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Abstract—To address operator’s capacity challenges, 
efficient demand driven deployment of 4G and 5G small cells 
considering multiple targets of the operator is very important. 
To that end, multiobjective optimized small cell planning 
methodology has recently been proposed. Yet, the method does 
not provide straightforward mechanism to consider operator’s 
spatial capacity demand that can be obtained from operator’s 
existing network capacity and data market targets. In this 
work, we present a capacity demand based multiobjective 
optimal small cell placement method and its performance 
analysis for exemplary service area of Addis Ababa. To 
formulate spatial capacity demand, we use spatial user and 
traffic distribution data from network management system of 
existing network. As an input for Matlab based network 
simulation multiobjective optimization, propagation is 
computed using deterministic ray tracing model over 3D 
building and terrain map of the service area. The 
multiobjective optimization is performed for network capacity 
and cost objectives in this work using a Genetic Algorithm. 
Results show that the multiobjective placement method 
presents optimal small cell topologies that meet operator’s 
spatial capacity demand while optimizing aggregate network 
capacity and cost. The optimization reduced 185-network 
topology to 45-130 optimal network topologies while 
significantly improving network capacity. The capacity 
improvement shows significant user throughput improvement 
effect. For instance, the 130-topology provides 57% gain in 
90%-ile user throughput compared to the not optimized 185-
topology.        

Keywords— Small Cell Planning, Capacity Demand, NMS, 
Heterogeneous Network, Optimal Cell Placement, Multiobjecive 
optimization, Genetic Algorithm, LTE, LTE-advanced, 5G, Data 
Analytics.  

I. INTRODUCTION

     Penetration of mobile broadband services and 
corresponding data traffic has been significantly increasing 
in the last decade across the globe including Africa [1]. This 
is primarily driven by increased penetration of affordable 
smart user devices and various innovative video-centric data 
services. 
   To accommodate the corresponding increase in cellular 
network data traffic, mobile operators need to continuously 
enhance their cellular network capacity and for that various 
capacity enhancement techniques have been developed and 
standardized in the 4th and 5th generation (4G and 5G) 
mobile technology standards [2-5]. Therein, one key 
technology is network densification whereby density of cells 
is increased with the increasing data demand by deploying 
small cells such as picocell under the umbrella macro cell 
coverage [6]. Different densification scenarios are 
incorporated in Third Generation Partnership Project (3GPP) 

Long Term Evolution (LTE), LTE-Advanced and 5G New 
Radio (NR) radio access technology standards [4, 5]. 
      The successful deployment of small cells by an operator 
requires optimal network plan that meets capacity demand of 
operator’s service area [7]. The capacity demand is one key 
target set by the operator based on its existing network 
capacity exhaust challenges and data market target. 
Furthermore, operator’s need to minimize network cost that 
is directly proportional with required number of small cells 
to meet the capacity demand. To tackle the network cost 
increase even small cell leasing has been proposed [8]. Other 
operator small cell planning considerations may include 
elimination of coverage holes in existing macro/micro 
cellular networks. Also, effective network load balancing is 
very important and have gained a lot of interest [9-11]. The 
densification of a network will increase its energy 
consumption and thus, energy efficiency of heterogeneous 
networks composed by macrocells and small cells have 
become a popular research item recently [11-13]. These 
challenges have inspired a rethink traditional planning 
approaches towards   for novel approaches that are demand 
driven (considering spatiotemporal capacity demand 
variations) and accommodate simultaneous optimization of 
multiple targets [14].  
    To that end, [15] presents a multiobjective optimization 
methodology for small (2) cell planning framework and [16] 
considers an indoor small cell planning by applying 
deterministic ray-tracing modeling. Although these works 
provide a very good framework to optimize small cell 
placement by simultaneously considering multiple objectives 
of an operator, they lack straightforward (3) mechanism to 
incorporate capacity (4) demand of the operator that can be 
formulated from an operator's existing network capacity and 
its data market targets. 

In this work we formulate a capacity demand based small 
cell placement within a hot spot area of Addis Ababa. The 
propagation characteristics is modeled over a 3D map by 
using a deterministic ray-tracing computation. The network 
layout is obtained by applying multiobjective optimization. 
The spatial capacity demand is obtained based on realistic 
spatial traffic and user distribution data that is collected from 
network management system (NMS) of the operator. We 
emphasize that all elements of the performance evaluation 
are realistic since we use a real macrocell network as a 
starting point and user distributions as well as service 
demand has been obtained from NMS. The propagation 
modeling is obtained by using the state-of-art ray tracing 
software [17].  
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Results show that without multiobjective optimization 
there is a need of a network topology with 185 small cells to 
meet capacity demand of the service area. 

The rest of the paper is structured as follows. Section II 
provides system model. Section III presents the capacity 
demand based small cell placement method. Then, Section 
IV describes the exemplary service area of Addis Ababa and 
assumptions for the simulation campaign while Section V 
presents obtained performance results. Finally, Section VI 
forwards concluding remarks. 

II.  SYSTEM MODEL 
     For a given operator’s network service area, we assume 
N୫ LTE or LTE-Advanced existing macrocells and Nୡ small 
cell candidate locations. The candidate locations are 
formulated based on operator’s capacity demand and N୭ 
locations of them are selected using multiobjective 
optimization (N୭ ≤ Nୡ).  Small cells are deployed in selected 
optimal locations in-band or out-of-band with respect to the 
operating band of the macrocells. Fig. 1 depicts illustrative 
network layout for two three-sector eNodeBs (N୫ = 6) and 
four small cells ( N୭ = 4 ). User distribution within the 
service area is formulated based on raw network data from 
operator’s existing network management system.  
 

 
Figure 1 Heterogeneous network layout with 2 eNodeBs and 4 

small cells 

Then instantaneous downlink signal-to-interference-plus-
noise-ratio (SINR) for i୲୦  user in case of in-band small cell 
deployment at a given subframe can be computed as   

௜ܴܰܫܵ = ఊ೔బ௉೔బ

∑ ఊ೔ೕ௉೔ೕ
ಿ೘శಿೌషభ
ೕసభ ା௉೙

  ,                                    (1) 

where P୧୨  and γ୧୨  are average received power and channel 
power at i୲୦ user from j୲୦ cell. The o୲୦ cell is serving macro 
or small cell for i୲୦ user that is selected based on the best 
received power cell association method. P୬is noise power at 
the user. In case of out-of-band small cell deployment, user 
SINR is computed using (1) but considering only macro or 
small cells depending on the user’s serving cell. 
      Average received power is computed considering 
average pathloss which itself computed using deterministic 
dominant path model based on building and terrain map of 
the service area [18]. Furthermore, cable loss and antenna 
gain are also included pathloss budget.      

Mapping of SINR to spectral efficiency is performed 
using modified Shannon formula [19]: 

௜ܵ = ݊ ∗ ܤ ௘ܹ௙௙݈݃݋ଶ(1 + ௌூேோ೔
ௌூேோ೐೑೑

),                       (2) 

where n is MIMO rank, BWୣ୤୤  adjust for the system 
bandwidth efficiency and SINRୣ୤୤  adjust for the SINR 
implementation efficiency which value is obtained from 
detailed link-level simulation and curve fitting.  Then user 
throughput is computed using T୧ = N୔ୖ୆୧BW୔ୖ୆S୧ , where 
N୔ୖ୆୧ and BW୔ୖ୆ are number of allocated PRBs for the user 
and bandwidth of a PRB, respectively. Available number of 
PRBs are limited and depends on available system 
bandwidth (i.e., the number of PRBs depends on the 
bandwidth configured). To achieve fair resource allocation 
among all users, we use proportional fair resource scheduling 
technique [20]. 

For N୳  number of users in the network service area, the 
aggregate network capacity per subframe becomes 

ܥ = ∑ ௜ܶ
ேೠ
௜ୀଵ .                                       (3) 

III.   DEMAND DRIVEN SMALL CELL PLACEMENT METHODS 

A. Capacity Demand based Placement 
    Small cell placement in the service area is performed 
based on straightforwardly calculated spatial capacity 
demand.  The demand is the difference between target spatial 
capacity and currently existing spatial capacity. The target 
capacity is multiplication of the number of users and target 
user throughput set by the operator while existing capacity is 
obtained from existing live network busy hour traffic data. 
Spatial user and network traffic distribution are both 
obtained from operator’s network management system. In 
this work, we leverage hourly data with 50m pixel resolution 
and collected over a month in the Bole area of Addis Ababa 
mobile network.  From that data the peak hour monthly 
average user and traffic distribution is shown in Fig. 2. 

 

 
Figure 2 Monthly average traffic and user distribution of Bole 

area of Addis Ababa 

Further details on the steps for small cell placement 
based on computed capacity demand are explained in Table 
1. 
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TABLE I.  CAPACITY DEMAND BASED SMALL CELL PLACEMENT 

Input: User and traffic distribution, target user throughput and 
small cell capacity  

1. Set target user throughput and small cell capacity 
2. Compute target spatial capacity from user distribution and 

target user throughput for the service area 
3. Compute existing spatial capacity from traffic distribution for 

the service area 
4. Compute capacity demand subtracting existing capacity from 

target capacity 
5. Calculate required number of small cells dividing the capacity 

demand by small cell capacity. We take the ceil of the result 
6. Localize small cells optimally within the service area. 
 

B. Multiobjective Optimization based Placement 
Although the aforementioned capacity demand-based 

placement is straightforward, it does not consider radio 
propagation and network environment that significantly 
affects small cell spatial capacity distribution. Furthermore, it 
does not optimize required number of small cells to meet the 
capacity demand. To address these challenges, we apply 
multiobjective optimization based small cell placement 
where simultaneous capacity and network cost optimization 
is conducted over previously formulated small cell topology.  

Let us assume that network topologies are indicated using 
a vector z of size Nୡ such that when k th cell is active, z(k)=1 
otherwise z(k)=0. Then the number of small cells becomes  

1
( )

cN

s
k

N z k                                 (4) 

The multiobjective problem can be formulated as 
               min ( ) [ ( ), ( )]z sf z N z C z ,                       (5) 

where network capacity is obtained from equation (3) for 
the topology defined by vector z. To solve the multiobjective 
problems in (4) and (5), evolutionary algorithms are effective 
metaheuristics since the mathematical structure of the 
objective functions does not feature convexity or continuity 
[21, 22]. As a result, we use the popular multiobjective 
evolutionary algorithm called non-dominated sorting genetic 
algorithm II [23, 24].  

IV.   DEPLOYMENT SCNEARIO AND NETWORK ASSUMPTIONS 
For this work, we apply 2 km × 2 km network service 

area from Bole sub city of Addis Ababa. Its environment and 
network layout are shown in Fig. 3. As can be seen in the 
figure, the service area consists of 13 three sector eNodeBs 
(thus 39 macrocells) that serves various hot spots in the area. 
Moreover, the environment type is dense urban and includes 
387 buildings with height varying from 10 m to 55 m. 

As indicated in Section II, deterministic ray-tracing 
model called dominant path model is applied for propagation 
computation. The computation is performed using building 
and terrain maps of the service area. 

 

 
Figure 3 Service area from Bole district of Addis Ababa 

To obtain performance results of the small cell placement 
method, simulation campaign is undertaken for parameter 
values and assumptions that are presented in Table 2. 

 
TABLE II.  SIMULATION ASSUMPTIONS AND VALUES FOR PARAMETERS 

Parameter Macrocell Small cell 
Transmission power 46dBm 30dBm 
Antenna pattern Huawei 

ADU451819  
Omnidirectional 

Antenna Gain 17dBi 5dBi 
Antenna Height From existing 

network 
5m 

Small cell type In-band small cells 
UE and traffic 
distribution From NMS 
Target user throughput 
and small cell capacity 4 Mbps and 60 Mbps  
UE height 1.5m 
UE antenna gain 0 dB 
UE noise figure 9 dB 
Cable loss 2 dB 
Carrier frequency 2 GHz 
Average pathloss Dominant path model 
Shadow fading  Gaussian in dB scale with 8dB STD 
SINR to SE mapping SINR୫୧୬ = −10dB, n = 2, BWୣ୤୤ =

, SINRୣ୤୤ =, SE୫ୟ୶ = 7.7 b/s/Hz 
System bandwidth 20 MHz 
Thermal noise density -174 dBm/Hz 
Simulation Radio propagation modeling 

(WinProp), System level simulation 
(Matlab), 5 m resolution 

 

V.   RESULTS AND PERFORMANCE ANALYSIS     
 Based on user and traffic distribution of the service area 

(see Fig. 2), capacity demand based placement method 
provides 185 small cells with spatial distribution shown in 
Fig. 4. Comparing Fig. 4 and Fig. 2, we note that small cell 
distribution follows the user distribution that is an expected 
result when assuming a certain rate target to all users, is 
higher in areas where more number of users and less amount 
of existing traffic. 
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Figure 4 Small cell distribution obtained using the capacity 

demand based placement method 

     When the multiobjective optimization placement for 
maximizing network capacity and minimizing network cost 
is run over small cell spatial distribution in Fig. 4, we find 
optimal Pareto front result that is shown in Fig. 5.  It shows 
how the aggregated network capacity grows with the number 
of small cells (between 45 to 130). It is found that the 
network capacity increases first slowly with additional small 
cells but starts to grow faster when the density of the small 
cells becomes high.   
     

 
Figure 5 Optimal Pareto front from multiobjective optimization-
based placement 

User SINR and throughput results for the 130 small cells 
topology are depicted in Fig. 6 and Fig. 7, respectively. The 
SINR result show that after optimization, 10%-ile, 50%-ile 
and 90%-ile user SINRs are improved by 5 dB, 5.4 dB and 
5.6 dB. These gains are mainly attributed to the interference 
reduction from reduced number of small cells and optimized 
topology selection.     

 
Figure 6 SINR result for 130 small cells topology 

   Similarly throughput result in Fig. 7 shows 12%, 33%, and 
57% gains for 10%-ile, 50%-ile and 90%-ile user throughput. 
Yet, we can see that the 50%-ile throughput results is less 
than operator’s target throughput.  

 
Figure 7 UE throughput result for topology with 130 small cells  

  

VI.   CONCLUSION 
    To meet the increasing high data rate demand, operators 
are expected to plan and deploy demand-driven dense and 
ultra-dense 4G and 5G networks considering their various 
network requirements including network capacity and cost. 
For that, literature has proposed novel multiobjective 
optimization small cell planning methodology. Although the 
method captures well simultaneous optimization need of 
operator’s multiple targets, it does not straightforwardly 
incorporate operator spatial capacity demand that can be 
formulated based on operator’s existing network capacity 
and its data market target. In this work, we have presented a 
capacity demand based multobjective optimal small cell 
placement method and its performance analysis. Results have 
showed that multiobjective optimal placement can be 
achieved considering operator’s capacity demand while 
simultaneous optimizing different target. For network 
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capacity and cost optimization, the method can present 
optimal network topologies that significantly reduces 
required number of small cells while improving network 
capacity. Significant user throughput improvement can also 
be attained from enhanced network capacity from the 
optimization.  
    Future research will consider advanced spatial capacity 
demand formulation; multiobjective optimization for 
requirements other than network cost and capacity; and other 
types of small cells including out-of-band ones and those 
operating in high bands (e.g. 28 GHz).    
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