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ABSTRACT

In purely non-dissipative systems, Lagrangian and Hamiltonian reduction have been proven to be powerful tools for deriving physical mod-
els with exact conservation laws. We have discovered a hint that an analogous reduction method exists also for dissipative systems that
respect the first and second laws of thermodynamics. In this paper, we show that modern electrostatic gyrokinetics, a reduced plasma turbu-
lence model, exhibits a serendipitous metriplectic structure. Metriplectic dynamics, in general, is a well developed formalism for extending
the concept of Poisson brackets to dissipative systems. Better yet, our discovery enables an intuitive particle-in-cell discretization of the colli-
sion operator that also satisfies the first and second laws of thermodynamics. These results suggest that collisional gyrokinetics, and other dis-
sipative physical models that obey the laws of thermodynamics, could be obtained using an as-yet undiscovered metriplectic reduction
theory and that numerical methods could benefit from such theory significantly. Once uncovered, the theory would generalize Lagrangian
and Hamiltonian reduction in a substantial manner.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011297

I. INTRODUCTION

Construction of reduced models in physics, when done rigor-
ously, usually results in equations that are expressed in terms of formal
infinite series. In order to make practical progress with such models,
the series must always be truncated while respecting the essential phys-
ics. If the truncation is done carelessly, spurious unphysical effects
may appear as, e.g., in the basic formulation of the Burnett equations.1

A particularly difficult truncation problem arises in the formula-
tion of collisional gyrokinetics (see, e.g., Refs. 2–4). Because gyroki-
netics is used as a tool for modeling plasma turbulence, it is essential
that the effects of collisions in the theory do not lead to a violation of
the first and second laws of thermodynamics. Artificial sources or
sinks of energy or entropy could drastically alter the steady-state tur-
bulence amplitude and, therefore, the predicted turbulence-induced
transport levels. On the other hand, due to the complicated depen-
dence of the gyrokinetic equations on the background magnetic field
geometry, it is nontrivial to include a collision operator in the theory
when starting from first principles5 and to truncate the expression
without violating the first or the second law. In contrast, formulating
energy and momentum conserving gyrokinetic equations without col-
lisions can now be done systematically using Lagrangian6–8 and
Hamiltonian reduction.9

A resolution to this vexing issue in electrostatic gyrokinetic the-
ory was put forward in Ref. 10, where a collision operator was discov-
ered that addresses the truncation problem without destroying the
conservation laws or the H-theorem. The key step in the analysis
amounted to being mindful of the basic properties of the Landau colli-
sion operator.11 In other words, a problem-specific trick was found. It
would be extremely interesting and useful if there was a more pro-
found theory underlying these results, in particular, a generalization of
Lagrangian and Hamiltonian reduction for dissipative systems. If
uncovered, such a theory could become an essential tool for unraveling
truncation problems in many different areas of physics research.12

In this paper, we report on a discovery that suggests a promising
candidate for such a general dissipation-compatible truncation tool.
Specifically, we show that the modern formulation of collisional elec-
trostatic gyrokinetics exhibits a metriplectic structure. This beautiful
mathematical framework, discovered amidst the 1980s (see, e.g., Refs.
13–20), extends the Poisson bracket formulation of classical mechanics
to dissipative systems that obey the first and second laws of thermody-
namics. This suggests that collisional gyrokinetics, and other dissipa-
tive physical models that obey the laws of thermodynamics, may be
obtained using an as-yet undiscovered metriplectic reduction theory.
Metriplectic reduction, once discovered, would generalize Lagrangian
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and Hamiltonian reduction in a substantial manner by enabling one
to consistently apply, e.g., the perturbation tools common in
Lagrangian reduction to dissipative systems while retaining the mathe-
matical structures, such as the laws of thermodynamics, intact also
after truncation.

Further hints toward the existence of such theory have been
recently found in the studies of rigid bodies aimed at motion control21

and in studying the general framework of metriplectic dynamics with
an application toward dissipative magnetohydrodynamics.22 Since
dissipation-free magnetohydrodanymics and its extensions have been
recovered from underlying collisionless two-fluid model using the
tools of Lagrangian reduction,23 the discovery of a metriplectic struc-
ture for dissipative magnetohydrodynamics is indeed a strong indica-
tion of the existence of an underlying metriplectic reduction theory.

Finally, the discovery of a metriplectic structure for the electro-
static gyrokinetic collision operator also admits a particle-in-cell dis-
cretization. This discretization is particularly useful as it satisfies the
laws of thermodynamics: the resulting finite-dimensional metric
bracket conserves the total energy and dissipates a regularized entropy
functional. Furthermore, our proposal for the finite-dimensional colli-
sion operator, derived directly from the metric bracket, acts in the 5D
phase-space, includes the finite-Larmor-radius effects, and guarantees
ab initio positivity of the numerical distribution function. These are all
properties that seemed rather elusive to obtain in a numerical applica-
tion when the electrostatic gyrokinetic collision operator was first dis-
covered10 but are now immediately available after identifying the
metriplectic structure. Hence, the findings we report are a strong indi-
cation that also numerical modeling would greatly benefit from dis-
covering the generic framework of metriplectic reduction.

II. THE ELECTROSTATIC GYROKINETIC MODEL

The model problem we consider is a variant of full-F collisional
electrostatic gyrokinetics. The system of equations is

@Fs
@t
þ fFs;Hgy

s g
gc
s ¼

X
�s

Cgy
s�s ðFs; F�sÞ; (1)

r � E ¼ 4pðqgy �r � PÞ; (2)

where Fs is the gyroangle-independent gyrocenter distribution func-
tion, qgyðxÞ ¼

P
s es
Ð
FsdðX � xÞ dzgcs is the gyrocenter charge den-

sity, P is the gyrocenter polarization density, and Hgy
s ¼ Kgy

s þ esu is
the single-gyrocenter Hamiltonian. The single-gyrocenter Poisson
bracket f � ; � ggcs of species s is derived by taking an exterior derivative
of the symplectic part of the single-gyrocenter Lagrangian one-form;
thus, it is a genuine Poisson bracket. Explicitly,

fF;Gggc ¼ e
mc

@F
@h
@G
@l
� @F
@l

@G
@h

� �
þ B�

mB�k
� r�F @G

@vk
� @F
@vk
r�G

 !

� cb
eB�k
� r�F �r�Gð Þ (3)

with the standard definitions

B� ¼ Bþmc
e
r� vkb�

c
e
lR

� �
; (4)

r� ¼ rþ R @=@h: (5)

R denotes the Littlejohn’s gyrogauge field, and B�k ¼ b � B�. We remark
that the volume element is dzgcs ¼ m�1s B�ks d

3X dvk dl dhs; therefore, it
implies an integration with respect to the species-s gyrophase.

The function Kgy
s is the gyrocenter kinetic energy, which may be

written entirely in terms of the electric field as

Kgy
s ¼

1
2
mv2k þ ljBoj � ehvqo � EðX þ �qoÞbi

� e2

2ljBoj
hv gqo � EðX þ �qoÞ gqo � EðX þ qoÞbi

� e2

2mx2
c
bo � heEðX þ qoÞ � IeEðX þ qoÞi: (6)

Here h�is ¼ ð2pÞ
�1 Ð 2p

0 � dhs denotes the average with respect to the
species-s gyroangle, tildes denote the fluctuating part of a gyroangle-
dependent quantity, I ¼ @�1h is the gyroangle antiderivative, v � b
¼
Ð 1
0 � d�, and qo is the zeroth order (gyroangle-dependent) gyroradius

vector. The net gyrocenter kinetic energy, which is defined as

KðEÞ ¼
X
s

ð
Kgy
s Fs dz

gc
s ; (7)

defines the gyrocenter polarization density according to P ¼ �dK=dE.
The right-hand-side of the kinetic equation (1) is given by the

energetically consistent gyrocenter collision operator.10 The expression
for Cgy

s�s ðFs; F�sÞ requires the definitions of the gyrocenter position vec-
tors ysðzÞ ¼ X þ qos, the gyrocenter relative velocity vector

wgy
s�s ¼ fys;Hgy

s g
gc
s ðzÞ � fy�s ;H

gy
�s ggc�s ð�z Þ; (8)

the scaled projection matrix

Q
gy
s�s ðz; �z Þ ¼

Pðwgy
s�s ðz; �z ÞÞ

wgy
s�s ðz; �z Þ

; PðnÞ ¼ I� nn

jnj2
; (9)

and the three-component collisional flux vector

c
gy
s�s ¼

ð
dgys�s ðz; �z ÞQ

gy
s�s ðz; �z Þ � A

gy
s�s ðz; �z Þ d�z gc�s ; (10)

where the gyrocenter delta function is dgys�s ðz; �z Þ ¼ dðys � �y�sÞ, and the
vector Agy

s�s is defined according to

Agy
s�s ðz; �z Þ ¼ FsðzÞf�y�s ; F�sð�z Þggc�s � F�sð�zÞfys; FsðzÞg

gc
s : (11)

With these definitions, the gyroangle averaged collision operator is
given as

Cgy
s�s ðFs; F�sÞ ¼ �

�s�s
2
hfys;i; cgys�s;ig

gc
s is; (12)

where the symmetric coefficient is �s�s ¼ 4pe2s e
2
�s lnK. This collision

operator conserves total energy and specieswise particle number while
producing entropy monotonically. Moreover, when the background
field is either axisymmetric or translation symmetric, it conserves the
corresponding total momentum. For an explicit proof of the conserva-
tion laws and entropy-production property, see Ref. 10.

III. HAMILTONIAN FORMULATION FOR COLLISIONLESS
PART

In the absence of collisions, electrostatic gyrokinetic theory natu-
rally has the structure of an infinite-dimensional Hamiltonian system.
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This structure was first studied by Squire et al. in Ref. 24. Thus, when
the collision integral in (1) is dropped, one should expect that the
resulting system is Hamiltonian in nature. Because this Hamiltonian
structure appears as an essential ingredient in the metriplectic formu-
lation of collisional electrostatic gyrokinetics, we now take the time to
summarize it.

As is true of any Hamiltonian system, the Hamiltonian structure
of collision-free electrostatic gyrokinetics consists of three parts: (1)
the system’s infinite-dimensional phase space, (2) the Hamiltonian
functionalHGK, and (3) the Poisson bracket f�; �gGK. The phase space
is the easiest piece. It is not difficult to show that the electrostatic
potential may be expressed in terms of moments of the distribution
function using the gyrokinetic Poisson equation, i.e., u ¼ u�ðFÞ.
Thus, the gyrokinetic Vlasov–Poisson system may be written as a first-
order ordinary differential equation (ODE) on F-space where the time
derivative of F is given by the collisionless kinetic equation. It follows
that the infinite-dimensional phase space for electrostatic gyrokinetics
is just F-space. The Hamiltonian H is slightly less trivial to identify,
but it may be guessed starting from the energy expressions for kinetic
systems with polarization effects.25,26 We have

HGK ¼
X
s

ð
Kgy
s Fs dz

gc
s þ

ð
P � E d3x þ 1

8p

ð
jEj2d3x

¼
X
s

ð
Hgy

s Fs dz
gc
s �

1
8p

ð
jEj2 d3x: (13)

Note that in this expression the electrostatic potential must be
regarded as the unique functional of the distribution function given by
solving the gyrokinetic Poisson equation, i.e., u ¼ u�ðFÞ. Finally, the
following expression gives the Poisson bracket of two functionals
FðFÞ and GðFÞ:

fF ;GgGK ¼
X
s

ð
dF
dFs

;
dG
dFs

� �gc

s
Fs dz

gc
s ; (14)

which represents a convenient simplification of the first reported
bracket.24 In fact, Eq. (14) is an example of a so-called Lie-Poisson
bracket,27 which is perhaps the simplest non-canonical bracket one
would expect to see in a continuum field theory. Here the functional
derivative of an observable AðFÞ is the unique gyroangle-independent
function of ðX; vk;lÞ such that

dAðFÞ ¼
X
s

ð
dA
dFs

dFs dz
gc
s (15)

for arbitrary variations dFs.
This Hamiltonian structure is related to collisionless gyrokinetic

dynamics as follows. Given a functional Q on F-space, the dynamics
of QðFÞ, with F evolving according to the electrostatic gyrokinetic
Vlasov–Poisson system, are specified by

dQ
dt
¼ fQ;HGKgGK: (16)

By choosing QðFÞ ¼
Ð

dðz � �z Þ Fð�z Þ d�z gc, Eq. (16) reproduces the
collisionless limit of (1). The least straightforward step in demonstrat-
ing this fact shows that the functional derivative of HGK is the single-
gyrocenter Hamiltonian Hgy

s , i.e., Hgy
s ¼ dHGK=dFs. To see that this is

so, observe that an arbitrary variation of the gyrokinetic system
Hamiltonian is given by

dHGK ¼
X
s

ð
Hgy

s dFs dz
gy
s

þ
ð
ðqgy �r � P � ð4pÞ�1r � EÞ du d3x; (17)

where the variation of the electrostatic potential du is a complicated
linear functional of dF. Because u ¼ u�ðFÞ in the gyrokinetic
Hamiltonian, the gyrokinetic Poisson equation may now be used to
kill the second term, thereby deducing the desired result.

IV. METRIC BRACKET FOR THE COLLISION OPERATOR

Metriplectic dynamics13–20 provides a convenient framework to
describe systems that exhibit both Hamiltonian and dissipative charac-
ter. The Hamiltonian contribution in such a system is represented in
terms of an energy functional H and an antisymmetric Poisson
bracket f � ; � g, while the dissipative contribution is represented in
terms of an entropy functional S and a symmetric, negative semi-
definite metric bracket ð � ; � Þ. When combined, the evolution of a
given functionalQ is obtained from the equation

dQ
dt
¼ Q;Ff g þ ðQ;FÞ; (18)

where F ¼ H� S denotes a generalized free-energy functional that is
dissipated via increase in the system entropy.

For this framework to respect the laws of thermodynamics, one
requiresH to be an invariant of the metric bracket and S an invariant
of the Poisson bracket in the sense of ðH;AÞ ¼ 0 and fS;Ag ¼ 0
with respect to an arbitrary functional A. Furthermore, S must not be
an invariant of the metric bracket. Then, it is straightforward to verify
the properties dF=dt � 0; dH=dt ¼ 0, and dS=dt � 0. The system
may display also other invariants fCigi which are invariants of the
total bracket. In an equilibrium state, dQ=dt ¼ 0 for all possible Q.
One way for such a state to exist is that the free-energy functional is a
linear combination of the common invariants of the two brackets
according to

F ¼
X
i

ci Ci; (19)

where the coefficients ci are uniquely determined by the initial state of
the system.

To find a metriplectic formulation for electrostatic gyrokinetics,
we have to dress the collision operator in terms of a symmetric
bracket. Fortunately, this turns out to be a rather straightforward task
once we employ the identity dHgy=dFs ¼ Hgy

s .
In the expression (11) for the vector Agy

s�s ðz; �z Þ, one may identify
functional derivatives dSGK=dFs of an entropy functional

SGK ¼ �
X
s

ð
FsðzÞ ln FsðzÞdzgcs : (20)

Weak formulation of the collision operator (12), and some further rea-
soning, then summon a symmetric, negative semi-definite bracket

ðA;BÞGK ¼ �
X
s�s

�s�s
4

ð ð
Cgy
s�s ðAÞ �W

gy
s�s � C

gy
s�s ðBÞdz

gc
�s dz

gc
s ; (21)

where the vector Cgy
s�s ðAÞ and the symmetric, positive semi-definite

tensor W
gy
s�s are
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Cgy
s�s ðAÞ ¼ y�s ;

dA
dF�s

� �gc

�s
ð�z Þ � ys;

dA
dFs

� �gc

s
ðzÞ; (22)

W
gy
s�s ¼ dgys�s ðz; �z ÞQs�sðz; �z ÞFsðzÞF�sð�z Þ: (23)

It is straightforward to verify that evaluation of the bracket
ðQs;�SGKÞGK with respect to Qs ¼

Ð
dðez � zÞFsðzÞ dzgcs leads to the

expression (12) evaluated at ez .
To complete a metriplectic formulation for the electrostatic gyro-

kinetic model, we need to verify that the electrostatic energy functional
HGK is an invariant of the metric bracket and that the entropy func-
tional SGK is not. This is straightforward to demonstrate: Since
dHGK=dFs ¼ Hgy

s , we have

ðHGK;BÞGK ¼
X
s�s

�s�s
4

ð ð
wgy
s�s �W

gy
s�s � C

gy
s�s ðBÞdzgcs d�z gc�s

¼ 0; (24)

where B is an arbitrary functional. This follows from the property
wgy
s�s �W

gy
s�s ¼ 0. Entropy, on the other hand, is not an invariant of the

metric bracket since a correct choice for B reproduces the expression
for the collision operator as stated above. We may, thus, conclude that
the system consisting of equations (1) and (2) exhibits a metriplectic
structure and that the dynamics of any functional is given by

dQ
dt
¼ fQ;FGKgGK þ ðQ;FGKÞGK; (25)

whereFGK ¼ HGK � SGK is the gyrokinetic free-energy functional.
We note that if the background magnetic field is axially symmet-

ric, the total toroidal angular momentum,

P/ ¼
X
s

ð
p/sðzÞFsðzÞdzgcs ; (26)

is an invariant of the metric bracket although not of the Poisson
bracket. This can be verified as follows: Since dP/=dFs ¼ p/s, with
p/s the single-particle guiding-center canonical momentum of species
s, the expression

ðP/;BÞGK¼
X
s�s

�s�s
4

ð ð
Cgy
s�s ðP/Þ �Wgy

s�s �C
gy
s�s ðBÞdzgcs d�z gc�s

¼
X
s�s

cs�s
4

ð ð
ez� �y�s �ysð Þ �Wgy

s�s �C
gy
s�s ðBÞdzgcs d�z gc�s

¼ 0 (27)

vanishes identically since the integrand contains the term ð�y�s � ysÞ
dgys�s ðz; �z Þ.

Thermodynamical equilibrium is reached once the differential of
the free-energy functional is a linear combination of the invariants of
the total metriplectic bracket evaluated at the equilibrium. The sim-
plest way to achieve this condition is to have the free-energy differen-
tial be an invariant of the Poisson bracket and the metric bracket
individually, which happens to imply that the differential of F is the
differential of the sum of the total mass of each species. From this con-
dition, the equilibrium distributions Feq;s may be solved by taking var-
iations, which leads to

Feq;s � exp �Hgy
s

T

� �
(28)

with common temperature for each species.

V. PARTICLE-IN-CELL DISCRETIZATION FOR THE
COLLISIONS

As a final note, we discuss how the newly discovered bracket
could be discretized with marker particles to provide a meaningful
finite-dimensional approximation of the collision operator that acts on
individual particle’s phase-space position in a deterministic manner.
To avoid extra clutter of indices, we now consider only the single-
species case while it is straightforward to extend the following results
to the multiple species as well.

Say we have chosen to represent the phase-space density with
marker particles, so that the distribution function multiplied by the
phase-space Jacobian is parametrized by

m�1B�kðzÞFðt; zÞ ¼
X
p

npdðz � zpðtÞÞ: (29)

In a particle-in-cell approach, the Hamiltonian motion would push
the locations zpðtÞ forward in time along the characteristics generated
by the vector _z p ¼ fz;HgyggyðzpÞ while np—the number of real par-
ticles each marker carries or, more commonly, the particle weight—
are arbitrary constants sampled from the initial phase-space density.
To find an analogous vector accounting for the effect of collisions in
individual marker-particle motion, our finite-dimensional metric
bracket of any two functions A and B that depend on np and zp will
read

ðA;BÞ ¼ � �
4

X
p;�p

hhCðA; p; �pÞ �W�ðp; �pÞ � CðB; p; �pÞiip;�p : (30)

Here hh � iip;�p refers to double gyroaverage over both the gyroangles of
particles p and �p which can be performed as a quadrature or an n-
point average (implementing a quadrature or the average will not
affect the conservation laws nor the entropy dissipation). The vector
CðA; p; �pÞ in (30) is defined according to

CðA; p; �pÞ ¼ fy;Ag
gcðzpÞ

np
� fy;Ag

gcðz�pÞ
n�p

(31)

and the single-particle Poisson bracket is now understood in the sense
of

fy;AggcðzpÞ ¼ fy; zaggcðzpÞ
@Að…; zp;…Þ

@za
p

: (32)

Hence, if A is independent of some specific zk, then fy;AggcðzkÞ ¼ 0.
The matrix Wðp; �pÞ in (30) is given by

W�ðp; �pÞ ¼ npn�pd�ðp; �pÞQðzp; z�pÞ; (33)

where Qðzp; z�pÞ is the scaled projection matrix constructed from the
single-particle Hamiltonian the same way as previously. The major dif-
ference to the infinite-dimensional bracket is the approximation of the
strict delta function dgyðzp; z�pÞ with, e.g., a parametrized radial basis
function d�ðp; �pÞ ¼ W�ðyðzpÞ � yðz�pÞÞ. This approximation is man-
datory to account for the finite difference in the particle locations. In a
numerical application, it is used to spatially screen which of the
particles collide with each other, effectively representing the size of a
spatial collision “cell.”

The finite-dimensional total energy, now constructed as the
weighted sum H ¼

P
p npH

gyðzpðtÞ; tÞ and the explicit time
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dependence referring to the electrostatic potential, is trivially an invari-
ant of the finite-dimensional bracket (30) for CðH; p; �pÞ which is the
null eigenvector of the matrix W�ðp; �pÞ. Unfortunately, the finite-
dimensional expression for the Canonical angular momentum P/

¼
P

p npp/ðzpðtÞÞ is not an exact invariant. The approximation of the
strict delta function dgyðzp; z�pÞ with the radial basis function d�ðp; �pÞ,
introduced to account for the localization of the particles’ positions,
destroys this property although in a controlled manner with the error
being quantified by the chosen width of the function d�ðp; �pÞ.

Finally, to obtain dynamics, an approximate entropy functional is
required. This can be done by, e.g., convoluting the delta distribution
(29) with some phase-space radial basis function U�ðzÞ so that the
finite-dimensional entropy is expressed as

S ¼
ðX

p

npU�ðz � zpÞ

m�1B�kðzÞ
ln

X
�p

n�pU�ðz � z�pÞ

m�1B�kðzÞ

264
375dzgc: (34)

The finite-dimensional bracket (30) will then always dissipate the
approximate entropy functional for the bracket is negative semidefin-
ite. While an arbitrary choice of U� will likely not provide a numerical
H-theorem, specifically the equilibrium state, a proper choice of the
convolution function U� might succeed in the feat the same way as
was recently demonstrated for the particle Landau operator28 using
the Gaussian radial basis function and its special properties under con-
volution. With respect to the chosen, regulated entropy functional, the
collisional particle characteristics are then obtained from ð _AÞcollisions
¼ ðA; SÞ by substituting A ¼ zp. The result, upon using the antisym-
metry of C and the symmetry of W, can be written as

_z p ¼ �
�

2
hfyi; zpggcUiðpÞip; (35)

where the vector UðpÞ is defined according to

UðpÞ ¼
X

�p

n�phd�ðp; �pÞQðzp; z�pÞ � CðS; p; �pÞi�p : (36)

To evaluate the collisional rate-of-change of the particle coordi-
nates, it is, thus, necessary only to evaluate the expressions
fXi þ qi

o; z
aggc; @aHgy, and @aS for each particle and to combine

them to the expressions Q
ijðzp; z�pÞ and CiðS; p; �pÞ, and ultimately to

the vector UiðpÞ. Out of the necessary expressions, fXi; zag and
@aHgy are needed also in integrating the Hamiltonian trajectories for
fXi; zaggc@aHgy 	 _X

i
represents the gyrocenter’s parallel and drift

velocities while the extra term fqi
o; z

aggc@aHgy 	 _qi
o is effectively the

part of particle’s perpendicular velocity vector resulting from the local
cyclotron motion but expressed in terms of the gyrocenter coordinates.
The double gyroaverage can be computed by sampling, say, four values
for each particle’s gyroangle, or even by just one value. The energy-
conservation property is not affected by this choice for the exploit of
the nullspace of Q happens point-wise inside the double gyroaverage.

For convenience, we list here the necessary Poisson-bracket
expressions in Cartesian coordinates. Using (3), they read

fXi þ qo;i;Xjggc ¼ ej‘k
cbk
eB�k
ðd‘i þ @�‘ qo;iÞ; (37)

fXi þ qo;i; vkggc ¼
B�k
mB�k

dki þ @�kqo;i

� �
; (38)

fXi þ qo;i; lggc ¼ eijkqo;j
ebk
mc

; (39)

where the components of the dyadr�qo are

@�i qo;j ¼ �
1
2
@i lnBqo;j � @ibk qo;kbj (40)

and eijk is the Levi-Civita tensor. Given the derivatives of the
Hamiltonian, @aHgy, and of the entropy functional, @aS, with respect
to the coordinates za

p and za
�p of two particles p and �p, it is then a

straightforward task to use the given Poisson-bracket expressions and
the generic property ff ; gg ¼ ff ; zag@ag to construct the relative
velocity vector (8) needed for the matrix Qðzp; z�pÞ (9), the vector
CðS; p; �pÞ (31), and to put them together for the vector UðpÞ (36).
Once UðpÞ is available, the Poisson-bracket expressions are used once
more to finally evaluate the collisional rate-of-change of the particle zp
coordinates via (35).

The approach we have taken to discretize the collision operator
with particles might be somewhat unfamiliar to the readers for the
method is deterministic yet involves particles. While it is more com-
mon to think of second-order differential operators—also the collision
operator discussed here can be written down in the Fokker–Planck
form [Ref. 29, see Eqs. (4.25) and (4.26)]—as generators of diffusion
and hence of stochastic processes, inspecting the topic via the metri-
plectic formulation enables an intuitive interpretation of the collisions
as a flow along a compressible vector field driven by the gradient of the
entropy, fully analogous to the incompressible flow generated by the
gradient of the Hamiltonian. This is a trick employed, e.g., in solving
diffusion equations with a deterministic particle approach: instead of
@tc ¼ r � ðkrcÞ, one writes @tcþr � ðð�kr ln cÞcÞ ¼ 0 and inter-
prets v ¼ �kr ln c as a compressible vector field generated by the gra-
dient of the entropy S ¼ �ln c along which the density c is advected.
An excellent discussion and further references of this topic are found
in Ref. 28.

VI. SUMMARY

To summarize, we have demonstrated that the modern formula-
tion of collisional electrostatic gyrokinetics exhibits a metriplectic
structure and that this structure can be exploited to derive a meaning-
ful and structure-preserving marker-particle approximation of the
collision operator. Our findings largely rely on the identity dHgy=dFs
¼ Hgy

s which, in the case of full-F electromagnetic gyrokinetics, no
longer holds, rendering a simple guessing process to derive a colli-
sion operator for electromagnetic gyrokinetics difficult. Our new
results nevertheless suggest that collisional gyrokinetics, and other
dissipative physical models that obey the laws of thermodynamics,
may be obtained using an as-yet undiscovered metriplectic reduc-
tion theory and that theory would likely be useful not only for the-
oretical considerations but also for numerical implementations.
Theory of metriplectic reduction, if it exists, would effectively
expand the powerful Lagrangian and Hamiltonian reduction
methods into physical systems that display the first and second
laws of thermodynamics by enabling one to consistently apply,
e.g., the perturbation tools common in Lagrangian reduction
while retaining the mathematical structures intact also after trun-
cating the perturbative series.
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