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ABSTRACT 
Relatively little is known about eye and finger movement in
typing with mobile devices. Most prior studies of mobile typ-
ing rely on log data, while data on finger and eye movements
in typing come from studies with physical keyboards. This
paper presents new findings from a transcription task with
mobile touchscreen devices. Movement strategies were found
to emerge in response to sharing of visual attention: attention
is needed for guiding finger movements and detecting typing
errors. In contrast to typing on physical keyboards, visual
attention is kept mostly on the virtual keyboard, and glances
at the text display are associated with performance. When
typing with two fingers, although users make more errors,
they manage to detect and correct them more quickly. This
explains part of the known superiority of two-thumb typing
over one-finger typing. We release the extensive dataset on
everyday typing on smartphones.

Author Keywords 
Text input; mobile device; eye-hand coordination; eye
movement; finger movement.

CCS Concepts 
•Human-centered computing → Text input; Graphical user
interfaces; Mobile phones;

INTRODUCTION 
This paper presents new data of how people type on touch-
screen devices. Present-day understanding on typing is rooted
mainly in studies with physical keyboards [16, 33, 37, 48],
which differ in a few important respects from touchscreen
keyboards on handheld devices. The most obvious are size,
hand postures, the role of the thumbs, and the lack of physical
keyswitches. Everyday mobile typing is carried out on the
move too. Little research exists on the implications of these
factors for how people move their gaze and fingers, which is
surprising, given the prevalence of these devices and general
awareness that visual and manual strategies affect performance
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across a plethora of skilled activities, such as typing on phys-
ical keyboards [16, 29], driving [35, 43], and gaming [20,
21].

Our goal is to understand movement strategies in mobile typ-
ing. Visuomotor strategies are learned over experience and
coordinate manual and sensory actions like hand and eye move-
ments [4]. They are associated with performance [53]. For
typing, in general, a strategy is needed for coordinating the
allocation of visual attention between the text display and the
keyboard, and to guide the timing and speed of finger move-
ments [14, 16]. A typing strategy must also regulate the speed
and accuracy of aiming, which should adapt, depending on
target sizes and the permitted rate of errors [7, 22, 25, 30,
56]. Prior research on mobile devices in particular suggests
that sharing of the visual attention may have an important
role. It must be devoted to guiding the fingers because of the
lack of tactile landmarks [9, 57]. At the same time, it may be
needed for checking the correctness of the text and of predic-
tions/corrections made by any intelligent text-entry method.
Visual attention is required also in searching for rarely used
characters on the keyboard [31, 57].

To identify and quantify movement strategies in mobile typing
and their relationship to typing speed, one must have synchro-
nized eye and finger movement data. Such data are needed for
revealing movement strategies that are hard to report on ver-
bally. Yet previous work on mobile typing has relied primarily
on log data for touch events, which is not ideal for in-depth
studies of visuomotor strategies. Hence, several questions are
open. Firstly, is visual attention tightly coupled with finger
movement? With physical keyboards, faster typists generally
keep their attention on the monitor more than the keyboard
[16, 29]. One study of mobile devices with physical keyboards
suggests that there are attention shifts between text display
and the keyboard [24]; however, this phenomenon has not
been described in detail for touchscreen typing. Secondly,
what exactly initiates error correction? Do users detect errors
directly after the erroneous keypress or much later? Thirdly,
do strategies differ among common typing styles, such as one-
finger and two-thumb typing? Two-thumb typing is known to
be faster, with the gain attributed to rapid alternation between
the lateral sides of the keyboard [45]. For answers, data on eye
and finger movement are needed. High-quality datasets are
also critical for efforts in predictive modelling and intelligent
text entry methods.
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Figure 1. Illustration of our data as heatmaps of finger touchpoints (blue for right index finger or thumb, and red for left thumb) and eye movements
(green). All present typing of the same sentence by a different participant: one (index) finger with no typing errors, two thumbs with no errors, one
finger with errors, and two thumbs with errors. Glances at the text-entry area increase with the number of errors made, and error correction is visible
as touches of Backspace. In two-thumb typing, visual guidance of the fingers is less in demand, so the gaze covers smaller areas of the keyboard.

Here, we report on findings from an exploratory study of tran-
scription typing on a touchscreen device (N = 30), working
with high-fidelity synchronized data from motion tracking,
eye tracking, and on-device keypress logging. Our method-
ology for the study closely follows prior work on physical
keyboard typing (“How We Type” [16]). To the best of our
knowledge, the dataset presented here is the first of this type
for mobile touchscreen devices. We report on eye movement,
finger movement, eye–hand coordination, and predictors of
typing performance with use of both one and two fingers for
touchscreen devices. Figure 1 illustrates different glancing
behaviors along with finger touch in our dataset, for a given
sentence typed with one and two fingers and with and with-
out errors. We devote the rest of the paper to reviewing to-
day’s understanding of movement strategies in mobile typing,
then reporting on our method and results. While we report
many detailed analyses, our overarching finding is that gaze-
deployment strategies are complex and much more important
factors in typing performance than previously thought. We
explain this and other findings in terms of how movement
strategies adapt to the limited availability of visual attention.
We also discuss the implications of the text entry system stud-
ied, which did not offer intelligent text entry techniques. The
dataset is made publicly available.

RELATED WORK 
Typing is a complex visuomotor process that engages multiple
cognitive, perceptual, and motor abilities [16, 39, 55]. This
behavior has been a topic of research for almost a century [13]
and typing on touchscreen devices for three decades [15, 19,
42]. Here, we discuss studies of physical and touchscreen typ-
ing, along with the contrasts they manifest. Papers on typing
with a physical keyboard report average typing performance
of around 50 words per minute (WPM) [14, 16]. Generally,
typing speeds are lower for mobile devices, with reported
averages between 36 and 41 WPM [3, 47].

Typing with a Physical Keyboard 
Typing is a process carried out in phases, such as an input
phase (grouping the to-be-typed text into chunks), parsing
phase (decomposing the chunks into discrete characters), trans-
lation phase (converting characters into movement specifica-
tions), and execution phase (conducting the movements) [54,
55]. These phases are often interleaved, with the parallelism
depending on a control hierarchy that is responsible for trans-
lating words into letters and motor plans [39]. Motor control
strategies and ability affect typing performance. Expert typists
can type quickly on account of automatic translation of letters
into motor plans, which can be executed quickly [38]. This
is associated with consistent finger-to-key mappings, which,
along with preparation of the fingers, predict performance
[16]. In addition, “rollover”, wherein the next keypress is
initiated while the previous key is still depressed, is prevalent
among skilled typists especially; this improves typing perfor-
mance [14]. Finally, alternating hands in typing of bigrams is
generally superior to typing them with a single hand [16, 55].

Typing also requires visual attention. Pointing movements
often consist of a rapid ballistic and a slower corrective move-
ment. Generally, the eyes and the pointing hand demonstrate a
“pointing synergy”, both moving towards the target at the same
time, with the eye arriving earlier due to large saccade speeds
[26]. However, the tactile feedback provided by a physical
keyboard permits attending to the text-entry area for the ma-
jority of the time, resulting in fast detection and correction of
typing errors [16, 29]. Typists who have studied touch typing
and therefore have stable finger-to-key mappings do not have
to glance down at the keyboard to search for keys [16, 48].

Typing on Mobile Touchscreen Keyboards 
Touchscreen keyboards are generally much smaller than phys-
ical ones. Hence, most mobile typists use one or two fingers
(generally thumbs) rather than the 3–9 fingers often used with
physical keyboards [16, 47]. In a pattern similar to physical
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keyboards’, the use of two fingers (generally thumbs) yields
faster typing, via finger alternation and preparatory move-
ments of the free finger [12, 41, 45]. To overcome the slower
overall typing on touschreen keyboards, several intelligent
text-entry methods have been suggested [34, 47]. These in-
clude auto-correction of mistyped words, prediction of the
next word, dynamic resizing of keys, touchpoint correction,
and accounting for hand posture. In a recent logging study
of mobile typing, more than 80% of participants used some
sort of intelligent text-entry aid [47]. In the interest of starting
from a simpler visuo-motor-cognitive problem, we here focus
on the non-aided case.

In addition to being smaller than physical keyboards, mobile
touchscreen keyboards lack the tactile feedback of physical
keys [23]. The fingers, lacking a physical reference point,
need to be constantly monitored and guided by visual attention.
Therefore, attention-sharing strategies differ between physical-
and touschreen-keyboard typing. Glances at the text-entry
area permit proofreading of the text entered but hinder visual
guidance of the fingers, reducing typing speed [47]. However,
undetected errors are costly; when detected later, mistakes
require more steps and time to correct. Users are known to
slow their typing in response to errors [5], and the strategic
finger speed–accuracy tradeoff and proofreading frequency
have a large impact on text-entry performance [30, 47, 56].

Some studies have investigated the role of eye movements
in non-typing touchscreen interactions. On internet-based
tasks on tablets, gaze has been observed to precede touch
with similar spatial and temporal features as observed with the
mouse, but with individual differences [60, 61]. Interaction
between gaze and touch has also been utilized to adapt UIs
with the help of a predictive model [49]. On tablets with split
keyboards, it is often enough to attend only the text entry area
and use peripheral vision to guide fingers [40].

Theories and Models 
Typing models make predictions such as transcription time,
inter-key-interval, and number of errors. Work thus far has
focused mainly on modeling typing on physical keyboards,
with fewer attempts relevant for mobile typing. Arguably the
most popular statistical models are based on Fitts’ law, which
models aimed movement performance [17]. After calibration
of its empirical parameters to touchscreen pointing, it can
predict performance over a range of layout conditions [7].
However, this family of models can only approximate the
skilled typing behavior achievable after extensive practice
[62]. Absent from these models are the adaptive strategies
that govern the distribution of visual attention and describe
the visual guidance of finger and proofreading activity or the
frequency of proofreading [5, 30, 31, 50, 56, 57].

Keystroke-Level Models (KLMs) break task execution into
operations, such as recall, pointing, homing, and attention
shifts [24]. However, being sequential models, KLMs do not
cover parallel movement, learning, or the role of attention. Nor
do they predict how the interface or the user’s abilities affect
the choice of typing strategies. Finally, simulation models are
step-by-step programs emulating the cognitive and physical
steps involved. One recent model covers 12 operations or

production rules: creating a mental representation of the task,
visually attending the target, pointing at the target, confirming
that the task is done, etc. [9]. The operations are simulated
with a cognitive architecture, which computes their execution
times and links together the separate cognitive modules, such
as memory and attention. Predictions can be generated for a
wide range of task conditions. The model predicts how typing
performance is influenced by, for instance, changes in the
number of keys or in features such as their size.

The choice of movement strategy is very difficult to model with
production rule-based cognitive architectures due to the sheer
number of possible strategies. Recent research has turned to
computational rationality [18, 36] to simulate strategic adapta-
tion of gaze to the task environment [31, 56]. There, typing
performance is modeled as an adaptation of eye and finger
movement to the constraints of the human visuomotor sys-
tem and the interface. At the moment, however, this class
of models does not fully cover typing phenomena, including
parallel finger and eye movement, one hindrance having been
the absence of a rich dataset.

METHOD 
We designed an experiment to obtain a rich dataset of move-
ment strategies in a transcription task. Participants typed rep-
resentative everyday messages and were instructed to correct
typing errors. This is consistent with other research, where
the instruction is often to type “quickly and accurately” [14,
47] or to correct errors upon noticing them [16]. We collected
data for typing with the index finger and with two thumbs, the
most common typing styles [47]. We used a Qwerty keyboard
without intelligent typing aids to establish a dataset of baseline
typing phenomenon. All data were synchronized in time, and
all positions were registered in a single coordinate system.

Participants 
We recruited 33 subjects. Because of gaze-data loss (device
error), the number of participants decreased to N = 30 (18
female; age range 18–45, M = 25.5, SD = 5.9). Three par-
ticipants were left-handed (1 female). All participants were
native Finnish-speakers and had normal or corrected vision
(correction strength between -4 and +4). All reported using
Finnish in their typing, with most using computers (desktop
or laptop) several times a day (two reported using only a few
times a month). Also, most used touchscreen devices (mobile
phones or tablets) several times a day (one reported once-a-
day use). The participants reported spending, on average, 16.7
hours (SD = 16.4) a week typing on a physical keyboard and
11.6 hours (SD = 8.0) on a mobile software keyboard. In our
study, we observed typing performance of between 14.9 and
58.4 WPM for two-thumb typing and 19.1–33.3 WPM for
one-finger typing. Each participant was compensated with two
movie tickets (total worth about e20) for their time.

Experiment Design 
Each subject typed 40 sentences randomly selected from a set
of 75. There were 20 sentences (trials) each for one- and two-
finger typing, with each participant typing in both conditions
(order was counter-balanced). No participant was given the
same sentence twice.

Paper 582 Page 3



 CHI 2020 Paper

Figure 2. Left: A view for calibrating the eye tracker. Right: User inter-
face of the typing task. The green boxes are for eye-tracking purposes.

Figure 3. Posture for holding the device and sitting during the experi-
ment. Shown are grips for one- and two-finger typing. The block above
the device is for tracking the phone position.

Materials 
Smartphones with a 4.7–5.5-inch touchscreen form the main-
stream of the current market [28]. From among those devices
we chose the Samsung Galaxy S6 smartphone (1440× 2560,
577 ppi) with a screen size of 5.1 inches. We developed a
custom typing application for collecting key-pressing data and
permitting the synchronization of data sources. The typing
application is shown in Figure 2. Its two main views were
the calibration view and the typing view, the former used for
synchronizing data sources at the start of the task block and
the latter for the transcription tasks themselves. The keyboard
in the application had a standard Finnish Qwerty layout (key
height: 10.06 mm). The participants transcribed relatively
simple, memorable everyday sentences, selected from the En-
ron Mobile Email Database [16, 59]. Seventy-five sentences
were translated into Finnish by a native speaker and checked
by one of the authors. All sentences were stripped of special
characters and punctuation, and everything was in lowercase.
Mean sentence length was 20 characters (SD = 4).

Procedure 
Firstly, participants were told that the purpose of the study was
to analyze the movement of the eyes and fingers in smartphone
typing, and they filled in a background questionnaire. During
the experiment, they sat in a chair at an adjustable-height table
with the smartphone freely in their hands, which were resting

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

on the table (see Figure 3). They were then given five min-
utes to practice and become familiar with the typing interface.
After three-point calibration for eye-tracking glasses, partici-
pants were asked to press four buttons on the screen, marked
with the numbers 1 to 4, in ascending order, for synchroniza-
tion between the motion tracker and smartphone. Each task
trial consisted of one sentence, which was given to the par-
ticipant aurally via a speech synthesizer to avoid unnecessary
eye movement during the experiment. The participants were
asked to repeat the sentence aloud to confirm that it was heard
correctly and to strengthen the memory of the sentence, after
which they could start typing. They were asked to type as
quickly as possible and not leave errors in the final sentence
submitted. As the task block dictated, the participant used
either two thumbs (two-finger condition) or the index finger
of the dominant hand (one-finger condition). For two-finger
typing, participants were asked to hold the device in both
hands and perform typing with two thumbs. For one-finger
typing, they were asked to type with only the index finger
of their dominant hand and hold the smartphone in the other
hand. During the experiment, we suggested that the partic-
ipants rest their arms on the table and try to keep the same
posture throughout the experiment block [10]. However, there
were no physical constraints to movement, and the subjects
reported no discomfort. Error correction could be performed
via a backspace button, with no other means provided, such as
moving the cursor by touching the typed text. The trial time
for one sentence was calculated as the time from the first key-
press to pressing Enter, keypress being defined as the moment
of a keydown log event.

Data Collection and Preprocessing 
We collected three types of data: eye movement, finger motion,
and keypresses. For eye movements, we used SMI model 2W
A eye-tracking glasses (60 Hz at 30 FPS). The glasses had
infrared cameras tracking eye movements and a forward field
camera to record the screen of the mobile device held in the
hands. Participants with corrected vision had corresponding
corrective lenses attached. The three-point calibration was
done via the calibration screen (on the left in Figure 2), with
the participant asked to focus on the blue rectangles one at a
time. In the experiment proper, the green rectangles (in the
right pane of Figure 2) were used to transform the eye-tracking
coordinates into device screen coordinates.

To track finger movement, we used an OptiTrack Prime 13
motion-capture system that provides 3D precision of up to
0.2 mm at close proximity. In one-finger typing, a reflective
marker was attached to the top-middle part of the nail of the
index finger of the dominant hand; in two two-thumb typing,
one was attached to each thumb. The system was calibrated at
the start of the block, with the same calibration screen as for
the eye-tracking device (see Figure 2); the participants were
asked to type the numbered blocks in order. For turning the
finger position into device coordinates, four reflective markers
were placed above the smartphone, in a holder (see Figure 3).

We checked all data manually and excluded three participants
because of loss of fixation data (resulting in N = 30). From
the remaining participants’ data, 244 trials out of the 1,199
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were excluded from eye-movement-related analyses due to
data corruption (i.e., fixation data were present for less than
90% of the trial). The loss was not correlated with sentence
length (M = 20.44 words before data removal, M = 20.46
after). Loss of some motion-tracking data led to 45 further
trials being excluded from finger-movement-related analyses
(same criterion; also no change in sentence length). Finger
tracking data were validated by confirming that the lowest
local points of the finger(s) coincided with the pressing of
keys in the device log. We extracted the coordinates from the
raw data on finger and eye movements and converted them into
a common coordinate system for the smartphone screen. In the
data, the upper-left corner of the screen is the origin (0,0,0),
with x axis values increasing toward the right of the device
and y values from top to bottom. The distance from the screen
facing upward is the positive z value. The unit in a datum
refers to one pixel of the smartphone screen. The motion-
tracking system labeled and tracked each marker during the
experiment. In the two-thumb typing condition, in cases where
the tracker confused the fingers with each other due to their
close proximity, we checked and corrected the data manually.

Metrics 
We followed the guidance for typing performance metrics [64].
For eye and finger movement data, we compare the metrics to
previous eye-and-finger-tracking study of physical keyboard
typing [16]. The metrics used can be summarized thus:

• Inter-key interval (IKI) [16]: time between two subsequent
keypresses.

• Words per minute (WPM) [16]: the number of standard
words (every five characters in the final input text) divided
by the time spent on typing.

• Backspace [47]: the number of Backspace presses during
typing of a sentence.

• Uncorrected error rate [64]: non-corrected incorrect
keystrokes as a percentage of the sum of incorrect (whether
fixed later or not) and correct keystrokes.

• Corrected error rate [64]: incorrect but rectified keystrokes
as a percentage of the above sum.

• Immediate error correction [2]: the frequency of error cor-
rection in which the user immediately identified and cor-
rected an error with a subsequent Backspace press.

• Delayed error correction [2]: the frequency of error cor-
rection wherein the user tried to correct previously missed
errors in the middle of the input stream.

• Chunk length: the average length of a chunk during typing
of each sentence. In typing, “chunking” refers to splitting
the sentence into smaller pieces to manage working memory
load [1]. We identified the border of a chunk with when a
clear increase in IKI is observed [11, 65]. The difference be-
tween neighboring IKIs is denoted as IKI difference (IKID).
If the difference between neighboring IKIs is greater than
the average IKID for the sentence, the key-pressing moment
is considered to be a chunk border.

• Gaze shift: the average number of glances away from the
keyboard area into the text area during typing of a sen-
tence. The areas are defined as either the text area or the

keyboard, both extended by 1.40 cm to all directions to
account for foveal vision and possible slight drift in the eye
tracking data. Gaze shift has previously been measured as
the number of gaze shifts from the monitor to the keyboard,
reflecting most of the attention being put on the monitor
[16]. We measured it in the opposite way, assuming that
most of the attention would be on the touchscreen keyboard.

• Time ratio for gaze on keyboard: the percentage of the time
spent glancing at the keyboard. This is obtained by dividing
the duration of gazing at the keyboard area by total trial
time [16].

• Entropy [16]: how consistently a key is pressed by the same
finger in the two-finger typing condition. For each key k,
given a frequency distribution over the two fingers, we com-
pute the entropy as Hk = −∑ f∈Fingers p f log2(p f ), where
p f is the probability of finger f pressing key k. The average
entropy of a finger-to-key mapping is then computed as a
sum over the entropy of each key weighted by the frequency
of the corresponding letter. If a given key is always pressed
by the same finger and this is true for all keys, the entropy
is 0. To represent the finger–key mapping graphically, we
show the distribution of touchpoints, using different col-
ors for different fingers. Heatmaps were created on the
background of a keyboard screenshot with layers of density
plotted via the SEABORN.KDEPLOT tool.

• Keys per finger [16]: the number of keys controlled by each
thumb in the two-finger typing condition.

• Finger path: the distance that a finger has traveled during
typing of a sentence.

• Distance to the next key [16]: at the moment of the current
key-pressing, the average distance between the next target
key and the finger for pressing that key.

• Finger alternation [16]: the percentage of bigrams entered
with finger alternation.

• Same finger bigram [16]: the percentage of bigrams entered
with the same finger.

• Letter repetition [16]: the percentage of pressed keys that
are the same as the previous key.

Statistical tests were carried out using the Wilcoxon signed-
rank test with α = 0.05. Correlations between factors were
calculated via Linear mixed-effects models with the LME4
package for R. Below, we report standardized β s as the corre-
lation metric, noting any control variables that were used. In
addition, all models had the task condition (number of fingers
used) as a fixed effect, and subject and sentence-level as ran-
dom effects [32]. The p-values for β estimates were calculated
via Satterthwaite approximation to degrees of freedom.

RESULTS 
We collected, in total, 31,988 keypresses from the 30 partici-
pants (16,593 in the two-finger and 15,395 in the one-finger
condition). Table 1 summarizes our main findings, aggregated
first at subject level and then on grand condition level.

Typing Performance 
As expected, we found statistically significant differences in
typing performance between two-finger and one-finger typing
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Measure
Two-finger
M SD

One-finger
M SD

Wilcoxon test
W (29) d

IKI (ms)
WPM

266.81
39.33

63.56
10.3

380.94
27.19

50.95
3.61

82***
779***

-1.98
1.57

Performance

Backspace
Uncorrected error rate (%)
Corrected error rate (%)
Immediate error correction
Delayed error correction
Chunk length

3.58
0.6
12.23
0.41
0.93
4.43

2.8
0.87
7.29
0.38
0.83
0.53

2.61
0.56
9.38
0.40
0.63
3.98

1.81
0.71
5.75
0.26
0.47
0.41

575.5
468.5
586*
413
569.5
689***

(0.41)
(0.05)
0.43
(0.03)
(0.44)
0.94

Number of fixations 18.79 8.05 24.04 4.56 192*** -0.81

Eye gaze
Fixation duration
Saccade length (cm)
Gaze shift

315.27
3.37
3.4

67.65
0.75
2.31

303.99
3.58
3.91

45.72
0.68
1.5

454
339
269*

(0.2)
(-0.29)
-0.26

Time ratio for gaze on keyboard 0.6 0.16 0.7 0.14 263** -0.69

Finger
movement

Entropy
Keys per finger left
Keys per finger right
Finger path left (cm)
Finger path right (cm)
Dist. to next key1 (cm)
Finger alternation (%)
- IKI (ms)
Same finger bigram (%)
- IKI (ms)
Letter repetition (%)
- IKI (ms)

0.07
4
9.24
23.06
26.16
1.2
39.91
243.10
60.09
289.43
11.59
177.78

0.04
0.68
0.74
2.82
2.11
0.15
4.59
73.63
4.59
62.66
3.1
23.81

0

12.5

25.29

2.3
0
-
100
364.81
10.17
182.15

0

0.55

1.33

0.1
0
-
0
48.14
2.37
25.25

-
0***
0***
179***
702***
0***
-
-
0***
151***
591*
417

-
-13.75
-5
-1.02
0.49
-8.78
-
-
-12.30
-1.35
0.51
(-0.18)
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Table 1. Overview of the results for the one- and two-finger typing conditions. Differences between the conditions are tested using the Wilcoxon Signed-
rank test (d f = 29), with effect size d computed as Cohen’s d value. 1Not including consecutive clicks on the same key. *) p < 0.05 **) p < 0.01, ***)
p < 0.001.

(all test results are in Table 1). Users made more errors when
typing with two fingers than with one (corrected error rate
M = 12.23% vs M = 9.38%), although they corrected most of
these before submitting the final sentence (the uncorrected er-
ror rates were M = 0.6% and M = 0.56% respectively). When
using two fingers, participants were faster at typing (visible
in lower IKI and higher WPM values), used longer chunks
(M = 4.43 vs. M = 3.98), and made fewer gaze shifts be-
tween the keyboard and the text-entry area. The chunk sizes
identified here are in line with the morphology of the Finnish
language [44]. The comparisons between one- and two-finger
typing are consistent with the previously observed error rates
of 10.80% and 8.17%, and with typing speeds of 50.03 WPM
and 36.34 WPM for two- and one-finger typing, respectively
(the study cited did not include error correction) [3]. Partici-
pants exhibited more delayed error corrections than immediate
error corrections, both in one- and in two-finger typing, mean-
ing that most errors were detected only after typing of further
characters.

We also correlated typing performance with background fac-
tors. Younger users were more likely to type more quickly and
made less gaze shifts [47]. WPM values were negatively corre-
lated with age (β = −0.27,b = −0.64, p < .001) while gaze
shift had a positive correlation with age (β = 0.33, p < .01).
We did not observe a correlation between error rate and age.

Finger Movement 

Global finger movement
Global finger movement is the length of the total travel path
of a finger or fingers in a sentence. We found significant
differences in path length between both left- and right-hand
data from two-finger typing and data for the dominant hand in
one-finger typing. The average finger path in one-finger use
(M = 25.29cm) is shorter than the sum of the finger paths in
two-finger use (M = 49.22cm). Two fingers together travel
more during typing than one finger, because each is free to
move while the other finger is typing. As we show below, this
is likely to be related to preparation of the free finger.

Finger-to-key mapping
Work based on logging data has assumed that the left and
right thumb split the keyboard area [45]. We revisited that
assumption in light of the motion-tracking data. We found
that, overall, the right thumb (M = 9.24) is in charge of more
keys than the left (M = 4.00). The right hand covers a larger
area during typing than the left does, as Figure 4 shows. We
observed no significant effect of finger-to-key mapping entropy
on typing speed or error rate, meaning that this choice of
strategy did not influence the participants’ performance much.
The reason could be that, since visual attention is needed for
guiding the fingers, the finger that presses the next key can be
selected opportunistically.
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Figure 4. Heatmap showing finger-to-key mapping in two-thumb touch data of three participants (all sentences aggregated). Left thumb is red, right is
blue. These patterns are representative of a tendency we found in the data for the right thumb to cover more keys than the left. The right hand was the
dominant hand for most of the participants, but the same pattern was observed also for the left-handed participants.

Finger preparation
Finger preparation is an index of how much a finger moves in
advance even before its “turn”. It is measured as the distance
of a finger from the key that it will press at the moment when
the previous key is being pressed. We observed shorter prepa-
ration distance for two-thumb typing (M = 1.20cm) than for
one-finger typing (M = 2.30cm). Analyzing this further, we
found a negative correlation between distance to the next key
and WPM, β = −0.41, p < .001, even when controlling for
the true distance between subsequent keys (in the two-finger
condition, this refers to subsequent keys pressed by the same
finger). As is visible in Figure 5, the effect is similar between
the one- and two-finger conditions, although, understandably,
the latter condition allows more flexibility for preparing the
finger that is not currently typing. In one-finger typing, the
keypresses are executed with the finger in a sequential manner,
so the distance between the finger and the next key is approxi-
mately equal to the inter-key distance. However, in the case of
two-finger typing, users are free to decide and can control their
fingers for parallel input with the two fingers. As one finger
is clicking on a key, the other finger is already activated for
aiming for the next key. The parallel control visibly increased
the typing speed in the two-finger condition.

Finger alternation
Confirming previous findings based on log data [45, 47], we
found a benefit for finger alternation. We observed a lower IKI
in alternating (IKI = 243.10 ms) as opposed to using a single
finger (IKI = 289.43 ms). This benefit notwithstanding, it was
more common to continue using the same finger: 60.09% of
bigrams were typed with one finger instead of two. Complet-
ing a bigram with one finger was faster in two-thumb typing
than in one-finger typing (IKI = 364.81 ms). This can be at-
tributed to the longer average travel distance when one finger
is used in typing. Figure 6 shows the IKI distribution between
types of bigrams for the same finger and alternating fingers in
two-thumb typing, the same finger in one-finger typing, and a
repeated letter in both two- and one-finger typing.

Eye–hand Coordination 
Eye–hand distance
We examined the distance between the fixation point and the
finger in one-finger typing (this cannot be unambiguously
computed for the two-thumb case), so as to understand whether
a closer eye–hand coupling can lead to better performance. We

found a significant positive correlation between the average
eye–hand distance and the average corrected error rate per
sentence (β = 0.32, p < .01), controlling for the number of
backspaces per sentence. This illustrates that typing errors
are correlated with more visual attention on text area, which
results in looser eye–hand coupling. For typing speed, as
expected, we found a negative correlation between average
eye–hand distance and average WPM per sentence (see Figure
7). However, this result may be explained by slower typists
having to look at the text display more, which manifests itself
here in long eye–hand distances. Therefore, we looked at
eye–hand following specifically when both are operating in
the keyboard area.

Eye–hand following
When pressing a key or in searching for one, the finger may
follow the eye. To look at eye–hand following behavior, we
extracted finger and eye movement paths in one-finger typing
where the eyes stay in the keyboard area. We examined the
dissimilarity between the finger movement and eye movement
path by means of the Partial Curve Mapping (PCM) method,
which uses a combination of arc length and area to determine
the similarity between curves [63, 27]. We found a positive
correlation between WPM and dissimilarity, β = 0.16, p < 
.001. If a user types more quickly, there is less similarity. One
explanation might be that fast typists have less need to guide
their fingers with the eyes and so retain global supervisory
control over the keyboard while trusting in the accuracy of
their fingers. Also, we found a negative correlation between
time ratio for looking at the keyboard and dissimilarity (β = 
−0.2, p < .001), indicating, as expected, that the more the
gaze is on the keyboard, the greater the similarity between the
finger path and eye movement path.

More detailed investigation of eye and hand movement might
help to explain this finding. Figure 8 shows the distance of
the eye and the finger from the next key that is typed, taken
from two partial example sentences from two participants
(one-finger typing). Glances at the text-entry area are visible
as large distances between the eye and the target key. In
both sentences the finger and the eye move simultaneously
toward the target key. The finger moves rapidly at first, and it
slows down near the target for the final “peck”. However, one
can see a subtle difference between these participants: in the
lower pane, the eye quickly finds the target key, after which
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it starts moving away from it even before the finger can peck
it. Similarly, when backspacing, the upper-pane participant
uses the eyes to locate Backspace whereas the lower-pane
one looks at the text-entry area after having already visually
located Backspace. It is possible that participants who trust
their pointing accuracy more can free their vision for other
tasks than guiding the finger, producing both faster typing and
greater dissimilarity between the eye and finger paths.

Proofreading and Error Correction 
Gaze-shifting
We defined a gaze shift as a glance from the keyboard at the
text area, and we take a gaze shift to indicate either (pre-
emptive) proofreading or error-correction activity: a glance
is initiated to check the typed text for errors, attend it for
possible new errors, or to control backspacing when an error
has been found. Again, in our study, the only way for partic-
ipants to correct errors was by using the Backspace button.
The left pane in Figure 9 illustrates the average number of
gaze shifts with one- and two-finger typing, and for both sen-
tences that contained error correction and those that did not.
In sentences with typing errors (and the subsequent error cor-
rection), our participants shifted gaze between the text-entry
area and the keyboard more than in error-free sentences. The
pattern is identical between the typing conditions, although
the one-finger condition displayed slightly more gaze shifts.

More total time was used for looking at the keyboard in one-
finger than in two-finger typing, and more was used for sen-
tences without backspacing (right pane in Figure 9). This
means that glancing behavior is more erratic under one-finger
typing, with gaze shifts as well as less relative time spent
glancing at the text area. Analyzing the correlation between
the time ratio for keyboard glances and the corrected error rate,
when controlling for uncorrected error rate, we observed a neg-
ative β = −0.35, p < .001. Similarly, the number of glances
at the text-entry area correlates with the number of corrected
errors, β = 0.58, p < .001. Nevertheless, there were still, on
average, 2.4 glances into the text-entry area for sentences that
contained no error correction.

To investigate the impact of proofreading activity on typing
performance further, we analyzed the correlation between
WPM and gaze shifts, observing β = −0.51, p < .001. This

Figure 5. The impact of finger preparation on WPM by the task condi-
tion. The x axis shows distance of finger from its next key, divided by the
distance of the current and the next key (pressed by the same finger).
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Figure 6. The impact of finger alternation for inter-key-intervals be-
tween different bigram types.

Figure 7. Eye–hand distance and average IKI per sentence.

negative correlation remained even after controlling for the
amount of error correction the participants did (although the
corrected estimate was smaller, β = −0.17, p < .001). Even
for the subset of the data with only sentences containing no
backspacing or uncorrected errors, we observed a negative
correlation β = −0.16, p < .001. These findings mean that,
irrespective of the number of errors made and corrected, typ-
ing performance is negatively correlated with gaze shifting
between the keyboard and the text entry area. Reflecting on
the same phenomenon, the percentage of sentence-typing time
for which the eyes were on the keyboard had a small but statis-
tically significant correlation with WPM, β = 0.11, p < .001.
Typists who focus more on the keyboard can reach higher text-
entry rates. This focus may reflect a typist’s level of confidence
in not having made typing errors.

Correction of errors
We looked at two types of error correction: immediate error
correction refers to when the user immediately identifies an
error and corrects it with a subsequent Backspace press; de-
layed error correction occurs when the user attempts to correct
an error in the middle of the input stream that was missed or
overlooked, via multiple Backspace presses. To investigate
the latter error type further, we split consecutive Backspace
presses into the first press, intermediate backspacing, and the
final press of Backspace.

As shown in Figure 10, it took more time for the participants
to press Backspace a single time or make the first of multiple
backspaces, relative to an average keypress. For intermediate
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Figure 8. Key-by-key distance of the eyes and the finger in two par-
tial sentences (truncated to about 6 seconds of typing; ‘<’ refers to
Backspace). Note the different sentence in these examples.

Figure 9. Left: Number of gaze shifts to text area. Right: Ratio of gaze
spent looking at the keyboard. Error bars are standard errors.

Figure 10. Typing interval for various types of key pressing

presses during a run of backspaces and for the final Backspace
press, the average time consumed was much lower than that
for an average keypress. The average time used for a single
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backspace was lower in typing with two fingers than in typing
with one finger.

We calculated the frequency of various types of error-
correction behavior across conditions. For two-thumb typing,
more delayed error corrections (M = 0.93) were observed than
immediate ones (M = 0.41). Finally, we investigated the con-
nection between typing errors on typing speed. Since errors
and the backspacing that erases them (along with any correctly
typed text between the error and the correction) do not con-
tribute to typing the sentence, we expected a higher error count
to contribute to smaller WPMs. Controlling for uncorrected er-
ror rate, we indeed found a clear negative correlation between
backspace count and WPM, β = −0.61, p < .001. Further,
controlling also for glances at the text entry area, the effect
remained at β = −0.49, p < .001.

DISCUSSION 
A rich dataset was collected to deepen our understanding of
how the fingers and eyes move in typing with mobile devices.
The main finding over prior work is that movement strategies
in mobile typing are strongly affected by competition for visual
attention. Whereas with physical keyboards a skilled typist
can keep his or her attention on the text display, where it
is needed for detecting errors [29, 52], in mobile typing the
need to guide finger motion competes for attention. Since
one cannot monitor the keyboard and the text display at the
same time, even though the mobile device is small, a strategy
must be selected that determines which to give attention and
when. A good strategy must strike a compromise between
the cost of not correcting errors early and the time lost in
glancing at the text display, when the fingers cannot be guided.
Further, if the typist is not skilled with the keyboard, they
need to conduct costly visual search, which we did not need
to consider in our analysis [31]. Conversely, it is possible that
a very skilled typist has learned to control finger movement to
an extent that most of the time the gaze can be kept on the text
area. However, a more detailed analysis of very fast typists
would be required to investigate this. Supervisory control in
mobile typing is, hence, not just about the speed–accuracy
tradeoff of finger movement; at its core is the deployment
of gaze between the main regions of the application. While
cost–benefit analyses have shown this in the case of intelligent
text-entry methods [50], the general point has not been made
before with a support from data.

Understanding the competition for attention that goes on in
typing helps us understand what makes typing fast vs. slow.
It also makes important implications for smart typing aids,
which in light of our results should not compete for attention
and require learning of more complicated attention shift poli-
cies, like, for instance, word prediction lists do. We found that
typing speed is positively correlated with the amount of atten-
tion on the touchscreen keyboard. The attention of a typical
typist in our study was on the keyboard about 60% of the time,
while the equivalent figure for a touch typist in a comparable
study of physical keyboard typing was only 20% [16]. Also,
the frequency of gaze shifts is much higher in mobile typing:
3.4 in our study, compared with 0.92 in the physical keyboard
study. Similarities between mobile typing (our study) and
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typing on physical keyboards [16] include unequal division of
labor between hands, the benefit of preparatory movements,
and the negative effect of errors on typing speed. We further
note that that study is similar to ours in key respects, including
the task and the sample (our mean age 26, their 31 years).

The notion of resource competition can also help refine our
understanding of the known superiority of two-thumb typing
over one-finger typing [3, 47]. It has been attributed to alter-
nation between the lateral sides of the keyboard [45], and our
results corroborate this. Switching between sides is faster than
moving a finger from one side to another. But we also found
that two-thumb-typing users benefit from preparatory move-
ments, moving a soon-to-press finger toward its next target,
similar to a pattern found in typing on physical keyboards [16].
However, significantly more errors are made when typing with
two fingers instead of one. We found that in two-thumb typing,
there are more intervening keypresses between consecutive
glances at the text display. Users notice the errors later. Hence,
the large benefits of two-finger use (shorter travel distance,
preparatory movements) outweigh the costs (more delay in
detection of errors). Making users aware of possible errors
earlier presents an interesting challenge for intelligent text
entry methods.

We also observed a curious and previously unreported phe-
nomenon in two-thumb typing: there is unequal division of
labor between the two lateral sides of the keyboard. Earlier
models of two-thumb typing, based on log data rather than on
direct observations of finger movement have assumed equal
distribution [45]. We found, in contrast, that the right hand
does most of the work. This was the dominant hand for most
of the participants, but the same pattern was true for the left-
handed participants. The finger movement paths were signifi-
cantly longer for the right (dominant-hand) finger than the left.
While the monogram frequencies of Finnish might contribute
to this, the effect has been observed also with non-Finnish typ-
ists using physical keyboards [16]. The unequal split between
the hands could have implications for the customisation and
adaptation of keyboard layouts.

Our results can inform the development of predictive models.
The strong role of gaze deployment we found is in stark con-
trast with some previous accounts that have framed mobile
typing in terms of finger movement [7, 62]. What analyses
based on Fitts’ law miss is the significant challenge posed to
visual attention in typing: how to juggle between the two areas
of the display that need attention. Fitts’ law conceals these
intriguing and critical effects in the empirical parameters (a
and b). At the same, the existing non-Fittsian models similarly
fail to account for the parallelism of gaze and finger move-
ments. The KLM model of Holleis et al. [24], its extension
by Sarcar et al. [56], and the ACT-R model of Cao et al. [9]
all assume that either the gaze or the finger is moving but not
both. Finally, it is important to develop generative models that
model how eye–hand strategies adapt – for example, to chang-
ing probability of errors, to the number of fingers used, to the
cost of error correction, and with time/experience. While these
points have been made before [31, 56, 50], we currently lack a
unified model. In light of our findings, such a model must be

able to explicate the role of attention control. We propose that
hierarchical reinforcement learning [8] is a potential candidate
control principle to explain thse gaze deployment strategies

LIMITATIONS AND FUTURE WORK 
A few caveats must be taken into account when interpreting our
findings. Firstly, our experiment was conducted in a quiet lab-
oratory, with participants comfortably seated and resting their
arms on the table. Mobile typing often takes place in dynamic
environments, and there might be substantial differences in
performance and strategies [46, 51]. The instrumentation we
used in our study cannot be easily used in the wild, but it is
possible to design laboratory interventions which emulate real-
life circumstances, such as walking or multitasking (e.g,. [6]).
Second, our participants used a normal touchscreen Qwerty
keyboard without intelligent text-entry aids, such as error cor-
rection or word prediction. As most of smartphone users seem
to be using intelligent aids [47], studying this phenomenon is
an important future work.

Third, we asked the users to correct all errors, a practice fol-
lowed in some but not all text-entry studies. On one hand, this
simplifies typing, since one need not regulate which errors
are to be left as-is and which not, but, on the other, this ren-
ders it more important for the user to check the text display,
because errors must not be left uncorrected. We believe that
our main finding will not fundamentally change with the intro-
duction of mobility, intelligent aids, or errors, but these could
result in different attention sharing strategies. We believe that
these factors complicate the problem that cognition faces in
typing, simply because there are more tasks competing for
visual attention [46]. Thus we expect even larger variability
in movement strategies and, consequently, in typing perfor-
mance. Fourth, our participants were relatively young adults
with experience of technology, which is important to keep in
mind since, for instance, older adults are generally slower at
typing on smartphones [58]. A study with wider participant
demographics is warranted for the future. The final caveat
involves the language in the experiment. While we used a stan-
dard mobile corpus [59], the sentences were translated into
Finnish, which has unique n-gram distributions and grammar.
The keyboard layout we used also had two additional umlaut
characters to the right. We do not expect the role of visual
attention as reported here to differ greatly because of language,
but the finger movement paths may vary between languages.

CONCLUSION 
In this paper, we report rich and detailed finger and eye move-
ment data from mobile typing. We illustrate and discuss the
role of visual attention in mobile typing, contrasting it to typ-
ing with physical keyboards. To facilitate further research on
this topic, we have made the software and analysis scripts,
along with all data and instructions on how to analyze it at
https://userinterfaces.aalto.fi/how-we-type-mobile/.
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