
creation of the test datasets.

The ESR loss achieved on the test dataset for the various train-
ing data lengths and network hidden sizes is shown in Fig. 7. It can
be seen that one minute of training data is sufficient for the neural
networks to model this system, with the test loss being relatively
unaffected by any further increase in the training data length. It
was also observed that model performed equally well on the test
datasets that were generated with LFO frequencies that were un-
seen during neural network training. These initial tests indicate
that the neural network is capable of modelling time-varying ef-
fects, when the true LFO signal is known, and furthermore can
generalise the effects behaviour when given an unseen LFO fre-
quency as input.

5. LOW FREQUENCY OSCILLATOR MEASUREMENT

To further validate the model, it is desirable to model analog de-
vices instead of digital systems. This presents an extra challenge
as the input data for the neural network requires an accurate pre-
diction of the LFO signal that is modulating the parameters. Fur-
thermore, there is no clear way of determining the accuracy of the
LFO signal prediction. The approach to measuring the LFO signal
is described in this section.

5.1. Measurement Signal

The LFO measurement signal used in this study is one previously
proposed for phaser pedal LFO measurement [7]. As the system
behaviour varies over time, it is necessary to use a relatively short
test signal, that can still provide a fairly accurate picture of the
system’s frequency response at the time of measurement. It has
previously been suggested that the impulse response of a cascade
of first-order allpass filters can be used as a chirp signal [24], with
the number of filters in the cascade determining the total length of
the signal.
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Frequency (kHz)

Figure 8: Spectrogram of a phaser pedal measured using a chirp
train.

The full test signal used for this work is simply an impulse
train, with a spacing of 30 ms, filtered by a cascade of 64 identical
first-order allpass filters. An allpass filter coefficient of —0.9 is
used, resulting each chirp being approximately 1200 samples, or
2.7 ms, long. The resulting chirp train is then input to target device,
and the output of the device is recorded. As the length and location
of the input chirps is known, the frequency response of the device
at the time of each chirp can be found by transforming the time-
domain chirps to the frequency domain.

Figure 8 shows an example spectrogram from a phaser pedal,
measured using this method. Whilst the LFO can be clearly ob-
served in the spectrogram, to obtain a prediction of the LFO that
is sufficiently accurate for extrapolation to the rest of the dataset,
further steps must be taken.

5.2. LFO Prediction

The measurement of the frequency response in this way can be
viewed as sampling the frequency response at a sampling period
equal to the spacing between the test chirps. The shape of the
LFO can be inferred by observing the movement of the notches
in the spectrum. This can be achieved by inverting the magnitude
spectrum, so the notches instead appear as peaks, and using a peak
picking algorithm.

For this work, we used the Matlab built-in findpeaks func-
tion. As the effects generally have multiple notches, this will result
in a number of notches being located. Each notch frequency is as-
sumed to change by a relatively small amount between each sam-
ple of the frequency spectrum, so the two closest notches between
subsequent frames are assumed to belong to the same notch. The
trajectory of each notch is tracked in this way over the duration of
the test signal.

As LFOs are usually a simple waveform such as a rectified sine
or triangle wave, the shape can be determined visually. This can be
seen in Fig. 8, where the LFO appears to be a rectified sine wave.
To predict the frequency and phase offset of the LFO signal, we
used the Matlab 1sgnonlin function, a nonlinear least-squares
solver. For example, where the LFO is a rectified sine-wave, the
solver would be given following equation to minimise:

f(fo,d) = |sin[2wt(fo/2) + (¢/2)]| = sLro(t),

where fo and ¢ are the predicted LFO frequency and phase, s;.ro
is the measured LFO signal, and ¢ is the sampling times of the
LFO.

From a visual comparison of the predicted and measured LFO,
it was noted that the solver often got stuck in a local minimum.
This can be observed in Fig. 9 (top), where the frequencies of the

an
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Figure 9: LFO prediction (dashed line) and measured LFO (solid
line), where the solver has found (top) a local minimum and (bot-
tom) the global minimum.

two waveforms clearly do not match. To improve the likelihood of
the solver finding the global minimum, it was run multiple times,
with a different initial frequency each time. The initial frequency
values were chosen by taking the Fourier transform of s;ro and
finding the frequency bin with the highest energy, wy. The initial
frequency was then varied linearly, starting at frequency wy—1 and
ending at frequency wg1. The parameter predictions that result
in the lowest error were then chosen as the LFO parameters.

5.3. LFO Extrapolation

To create the dataset, the measurement signal is immediately fol-
lowed by guitar audio from the dataset described in Sec. 3.2. The
predicted LFO frequency and phase offset from the measurement
signal can then be used to predict the LFO signal during the time
following or preceding the measurement signal.

As the LFO signal is periodic, even a very small error in the
predicted frequency will result in the predicted LFO signal quickly
becoming out of sync with the actual LFO signal. Additionally, it
is possible that the LFO signal frequency is subject to slight varia-
tions due to, for example, slight temperature changes in the circuit
components. In light of this, the measurement signal was inserted
periodically throughout the dataset. This effectively divides the in-
put guitar audio into segments, with each segment being preceded
and followed by a copy of the measurement signal. For each seg-
ment, the predicted LFO for the first half is then set according to
the parameters predicted during the preceding measurement sig-
nal, and the second half is set according to the LFO parameters
predicted during the following measurement signal.

6. EXPERIMENTS

Neural network models of two effects pedals were created, the
Behringer VP-1 Vintage Phaser and the Donner Jet Convolution
Flanger. The phaser pedal has a “Rate” control which sets the
LFO frequency, and a “Tone” switch. The flanger pedal has a
“Rate” control, “Color” and “Range” controls which adjust the
flanger depth and center frequency, respectively, and a mode se-
lector switch, which determines whether the LFO is on (“Normal”
mode) or off (“Filter” mode).

To create the datasets, the LFO measurement and prediction
method described in Sec. 5 was used, with the measurement signal
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Figure 10: Measured notch frequency over time for (top) the Vin-
tage Phaser VP-1 and (bottom) the Jet Convolution Flanger.

being inserted periodically throughout the training dataset.

6.1. Phaser Pedal

The phaser pedal was modelled with the “Rate” set to 3 and the
“Tone” switch in the up position. For the phaser pedal LFO, a nine
second chirp train, with half a second of silence at the beginning
and end was used as the measurement signal. A total of seven min-
utes of guitar audio was used as the dataset, with the measurement
signal being inserted at 20-second intervals throughout the dataset.
An example of one of the phaser pedal’s notch frequencies over
time is shown in Fig. 10 (top).

6.2. Flanger Pedal

For the flanger, the pedal was modelled with the “Color” and “Rate”
set to the 12 o’clock position, the “Range” set to the 9 o’clock posi-
tion, and the mode selector set to “Normal”. During measurement
of the LFO, we found that it was much harder to get a clean mea-
surement of a notch position over time, most likely due to the large
number of notches present. The parameters for the flanger pedal
were chosen as they resulted in a cleaner measurement of the LFO.
An example of one of the flanger pedal’s notch frequencies over
time is shown in Fig. 10 (bottom).

A total of seven minutes of guitar audio, with the measure-
ment signal inserted every 20 seconds, was processed through the
flanger pedal. From visually inspecting the resulting measured
LFOs, many segments contained clearly erroneous data. To en-
sure accuracy of the training data, only parts of the dataset where a
plausible LFO signal were measured were used. The final dataset
then consisted of two minutes of audio, which was divided into
an 80-second training dataset, a 20-second validation dataset and
a 20-second test dataset.

7. RESULTS

For both of the pedals being modelled, four neural networks were
trained, with hidden sizes of 8, 16, 32, and 64. The ESR loss
achieved on the test dataset for each network is shown in Table
1. For the Phaser, the best ESR loss of 3.1% was achieved by
the RNN with hidden size of 64, and the worst ESR loss of 6.7%
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was achieved by the RNN with hidden size of 8. For the Flanger,
the best ESR loss of 1.3% was achieved by the RNN with hidden
size of 64, and the worst ESR loss of 11.7% was achieved by the
RNN with hidden size of 8. Formal listening tests were not carried
out during the completion of this study, but previous listening tests
for guitar amplifiers models [4] suggest that an ESR loss of 3%
corresponds to very minor differences being perceived between the
model and the target device. Informal listening tests also indicate
that the models sound very similar to the target devices, and audio
examples are available at the accompanying web page [25].

A comparison of spectrograms of the outputs of the phaser
and flanger pedals, and the neural network models of them, with
hidden sizes of 8 and 64, are shown in Fig. 11 and Fig. 12, re-
spectively. For the phaser, the spectrograms show good agreement
between both of the neural network models and the pedal, and the
time-varying notches can be seen clearly. For the flanger, there are
some visible differences between the smaller neural network and
the pedal, where it appears some of the higher frequencies shown
are either missing or smeared over time. However, for the larger
model, no clear differences can be observed.

Additionally, a short dataset was created for each pedal, with
the LFO rate set to a higher frequency that was unseen during train-
ing. The spectrograms of the outputs of the phaser and flanger ped-
als and their models are shown in Fig. 13 and Fig. 14, respectively.
Again the spectrograms for each effect type appear to be very sim-
ilar, indicating that the neural network model has generalised well
to the unseen LFO frequency.

A further example in which the LFO frequency is varied con-
tinuously from 0.1 Hz to 3 Hz is also included in the accompanying
web page [25]. For the Flanger effect, the neural network produces
areasonable sounding effect for the full range of the LFO frequen-
cies tested. However, for the Phaser, some undesired behaviour
occurs at the higher LFO frequencies, with the output becoming
distorted and the volume fluctuating. It is not clear why this be-
haviour occurs, but it is likely that including training data with a
higher frequency LFO would mitigate this.

8. CONCLUSION

This paper has shown how a neural network can be used to model
LFO-modulated effects, such as phaser and flanger pedals. The
method was first tested on the toy-problem of a digital phaser
model, in which case the same LFO signal used by the effect could
be shown to the neural network during training. This test proved
that a faithful model of the digital phaser effect can be learned
by an RNN using only one minute of training data. Adding more
training data does not reduce the error, but increasing the neural
network size does.

Real analog phaser and flanger pedals were then modelled by

Table 1: Error-to-signal ratio for the RNN models of the Vintage
Phaser VPI1 and the Jet Convolution Flanger pedals. The best
results are highlighted.

Hidden = Number of ESR

Size Parameters Phaser  Flanger
8 361 6.7% 11.7%
16 1223 34%  5.8%
32 4513 33% 1.6%
64 17217 31% 13%
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Figure 11: Spectrogram of phaser effect with guitar signal as in-
put, for (top) the Vintage Phaser VPI and neural network models
with hidden size (middle) 8 and (bottom) 64.

first estimating the frequency and phase of their LFO signal. A
sufficiently dense allpass-chirp train was fed to the pedal to sample
its frequency response, the frequency trajectories of notches were
estimated, and a nonlinear solver was used to fit a signal model
to the LFO. This turned out to be more reliable in the case of the
phaser pedal than the flanger. The most reliable data obtained from
the LFO estimation were used for training neural network models
having hidden sizes between 8 and 64.

Using the largest RNN, ESRs of about 3% and 1% were ob-
tained for the phaser and flanger pedal models, respectively. Ac-
cording to our previous studies, these values correspond to hardly
audible modelling errors. However, listening confirms that also
the smaller models, which have larger errors, sound quite realis-
tic. The RNN models were further validated by modifying the
LFO frequency and analyzing their performance. In most cases
tested, the networks generalised well to conditions unseen during
training. However, for the Phaser model undesirable volume fluc-
tuation was introduced when the LFO rate was increased. The
results of this study suggest that many time-varying effects may
be modelled successfully with neural networks by first separating
the LFO behaviour, with the main challenge being in measuring
the LFO signal accurately.
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