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Suspended carbon nanotubes display at cryogenic temperatures a distinct interaction between the quantized
longitudinal vibration of the macromolecule and its embedded quantum dot, visible via Franck-Condon con-
ductance sidebands in transport spectroscopy. We present data on such sidebands at known absolute number
N = 1 and N, = 2 of conduction band electrons and, consequently, well-defined electronic ground and excited
states in a clean nanotube device. The interaction evolves only at a finite axial magnetic field and displays a
distinct magnetic-field dependence of the Franck-Condon coupling parameter, different for different electronic
base states and indicating a valley dependence. Reshaping of the electronic wave function by the magnetic field is
discussed as a possible cause of our observations; its impact is demonstrated in a model calculation reproducing

the field-dependent coupling.

DOLI: 10.1103/PhysRevB.102.115408

I. INTRODUCTION

Vibrational degrees of freedom, typically approximated at
small deflection as harmonic oscillators, contribute in many
ways to the fundamental properties of matter. The Franck-
Condon principle [1,2] relates vibrational wave functions in
molecular physics to the intensity envelope of vibrational
sidebands in optical spectra. This principle, where an elec-
tronic transition is assumed to be instantaneous compared to
the slow motion of the nuclei, also becomes directly visible
in electronic low-temperature transport spectroscopy of sin-
gle (macro)molecules [3—12]. An experimental system where
such Franck-Condon sidebands have been observed consis-
tently is the longitudinal (stretching mode) vibration of a
suspended single-wall carbon nanotube quantum dot [9,13—
19]. Results range from the nanotube length dependence of the
vibration frequency [9], or thermal occupation of a vibration
mode [14], all the way to electronic pumping of nonequi-
librium occupation [15], spin-vibron coupling [17], and a
spin-dependent, electrostatically tunable electron-vibron cou-
pling [19].

Here, we present observations of Franck-Condon side-
bands at known absolute number Ny =1 and Ng =2 of
conduction band electrons in the unperturbed carbon nanotube
transport spectrum. The vibrational sidebands evolve only
at finite axial magnetic field Bj. The resulting millikelvin
transport spectrum displays different sideband behavior de-
pending on the electronic base state; the data indicates a
valley-dependent Franck-Condon electron-vibron coupling
parameter [4]. As a mechanism for the observed phenomenon,
reshaping of the electronic wave function by the magnetic
field [20] is discussed and modeled; the model manages to
capture the essential observed behavior.
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II. CONDUCTION SIDE BANDS AT FINITE FIELD

A sketch of the measured device is depicted in Fig. 1(a).
Following Ref. [21], a carbon nanotube is grown over pre-
defined rhenium contact electrodes and etched trenches.
Subsequently, the device is cooled down in a top-loading
dilution refrigerator and characterized electronically at a base
temperature of T, < 30 mK, immersed into the diluted phase
of the *He / “He mixture. The length of the suspended nan-
otube segment is L = 700 nm. The device has already been
characterized electronically in Refs. [20,22,23]; as can also
be seen in the current trace at low bias of Fig. 1(b), it displays
the behavior of a small band-gap single-wall carbon nanotube,
with transparent hole conduction and strong Coulomb block-
ade at low electron numbers. The first Coulomb oscillations
exhibit very low current and require particular care to be
resolved, see Fig. 1(c). Here, the opaque tunnel barriers are
given by p-n junctions extended along the nanotube, between
the electrostatically induced n-quantum dot and p-behavior
near the leads [24,25].

In the following, we focus on the 1 < N, < 2 transition,
i.e., the second Coulomb oscillation at the electron side of the
band gap. Figures 1(d) and 1(e) display the stability diagram
close to the corresponding degeneracy point, for (d) By =0
and for (e) a magnetic field B = 10 T applied in parallel to
the carbon nanotube axis. The overall conductance is very
low; even so, the color scale in the figure has been cut off
such as to focus on the substructure of the single electron
tunneling (SET) regions. The strong black lines, correspond-
ing to electronic excitations, shift with magnetic field; their
detailed behavior, as well as the negative differential con-
ductance at B = 0, is topic of ongoing analysis. The figures
display a clear qualitative difference: While the areas between
the electronic excitation lines are featureless in Fig. 1(d),
in Fig. 1(e) they display a multitude of fine, closely spaced
conductance resonances [see the arrows in Fig. 1(e)]. This also
becomes visible in the comparison of the trace cuts of Fig. 1(f)
(By =0 T) and Fig. 1(g) (B = 10 T).

©2020 American Physical Society
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FIG. 1. (a) Schematic device geometry. A carbon nanotube is
grown in situ across predefined rhenium contact electrodes and a
trench. (b) Overview device characterization I(Vy) at Vg = 50 1V,
showing transparent behavior in hole conduction, the band gap,
and Coulomb oscillations in electron conduction. (¢) Coulomb
oscillations I(V,) for Vo4 = 0.5mV near the band gap, with abso-
lute electron numbers N marked. (d), (e) Differential conductance
d//dVy atthe 1 < Ny < 2 transition, for a magnetic field of (d) B =
0 and (e) By = 10T parallel to the nanotube axis (identical color
scale, cut off at +7nS for better contrast). (f) Trace d//dV(Vyq) at
By =0T, V, =0.7598 V, see dashed line in (d), in logarithmic scale.
The upper panel plots regions of positive d//dVy, the lower panel
regions of negative d//dVi. (g) Trace dI/dVu (V) at By = 10T,
Ve, = 0.7645V, see dashed line in (), using the same plotting method
and scale as in (f). The equidistant arrows indicate harmonic excita-
tion lines.

Figure 2(a) demonstrates the emergence of this phe-
nomenon with increasing magnetic field. Here, we show the
differential conductance dI/dViq(By, Vsq) as function of an
applied field B parallel to the carbon nanotube axis and of the
bias voltage V4. The gate voltage is kept constant and chosen
such that we trace across the Ny = 1 edge of the 1 < Ny < 2
SET region, see the inset of Fig. 2(a) for a sketch and Fig. 7(a)
in Appendix A for a larger-scale plot of the conductance at
the degeneracy point. Here and later, we focus our evaluation
on the low magnetic field region since it provides a better
signal /noise ratio.

For B = 0, the SET region edge, visible as line of differ-
ential conductance, is located at approximately Vig = 0.8 mV.
Due to a shift in energy of the electronic states involved in
transport, it rapidly moves to higher bias voltages until B ~
1.5 T is reached. Here, the magnetic field induces a change
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FIG. 2. (a) Differential conductance as function of magnetic field
parallel to the nanotube axis B and bias voltage Vyq, dI /dViq(By, Via),
at constant V, = 0.7599 V. This cuts through the 1 < Ny < 2 sin-
gle electron tunneling region, as sketched in the inset. (b) Similar
measurement of d//dV (B, Viq), covering a larger magnetic field
range at lower resolution; V, = 0.758 V. (c) Solid line: Smoothened
trace dI/dVs (V) from (a) at By = 3T, displaying the edge of the
Coulomb blockade region, corresponding to the 1 < N, < 2 ground
state transition, and conductance side peaks; red points: unfiltered
numerical derivative; gray dashed line: fit curve, see the text. (d) II-
lustration of the Franck-Condon coupling mechanism, see the text.
(e) Schematic of the stepwise current increase at increasing bias
voltage due to Franck-Condon coupling, here for Ax = 2x,¢ and
thus g =2 as in (d). (f) Franck-Condon coupling parameter g(B)
as function of the magnetic field; see Appendix B for details of the
fit procedure. Red dots: data of (a); blue squares: data of (b).

in ground state, leading to a different energy dispersion.
Soon afterward, sidebands of the differential conductance line
emerge, see the arrows in Fig. 2(a). Figure 2(b) displays a
larger parameter range than Fig. 2(a), though measured at
reduced resolution. Still, the sidebands of the conductance line
become clearly visible as an asymmetric broadening of the
main conductance line (toward higher bias voltages).

An example trace cut from Fig. 2(a), both smoothened for
clarity (black line) and as raw numerical derivative of the
current (red points), is shown in Fig. 2(c). A manual analysis
of the relative peak positions in each such recorded trace
1(Vyq) is given in Appendix A, see, in particular, Fig. 7(f). Its
conclusion is that within the scatter the sidebands are equidis-
tant within each trace. The excitation energy is magnetic-field
independent for By < 6 T [26] and given by Ae >~ 50 ueV.
This indicates a harmonic oscillator independent of the elec-
tronic spectrum. Given its energy scale, we can identify it with
the longitudinal vibration of the carbon nanotube [9].
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III. FRANCK-CONDON MODEL

In multiple publications, the mechanism leading to vibra-
tional harmonic sidebands in transport spectroscopy has been
identified as the Franck-Condon principle [4,7,9]. As sketched
in Fig. 2(d), the equilibrium position of the vibrational har-
monic oscillator depends on the number of charges N, on the
nanotube; the rate of SET through its quantum dot is modified
by the spatial overlap of the involved harmonic oscilla-
tor states [(W,,(N) [W,(N + 1)|* = [(¥,,(x) | W, (x + Ax))[%,
with m and n as the vibrational quantum number at N and
N + 1 electrons, respectively. Ax is the displacement of the
harmonic oscillator by the additional charge, cf. Fig. 2(d).
The coupling strength is parametrized via the Franck-Condon
coupling parameter g = (Ax/x,p)*/2, comparing Ax with the
characteristic length scale of the harmonic oscillator x,,r =
Vijmo.

As sketched in Fig. 2(e), a finite value of g leads to a re-
distribution of current between vibrational state channels: At
the bias voltage corresponding to the bare electronic transition
energy, N — N 4+ 1 current is suppressed, but it increases
whenever an additional vibration state becomes energetically
available. A large number of extensions to this model has been
developed to take into account specific details of transport
spectra, see, e.g., Refs. [8,19,27-42]; however, for now we
focus our analysis on the simplest theoretical case, assuming
a single harmonic oscillator mode and fast relaxation into
the vibrational ground state. In this case, the current step
heights or conductance peak amplitudes follow the Poisson
formula [4,10], P, = (e~ 8¢")/n!, n=0,1,2,...,atanen-
ergy AEyi, = nho from the bare electronic-state transition
supplied via the bias voltage. The resulting step function of
the current, in absence of broadening effects, is sketched in
Fig. 2(e) for the example of a large g = 2.

At base temperature, with 25 mKkg >~ 2 ueV, we ex-
pect the conductance lines to be lifetime-broadened, with a
Lorentzian line shape. Thus, a sum of Lorentzians with ampli-
tudes following the Poisson sequence and center points shifted
by equidistant bias voltage offsets can be envisioned as model.
In practice, it turns out that the Lorentzian line shape does not
suit the measurement data well; this may indicate broadening
effects beyond temperature and lifetime, as, e.g., fluctuating
gate or bias voltages. Empirically, we choose the resonance
shape of thermal broadening, oxcosh™2, instead [43]. Details
of the fit procedure can be found in Appendix B.

The result of evaluating the Franck-Condon coupling pa-
rameter g for each trace dI/dV (Vi) at fixed By is plotted
in Fig. 2(f). It shows the resulting magnetic-field dependence
g(By) for the Ny =1 — N, = 2 ground-state transition.
The absence of sidebands for B; < 1.5 T corresponds to an
absence of coupling, i.e., g ~ 0. For By > 1.5 T, the coupling
increases monotonously, reaching a maximum value g(B)) =
0.3 at 2.5 < B < 3 T. Subsequently, we observe a slow
decrease and stabilization at g(B)) ~ 0.2.

IV. RELATION TO ELECTRONIC STATES

To our best knowledge, no similar observations of a
magnetic-field-dependent electron-vibron coupling have been
published so far. Its onset at an anticrossing of electronic
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FIG. 3. (a) 1 < Ng < 2 excitation spectrum: Differential con-
ductance dI/dVi(By, Vi) as function of magnetic field B and bias
voltage Viq, for constant gate voltage V, = 0.7599 V. (b), (c) Detail
enlargements (same color scale) of the areas marked with dashed
rectangles in (a). (d), (e) Trace cuts dI/dV (Vi) at the positions
indicated in (b) and (c). Conductance peaks with clear vibrational
sidebands are shaded. (f) Magnetic-field evolution of the Franck-
Condon coupling g(B)) for the excited-state transition marked with
arrowheads in (a) (black), compared with the ground-state transition
[red dots, same data as in Fig. 2(f)]. For the ground state, the error
bars [already shown in Fig. 2(f)] have been omitted for clarity. The
solid line is a linear fit after manual removal of outliers.

states, see the dashed ellipsoid in Fig. 2(b), suggests a con-
nection to the electronic quantum numbers. As opposed to
previous reports on the longitudinal vibration mode [9,13—
15,17,19], here we are characterizing a device where the nan-
otube has grown cleanly across pre-existing contacts, and no
(accidental or intentional) strongly inhomogeneuous potential
distorts the wave functions in the suspended macromolecule
away from the metallic contacts [20]. With this in mind, we
have analyzed the vibrational sideband behavior of the elec-
tronic excited states in the transport spectrum.

A plot of the differential conductance at fixed gate voltage,
as function of B) and the bias voltage Vg, now over a large bias
range, is shown in Fig. 3(a). A preliminary evaluation of the
data of Fig. 3(a), taking also into account the one-electron ex-
citation spectrum of the device [20], reveals two energetically
close shells with both intra- and intershell exchange inter-
action [44]; detailed modeling of the two electron transport
spectrum will be the topic of a separate work. Here, we limit
ourselves to a straightforward classification of conductance
lines by magnetic field dispersion; see Appendix C for the
details.

The dominant magnetic field dependence of the electron
energies in a carbon nanotube in an axial field originates
from the electronic orbital magnetic moment (o, See, €.g.,
Refs. [20,45,46], and Appendix C. Thus, both one- and
two-electron quantum states become at large field angular
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FIG. 4. Evaluation of the conductance resonances in Fig. 3(a) for
harmonic sidebands; same data plotted in two different representa-
tions: (a) Coupling g as symbol size (downward lines, black triangles;
upward lines, red circles) for the parameter set (B),V,q) where it was
evaluated, and superimposed on the resonance pattern (background);
(b) coupling g as function of magnetic field B, irrespective of bias
voltage. The solid line is the linear fit of Fig. 3(f).

momentum (and valley) eigenstates, and the slope of a con-
ductance line in Fig. 3 indicates the angular momentum
change when a second electron tunnels onto the quantum dot.
If the state of the first electron remains unchanged, only the
contribution of the second electron to the magnetic moment—
parallel or antiparallel to the magnetic field—determines the
magnetic-field dispersion. From this, we can classify the con-
ductance lines of Fig. 3(a). As expected, in the low-bias region
of the figure, two dominant slopes clearly emerge; we identify
these with the addition of a K'-valley electron (downward
slope) or a K-valley electron (upward slope), respectively
[20,45,46].

Figures 3(b) and 3(c) enlarge the regions marked in
Fig. 3(a) with dashed rectangles. Also here, the harmonic side-
bands are immediately visible. However, at a first glance, only
the downsloping spectral lines, where an electron is added in a
K’-valley state, seem to exhibit electron-vibron coupling. Also
the trace cuts at By =2.70 T [Fig. 3(d)] and By =0.85 T
[Fig. 3(e)] demonstrate this, with the resonances accompanied
by sidebands highlighted in green.

Extracting the Franck-Condon coupling parameter g(B))
for an exemplary excited-state resonance [green arrowheads in
Fig. 3(a)], using an identical fit procedure as for Fig. 2(f), we
compare its evolution over the entire field range 0 T < B <
3 T with the two-electron ground state transition in Fig. 3(f).
A finite g persists to much lower magnetic field for the excited
state transition; indeed, the plot shows a linear growth of g(B)
in this range with g(B|) =~ 0.124 1/TB (gray solid line). The
sudden onset of coupling for the ground-state transition is
thus consistent with a valley dependence and the change in
ground state quantum numbers at B >~ 1.5 T, see the struc-
ture marked with a dashed ellipsoid in Fig. 2(b).

We have performed a systematic analysis of the conduc-
tance resonances in Fig. 3(a) by dividing them into segments
at each crossing or anticrossing and evaluating each segment;
details can be found in Appendix D. The result is shown in
Fig. 4. Figure 4(a) displays symbols with their size represent-
ing the obtained g parameter, superimposed on the line pattern
of Fig. 3(a) at the parameters (B, V,) where the evaluation has
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FIG. 5. Magnetic field behavior of the 0 < N, < 1 one electron
ground-state transition. Traces of vibrational sidebands are indicated
by arrows. Note that the color scale is cut off at 80 pS.

taken place. Figure 4(b) plots the value of g as function of the
selected magnetic field, irrespective of bias voltage Vyq and
thus selected resonance line, with the fit function of Fig. 3(f)
added. In both cases, red circles represent downsloping lines,
black triangles upsloping lines. The result confirms our visual
impression. In general, the upsloping lines, where an electron
is added in a K state, display no vibrational sidebands, with
the notable exception of the segment at (3 T, 6 mV). The
downsloping lines, where an electron is added in a K’ state,
show a g growing with magnetic field, in most cases following
the same linear behavior as already observed in Fig. 3(f). One
resonance line, also enlarged in Fig. 3(b), deviates with a
large g.

It remains to clarify whether the observed effect is specific
to the 1 < Ng < 2 region. Figure 5 displays the magnetic-
field dependence of a cut across the 0 < N < 1 ground-state
transition. Also here, where an electron tunnels into a K’ state
of the otherwise unoccupied conduction band, an onset of
harmonic sidebands can be visually identified, for both spin
alignments. Given the significantly lower conductance here,
a more detailed evaluation turns out to be challenging. We
can however conclude that the electron-vibron coupling is
already inherent to single electron phenomena, and not limited
to two-electron states [19]. This indicates a selectivity directly
related to the single-particle valley quantum number.

V. DISCUSSION

The transport spectra were measured with the carbon nan-
otube immersed into the *He / “He mixture (D phase) of the
dilution refrigerator. Its viscosity at base temperature, n ~
1073 N s/m? [47], is sufficiently high to mechanically dampen
the transversal vibration mode [48]. As observed here, this
does not affect the longitudinal mode; a likely explanation
is that motion along the nanotube axis does not require any
displacement of liquid.

In literature, Weber et al. [19] have reported an electronic
state dependent Franck-Condon coupling in a N = 4n + 2
quantum dot, switchable via a local gate potential defor-
mation. They apply a magnetic field perpendicular to the
nanotube, and see no effect of that field on the vibrational
sidebands. Due to valley mixing and the field direction, their
data is in the regime of bonding and antibonding valley linear
combinations. A different electron-vibron coupling of (valley-
ground state) spin singlet and (valley-distributed) spin triplet
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states, as observed there, obviously can also indicate a valley-
dependent effect. Whether this is related to our results still
requires further analysis.

Models discussing strong electron-vibron coupling in
carbon nanotube quantum dots typically assume an inhomo-
geneuous charge distribution relative to the vibration mode
envelope, or more generally, a different localization of elec-
tron and vibron wave function, see, e.g., Refs. [9,30,32,37].
This is consistent with the occurrence of Franck-Condon
sidebands in devices with local gates close to the nanotube
[14,18,19]. In previous devices without such an electrode,
a local potential may have been introduced via fabrication
defects or impurities on the nanotube [9,13,15]. These expla-
nations do not lend themselves for the device presented here,
displaying a highly regular one electron spectrum [20] and a
regular addition spectrum over a large electron number range
[22,49]. Nevertheless, the formation of the quantum dot via
gate-induced p-n junctions, see, e.g., Refs. [24,25], leads to
an electronic confinement more narrow than the mechanically
active device length, and typically centered within the sus-
pended nanotube segment.

Comparison with existing theoretical [30,37] and exper-
imental works [19] then suggests that the axial magnetic
field modifies the Franck-Condon coupling g by shifting the
electronic wave function relative to the vibron envelope. A
valley-dependent mechanism having this effect was recently
proposed in Ref. [20], based on Refs. [S0-52]. Essentially,
the axial magnetic field introduces an Aharonov-Bohm phase
around the nanotube. Due to the bipartite graphene lattice,
the axial component x| and the circumferential component
k1 of an electron-state wave vector are coupled; one exam-
ple solution is plotted in Fig. 6(a) following Ref. [20]. The
axial magnetic field thus also modifies the longitudinal bound-
ary conditions and thereby the charge distribution along the
carbon nanotube axis: the wave-function envelope for each
graphene sublattice is tuned from a A/4 shape, with a finite
value at one edge, near By = 0 to a /2 shape, as expected for
a traditional “quantum box”, at large field; see the drawings in
Fig. 6(a).

VI. VARIABLE COUPLING MODEL

Based on the arguments brought forward in the previ-
ous section, we have constructed a toy model following
Refs. [20,37]. Details can be found in Appendix E; our steps
are summarized as follows: we simplify the electronic wave-
function amplitudes on the two graphene sublattices to be
of the shape i o sin(w¢x) over the length of the quantum
dot, where ¢ € [1, 2] is used to continuously tune the wave
function shape from one antinode to two antinodes and thus
approximate the impact of the magnetic field. The total linear
charge density p(x) is obtained by summing up the charge
densities o [|? of the sublattices, one being the spatial mir-
ror image of the other [20]. The vibron is equally simplified
as having a deflection amplitude u(x) o sin(wx).

Given the strong confinement of our electronic states and
the low characteristic energy of our harmonic excitations, the
quantum dot occupies likely a smaller part of the nanotube
than the vibron. Figure 6(b) shows both charge density and
vibron envelope for a length ration L;/L, = 1/2 and for a

(a) BH:O BH»O =2 BH:O BH»O
K
27 /L H K
P1g & = V1K
A > A
¢=1 0 ¢=15 K1 (B)) 0 k1 (B))
max 1.4 1.6 1.8 ¢ 2

FIG. 6. Variable coupling model construction. (a) Low-energy
wave function solutions for electrons on one of the carbon nanotube
sublattices, in the case of hard longitudinal confinement and cross
quantization, following Ref. [20]. Solid lines plot the allowed wave
vector (k, k), schemata the resulting envelope of the sublattice
wave function for a K" and a K state. An axial magnetic field modifies
the boundary conditions, tuning «, toward higher values. (b) Exam-
ple arrangement of a vibron and a quantum dot. Green line: Vibron
amplitude envelope, length L, = 1. Color plot, charge density of a
quantum dot of length L; = L, /2, summed over both sublattices, as
function of position and a parameter ¢ that tunes the per-sublattice
wave function shape from one antinode (¢ = 1) to two antinodes
(¢ = 2). (c) Approximation for the Franck-Condon parameter g as
function of ¢ and thereby the magnetic field By, see the text.

shift in center position x; — x, = —0.625 L,. The charge den-
sity is plotted as function of both the position and ¢, for the
range ¢ € [1.25, 2] approximately covered by a K’ state when
the axial magnetic field is tuned from zero to large values, cf.
Fig. 6(a) and Ref. [20].

Following Ref. [37], we assume the interaction energy
between linear charge density and deformation potential to be

Eo, o /p(x)jx—”dx (1)

and the Franck-Condon parameter to be g o |Eey|%. The result
for g(¢) is plotted in Fig. 6(c), see the red solid line. Recalling
that ¢ = 2 here describes the asymptotic limit of large By, the
result qualitatively agrees with the behavior of g for a K’ state
in our experiment, cf. Fig. 3(f) for the low-field and Fig. 2(f)
for the high-field behavior. For the same magnetic field range,
a K state covers the range ¢ € [1, 1.25], with the large field
limit ¢ = 1. Here, the coupling further decreases and remains
small, see the dotted blue line.

Despite the many simplifications, this model describes the
essential observations of the measurement. For a K’ state,
the Franck-Condon coupling increases from near zero with
magnetic field, reaches a maximum, and then for large field
becomes constant at smaller value. For a K state, the coupling
remains low. The sudden onset of coupling for the ground
state around B = 2 T, Fig. 2(f), is due to a transition between
these two cases. Limitations of the model become clear, how-
ever, when we look at the size ratio and placement of electron
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and vibron. In an ultraclean, suspended nanotube device, we
expect the electronic system to be approximately centered in
the suspended part. The vibron should cover at least the entire
suspended part, which speaks against a spatial arrangement
as shown in Fig. 6(b). A parameter search using our toy
model has not yielded fundamentally different situations with
suitable g(B) ) behavior so far. This shall likely require a more
realistic and in particular also quantum mechanical treatment.

VII. CONCLUSIONS

In conclusion, we demonstrate that vibrational sidebands
emerge in the 0 < N, < 2 transport spectrum of an ultr-
aclean nanotube at a finite magnetic field parallel to the
nanotube axis. The sidebands are equidistant, with an oscilla-
tor quantum field-independent for B < 6 T. Their evaluation
results in a field-dependent Franck-Condon coupling parame-
ter g(B)). Our data indicate that, predominantly, conductance
lines corresponding to the addition of a K’ valley electron
develop a finite coupling parameter g. A tentative mechanism
for this can be a field-induced and valley-selective modifica-
tion of the electronic wave-function envelope [20]. Following
Ref. [37], we have developed a simplified classical model and
are able to reproduce the essential behavior of g. A realistic
match of device and model parameters will require a more
detailed theoretical treatment.

It has long been proposed that, similar to existing exper-
iments using the transversal vibration [53], the longitudinal
vibration coupling in a carbon nanotube Franck-Condon sys-
tem can also be controlled via changing the charge distribution
along the nanotube [30,37]. With our experimental results
supporting this idea, the integration of the longitudinal vi-
bration mode into quantum technological applications and its
targeted manipulation as quantum harmonic oscillator [15]
now becomes an interesting challenge.
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APPENDIX A: HARMONICITY AND
EXCITATION ENERGY

Figures 7(a) and 7(b) display the conductance near the
1 < Ngt < 2 degeneracy point, for By=0T and By =5T
and over a large bias voltage range |Vy| < 10 mV. The mag-
netic field dependent measurements evaluated in Figs. 2 and 3

correspond to traces taken across the SET region, in the pa-
rameter range indicated in Fig. 7(a) by a yellow marker. Part
of such a trace d//dVi(Viq) for constant B and V, is shown
schematically in Fig. 7(c). From it, the peak distances AV,
AV, AVigz as indicated in the drawing can be extracted.
They correspond to excitation energies Ag;, Ae;, Ags.

In the stability diagrams, conductance lines ending at
the N = 2 Coulomb blockade region (i.e., for Vg > 0 with
negative slope) correspond to two-electron excitations; lines
ending at the N, = 1 Coulomb blockade region (i.e., for
Vi > 0 with negative slope) correspond to one-electron ex-
citations. In the evaluated parameter region, only lines with
negative slope are visible. For them, the conversion from bias
voltage distances AVy to excitation energies Ae, based on
the capacitances in the quantum dot system, can be illustrated
by the sketch of Fig. 7(b). Given the slopes AVyq/AV; of the
two edges of the SET region in the stability diagram, s; < 0
and s, > 0, as indicated in the sketch, the conversion factor
f(By, Vy) can be derived from elementary geometry as

Ae EAVSd :f(BH,Vg) eAVSd. (Al)

T 1= (s1/52)

Here we indicate with f(B), V) that the factor can change
with magnetic field and gate voltage due to modification of
the electronic wave function shapes and thus the charge dis-
tributions and capacitances. The value of f, as extracted from
stability diagrams at By =0, 5, 10 T, is plotted in Fig. 7(c),
with a linear fit added. In the plotted range, f varies by only
approximately 10%.

The result of a manual evaluation of the data of Fig. 2(b),
where peak positions have been read out from line plots,
is shown in Fig. 7(d). Here, the red squares correspond to
the peak distance of the first sideband relative to the base
conductance resonance, the black dots to the one of the second
sideband relative to the first sideband, and the blue triangles to
the one of the third sideband relative to the second sideband.
The left axis displays distance in bias voltage, the right axis
the value converted into energy, using constant f(5 T) for
simplicity. Within the scatter, the three types of points lie
in the same band of values, indicating equidistant quantum
states and thus harmonic oscillator behavior. The oscillator
quantum is for 0 T < By < 6 T approximately constant at
AVyq ~ 0.15 mV, corresponding to Ae = fiw ~ 50 ueV; this
is the region predominantly discussed in the main text.

For larger B, the data points seem to indicate a gradual
increase in Ae. Given the decreasing signal-to-noise ratio and
limited data for this field range, it is unclear whether this is a
real effect. Surprisingly, the stability diagram at By = 10 T,
Fig. 1(e), displays AV >~ 0.25 mV, which would confirm
such an increase.

The theoretical value for the energy quantum of the carbon
nanotube longitudinal vibration is given by [9]

h |Y
Aggpy = —. | —,

I\ » (A2)

where L is the nanotube length, Y is Young’s modulus, and
p is the nanotube mass density. Assuming p = 1.3 g/cm? and
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FIG. 7. (a) Large bias voltage range stability diagram d//dVq(V,, Viq) of the 1 < N < 2 transition at By = 0 T. Figure 1(d) is a detail
zoom of this plot. The parameter region of the trace cuts evaluated in Figs. 2 and 3 is shaded in yellow. (b) Large bias voltage range stability
diagram dI /dV(Vg, Vi) at By = 5 T. (c) Illustrative example trace dI /dViq(Viq) for constant B and V,. (d) Using the slopes AVyy/AV, of the
two edges of the single electron tunneling region in the stability diagram, s; < 0 and s, > 0, the bias differences AVy can be converted to
energy differences Ae (here demonstrated for a N,; = 2 state). (e) Conversion factor f(B)), defined via Ae = f(B)) - eAVy, as extracted from
the stability diagrams at By = 0 T [see (a), Fig. 1(d)], By =5 T [see (b)], and By = 10 T [see Fig. 1(e)]. (f) Manually extracted distances
between conductance peak positions, cf. (a), using the data set of Fig. 2(b). Left axis: Raw distances in bias voltage, right axis: distances

converted to energy, using f(5 T).

Y = 1 TPa, this results in [9]

0.11 meV

—— A3
L(um) (A3

Aggy &

For our device, using the contact separation of L = 0.7 um as
approximate value of the suspended nanotube segment length,
we obtain Agy, =~ 160 ueV. While there is a clear deviation,
our measurement still lies at the edge of the typical scatter
of oscillator quanta observed in experimental literature, see
Fig. 8 for an overview.

APPENDIX B: FRANCK-CONDON MODEL
AND FIT PROCEDURE

In the context of SET through a carbon nanotube, the
Franck-Condon coupling parameter g describes the spatial

shift of the nanotube equilibrium position as harmonic oscil-
lator when an additional electron is added to it. It is given by
g = (Axgy /xzpf)2 /2, where Axy is the shift in equilibrium po-
sition, Axp = xo(N + 1) — xo(N). In the denominator, x,pr =
V/h/(mw) is the characteristic length scale of the harmonic os-
cillator, describing the wave function extension of the ground
state and/or its zero point fluctuations. For iw = 50 peV and
m = 1.3 x 107" kg [55], we obtain x,pr = 1.0 pm.

At finite temperature, a harmonic oscillator can both absorb
and emit vibrons. Here, in the limit of low temperature and
fast vibrational relaxation compared to the tunnel rates, we
assume that for any SET process we start out in the N elec-
tron vibrational ground state. For each number of vibration
quanta n, there is a distinct overlap |(Wo(Nep) [W,(Ney + 1))]?
of the N electron vibrational ground state with an N + 1
electron, n vibron state. This leads to a series of equidistant
steps in current /(Vy) or peaks in differential conductance
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FIG. 8. Overview of carbon nanotube longitudinal vibration oscillator quanta Ae = fiw observed in published literature [9,13-19] as
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right: Ae(L)/Aey (L), logarithmic length scale.

dI /dVsq(Vsa), whenever sufficient energy for reaching the next
vibrational state becomes available.

The contributions of the vibrational states and thus the
current step heights are given for the limit of low temperature
and fast vibrational relaxation by the Poisson formula [4,10],

e 8g"

n!

Al, x , n=0,1,2,... (B1)
at an energy ¢ = nhw from the bare electronic state transition.
The resulting step function of the current, in the idealized
case of total absence of effects such as thermal or lifetime
broadening, is shown in Figs. 9(a)-9(c) for different values
of g.

In a measurement, the steps will be broadened due to finite
temperature, finite lifetime of the involved quantum states,
and additional mechanisms such as, e.g., potential fluctua-
tions. As an approximation, we assume that this broadening
equally affects all steps. Then, the differential conductance
G = dI/dVy exhibits a sequence of peaks, each correspond-
ing to one step in current, with conductance peak heights
proportional to the current step heights. Even though G is in
our measurement a derived quantity, it is both a better base for
visualization of the phenomena, see the figures of this paper,
and a better base for numerical curve fitting than the measured
current. To minimize the impact of postprocessing, we use
for the fits the raw numerically differentiated conductance
AI/AVyy, without any smoothing or other numerical filtering
applied.

As already mentioned in the main text, we find that our data
is fitted well using the typical shape of a thermally broadened

Coulomb oscillation,
Vg —VONT?
%Mm®=PM(ﬂ—ﬂﬂ, (B2)
14

where y describes the peak width. For our fit model, we sum
up a sequence of these peaks, weighted according to Eq. (B1),

I/Imai( g=02 =5
H
AV, correspon-
ding to Ae=ho
0
G/ Gméix g=0.2 g=1 =5
0 o
~ Vsd ~ Vsd ~ Vsd

FIG. 9. Sketch of the impact of the Franck-Condon coupling
parameter g on single electron tunneling: (a)—(c) current /(Vyg), in
an idealized system where no broadening (thermal, lifetime, or oth-
erwise) is present, for (a) g = 0.2, (b) g =1, and (¢) g = 5; (d)—(f)
conductance at finite broadening, see the text. In each panel, the case
of no electron-vibron interaction (g = 0) is overlaid as gray dashed
line.
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cutting off at n = 10 since subsequent terms are negligible
for ¢ < 1, and normalize such that the maximum conductance
Gmax at the electronic base resonance (n = 0) can be used as
convenient fitting parameter. This results in

Y0 PiGn(Vea, VS + 1 AVy)
oo PG (V3. VS +n AVy)

Given the combination of large scatter in the data, see,
e.g., Fig. 2(c), and the large number of free fit parameters
[Vs?i, Gmax» V>, & AVia = hw/(ef)] the fit displays instabilities
and large error bars. However, it turns out that the fit results
for both y and AV scatter in the evaluated regions around
field-independent values [also validating our manual evalua-
tion of Fig. 7(d)]. As a consequence, we fix both parameters
to an average value and rerun the fit with a reduced set of free
parameters (V., Gmax, &) To give an insight into the results of
this procedure, Fig. 10 shows for part of the evaluation both
the raw data and the best fit functions; these correspond to data
traces of Fig. 2(b) and the fit prarameters plotted in Fig. 2(f)
as blue squares.

G(Vsd, ‘/S(()j) = Gmax (B3)

APPENDIX C: CLASSIFICATION OF EXCITED
STATE RESONANCES

In a magnetic field at an angle ¢ to the carbon nanotube
axis, the linearized single particle Hamiltonian of an electron
in a carbon nanotube quantum dot close to the Dirac point is
given by [20,49]

Agk

A PO A, Aso, _ .
Hent =60l QI + I, T+ —6,Q1;
— — 2

“shell”

valley mixing spin-orbit interaction

g |B .
gsﬂéﬂ | (cosp 6, +sing6,) ® I,

Zeeman effect

+ gowuslBlcosp I, ® %, . (C)

orbital angular moment

Here, the Pauli matrices 6; act on the spin part of the wave
function, and the Pauli matrices £; on the orbital/valley part
of the wave function, respectively; the basis is given by spin
and valley eigenstates in axial direction.

For a field alignment parallel to the nanotube (¢ = 0),
already at moderate field (e.g., By ~ 0.5 T [20]) the con-
tribution of the orbital angular moment exceeds the valley
mixing and the eigenstates of the Hamiltonian become spin
and valley eigenstates, with spin and orbital angular moment
aligned parallel to the nanotube axis. With 0 = £1 and t =
=£1 describing spin and orbital angular moment directions, the
magnetic-field-dependent terms of Eq. (C1) then lead to the
energy contribution:

EveB) = (o

The dominant term is here the orbital contribution [20,45,46].
This can be clearly observed, e.g., in Fig. 5, where at large
field the two visible conductance resonances correspond to
two single-particle states with equal orbital angular moment
but opposite spin. As a consequence, we go one step further

8sMUB

+Tgobun)By. (C2)

and classify our states only by orbital angular momentum
direction (corresponding to K’ or K valley), i.e. by dominant
magnetic-field dispersion:

E.(B)) = TgowiuBB), T ==*l. (C3)

In the case of the second SET region where the charge
occupation is 1 < N < 2, resonance lines correspond to
energy differences AE1>(B)) = E>(B)) — E1(B))), and the dis-
persions in a magnetic field, correspondingly, to the orbital
angular momentum change when a second electron tunnels
onto the quantum dot, proportional to

d(AE\2(B))) _ d(Ex(By) — El(Bll)).
dBy dB

(o))

If the angular momentum of the first electron remains un-
changed when the second eletron tunnels onto the dot, only
two slopes corresponding to addition of a K’ or K electron re-
main possible. From this we can classify the conductance lines
of Fig. 3(a). In the low-bias region of the figure, two dominant
slopes clearly emerge; we identify these with the addition of
a K’'-valley electron (downward slope) or a K-valley electron
(upward slope), respectively [20,45,46].

APPENDIX D: EVALUATING THE SIDEBANDS OF
EXCITED STATES

The data points of Fig. 4 are obtained as follows. We sep-
arate the conductance resonance pattern into line segments,
each terminated by line crossings or anticrossings. On each
segment that conforms to one of the two dominant slopes, we
select a point (B, Viq) near the high-B) end of the segment;
these points are the locations of the symbols in Fig. 4(a).
The five traces G(Vyq) closest to this point in magnetic field
are evaluated using the fit procedure as described above. To
reduce the impact of outliers, the plotted values in Fig. 4 are
then given by the median of the fit parameters g from these
five evaluations.

APPENDIX E: VARIABLE COUPLING MODEL

One of the key results of Ref. [20], based on Refs. [50-52],
is that a magnetic field parallel to the axis of a carbon
nanotube does not only modify the circumferential elec-
tronic wave function via an Aharonov-Bohm phase, but also
the wave function in axial direction. While a typical one-
dimensional quantum box, i.e., a potential well with hard
walls of infinite height, forces the wave function of a trapped
particle to zero at both ends, this construction is not pos-
sible for carbon nanotubes. With the exception of armchair
nanotubes, there are no solutions that allow the electronic
wave function to become zero on both ends for both graphene
sublattices. Instead, the longitudinal quantization can be given
by the condition that the wave function on each sublattice
becomes zero at the end where that particular sublattice pro-
vides the majority of boundary atoms. With L as the length
of the nanotube segment, this introduces a so-called cross-
quantization condition [20]:

QL L TRL F K

—. (ED)
TKL — 1K)
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FIG. 10. Example plots of numerically obtained differential conductance corresponding to data traces of Fig. 2(b) and the fits resulting in

the parameters plotted in Fig. 2(f) (blue squares there).

The axial wave number «; and the circumferential wave
number «; of an electronic state are coupled; one exam-
ple solution is sketched in Fig. 6(a) following Ref. [20].
The axial magnetic field tunes the longitudinal profile
and charge distribution of the electronic wave function
from a A/4 resonator like shape, with a finite value at

one edge, near By =0 all the way to a A/2 resonator
like shape at high field; see the schematic drawings in
Fig. 6(a).

In Ref. [20], wave-function envelopes have been calculated
numerically using a tight-binding approach. Here, we approx-
imate these results using a simple functional dependence: for
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FIG. 11. Model construction: (a) Assumed linear single-particle charge density p along a nanotube quantum dot of length 1, as function
of position x and number of antinodes of the graphene sublattice wave function ¢, cf. [20]. The approximate situation at low magnetic field
is marked with a dashed line at ¢ = 1.25; ¢ = 2 corresponds to the high field limit of the K’ state, ¢ = 1 to the high field limit of the
corresponding K state. (b) Absolute value of the interaction energy |E.,| for ¢ = 1, as function of length ratio A = L, /L, and relative position
of the centers § = (x, — x4)/Lq of vibron and quantum dot. (c) Franck-Condon parameter g, approximated as g >~ EZ, for fixed A = 2 and as

ev?

function of ¢ and §. The solid/dotted line at § = 1.25 corresponds to the line cuts shown in Fig. 6(c); ¢ = 1.25 is again marked with a dashed

line.

a quantum dot of length 1, we write for sublattice A
Yalx, ) =sin(m ¢ x), xe€(0,1] (E2)
and, accordingly, for sublattice B

Vs(x, @) = Ya(l —x, ¢). (E3)

The parameter ¢ describes the number of wave-function
antinodes along the quantum dot, i.e., in the range x €
[0, 1]. Half-wavelength resonator solutions are given by ¢ =
1,2, ..., quarter-wavelength resonator solutions are given by
¢ =0.5,1.5,2.5,.... As can be seen in Fig. 6(a), increasing
a magnetic field from zero continuously tunes ¢, for a K’ state
from ¢ =~ 1.25 toward ¢ = 2, for a K state from ¢ =~ 1.25
toward ¢ = 1.

To obtain the total linear electron density, we now sum up
the densities on the two sublattices, while normalizing such
that a change in ¢ does not modify the total charge:

[Ya(x, $)I> + [¥s(x, §)I? '
S 1WaCx, §) + W (x, ¢)I7 dx

The result is plotted in Fig. 11(a).

Reference [37] discusses the electron-vibron interaction of
an interacting electron system using a Tomonaga-Luttinger
model. From the interaction Hamiltonian used there, Eq. (12)

px, @) = (E4)

in Ref. [37], coupling the electron density to the deformation
potential, we take inspiration of our interaction energy,

d
Eo($) / ple, o d, (E5)

where u(x) is the vibration envelope of the mechanical mode.
In addition, also following Ref. [37] and its nomenclature, we
allow for the vibron and the quantum dot to be shifted relative
to each other and to be of different lengths; we parametrize
this using length ratio A = L,/L; and relative position of
the centers § = (x, — x4)/Ly of vibron and quantum dot.
Fig. 11(b) plots for ¢ = 1 the interaction energy |E., (X, §)],
reproducing basic features of the corresponding Tomonaga-
Luttinger model plot, left panel of Fig. 5 in Ref. [37].

Given the comparatively small vibrational energy quan-
tum in our device, cf. Fig. 8, and the strong electrostatic
confinement of the quantum dot, we consider it likely that
the quantum dot is smaller than the vibron envelope, i.e.,
A > 1. We are now interested in the magnetic-field-induced
modification of the Franck-Condon parameter g o< E2, [37]
and thus plot in Fig. 11(c) this value as function of ¢ and §, for
a fixed A = 2. The solid/dotted line corresponds to § = 1.25,
the value selected for the trace cut in Fig. 6(c).
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